Transition to a Circular Bioeconomy in the Sugar Agro-Industry: Predictive Modeling to Estimate the Energy Potential of By-Products
Abstract
:1. Introduction
- The development of a data-driven predictive mathematical model capable of estimating the bioenergy potential of sugarcane by-products (bagasse, vinasse, filter cake and molasses) based solely on historical milling data, without requiring extensive laboratory or kinetic testing.
- Validation of the model with real historical production series (2011–2018), achieving a relative error of less than , which reinforces its robustness and operational applicability.
- The provision of an accessible and scalable tool for estimating bioenergy potential that can support national bioeconomy strategies and industrial decarbonization efforts, particularly in emerging economies.
2. Materials and Methods
2.1. Equations for the Percentage of Substrate in Milled Cane, Bagasse, Vinasse, Molasses
2.2. By-Products Derived from Sugarcane
2.3. Equations for Biogas Production from Substrates in Sugar Mills
2.4. Biogas Production from Bagasse
- : Total volume of biogas generated from bagasse (in ).
- : Total mass of bagasse generated (t).
- : Specific biogas yield per ton of bagasse (/t).
2.5. Biogas Production from Vinasse
- : Total volume of biogas generated from vinasse ().
- : Total mass of vinasse generated (t).
- : Specific biogas yield per ton of vinasse (/t).
2.6. Biogas Production from Filter Cake
- : Total volume of biogas generated from filter cake ().
- : Total mass of filter cake generated (kg).
- : Specific biogas yield per kilogram of filter cake (/kg).
2.7. Biogas Production from Molasses
- : Total volume of biogas generated from molasses ().
- : Total mass of molasses generated (kg).
- : Specific biogas yield per kilogram of molasses (/kg).
2.8. Total Biogas Production
2.9. Determining the Electricity Generation Potential from Biogas
- : Electrical energy generated (kWh).
- : Total biogas ().
- k: Conversion coefficient (kWh/).
2.10. Univariate Descriptive Analysis of Central Tendency, Dispersion, and Range
2.10.1. Arithmetic Mean ()
- −
- : Mean or average of the values.
- −
- : Each individual value of the variable (biogas yield).
- −
- n: Total number of observations (considered studies).
2.10.2. Sample Standard Deviation (s)
- −
- s: Standard deviation.
- −
- : Each individual value of the variable.
- −
- : Arithmetic mean of the values.
- −
- n: Total number of observations.
2.10.3. Range (R)
- −
- R: Range or data amplitude.
- −
- : Maximum observed value.
- −
- : Minimum observed value.
2.10.4. Scenario-Based Parameterization for Modeling Outcomes
Low Value (Pessimistic Scenario)
- −
- : Minimum observed value or 10th percentile in the case of large datasets.
Middle Value (Realistic Scenario)
- −
- : Arithmetic mean, assumed as the expected value.
High Value (Optimistic Scenario)
- −
- : Maximum observed value or 90th percentile in the case of large datasets.
2.11. Principal Component Analysis (PCA)
Statistical Foundation
- : eigenvalues (variance explained by each component).
- v: eigenvectors (principal directions).
- : k-th principal component.
2.12. Time Trend Analysis and Outlier Detection
Linear Trend Regression
- : Percentage of filter cake in year t.
- : Intercept.
- : Slope of the trend (annual change).
- : Error term.
2.13. Evaluation of the Consistency of Technical Coefficients vs. Real Data (2011–2018, Peru)
2.14. Future Projection of Biogas Production Potential (2024–2030)
2.14.1. Projected Processed Cane per Year
- : Projected cane in year n (tons).
- : Historical average (tons).
- g: Annual growth rate (0.025 or 0.05).
- n: Number of years since 2023 ( for 2024, …, for 2030).
2.14.2. Estimated By-Product Calculation
- : Tons of by-product i in year n.
- : Projected cane in year n (in tons).
- : Percentage of by-product i over the cane.
2.14.3. Biogas Production per By-Product
- : Biogas generated from by-product i in year n (in ).
- : Tons of by-product i in year n.
- : Biogas production per ton (/t).
2.14.4. Estimated Total Annual Biogas
- is the total estimated biogas in year n.
- is the biogas production from by-product i in year n.
3. Results and Discussion
3.1. Statistical Analysis Results by By-Product from Sugar Mills
3.2. Determination of By-Product Content and Its Energy Recovery Based on Actual Milling Data
3.3. Evaluation of the Consistency of Technical Coefficients vs. Actual Data
3.4. Future Projection of By-Product and Biogas Production Potential (2024–2030)
3.4.1. Cumulative Projection of By-Products in Countries Like Peru and Cuba (2024–2030)
3.4.2. Projected Potential of By-Products in the Total Biogas Production for Cuba and Peru (2024–2030)
3.4.3. Projection of Electricity Generation Potential for Cuba and Peru (2024–2030)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hernández-Beltrán, J.U.; Lira, I.O.H.D.; Cruz-Santos, M.M.; Saucedo-Luevanos, A.; Hernández-Terán, F.; Balagurusamy, N. Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. Appl. Sci. 2019, 9, 3721. [Google Scholar] [CrossRef]
- Sarangi, P.K.; Subudhi, S.; Bhatia, L.; Saha, K.; Mudgil, D.; Shadangi, K.P.; Srivastava, R.K.; Pattnaik, B.; Arya, R.K. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. Environ. Sci. Pollut. Res. 2023, 30, 8526–8539. [Google Scholar] [CrossRef] [PubMed]
- Leal, M.R.L.V.; Walter, A.S.; Seabra, J.E.A. Sugarcane as an energy source. Biomass Convers. Biorefin. 2013, 3, 17–26. [Google Scholar] [CrossRef]
- Balakrishnan, D. Exploring the potential of sugarcane vinasse for biogas and biofertilizer production: A catalyst for advancing the bioeconomy. Sustain. Energy Technol. Assess. 2024, 61, 103474. [Google Scholar] [CrossRef]
- Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to Energy: A Focus on the Impact of Substrate Type in Biogas Production. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Mishra, A.; Kumar, M.; Bolan, N.S.; Kapley, A.; Kumar, R.; Singh, L. Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. Bioresour. Technol. 2021, 338, 125514. [Google Scholar] [CrossRef]
- Janke, L.; Leite, A.; Nikolausz, M.; Schmidt, T.; Liebetrau, J.; Nelles, M.; Stinner, W. Biogas production from sugarcane waste: Assessment on kinetic challenges for process designing. Int. J. Mol. Sci. 2015, 16, 20685–20703. [Google Scholar] [CrossRef]
- Lorenzo-Acosta, Y.; Doménech-López, F.; Eng-Sánchez, F.; Almazán-del Olmo, O.; Chanfón-Curbelo, J.M. Tratamiento industrial de vinazas de destilerías en reactores UASB. Tecnol. Quím. 2015, 35, 108–123. [Google Scholar]
- Bezerra, T.L.; Ragauskas, A.J. A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioprod. Biorefining 2016, 10, 634–647. [Google Scholar] [CrossRef]
- Castillo Álvarez, Y.; Monteagudo Yanes, J.P.; Jiménez Borges, R.; Patiño Vidal, C.D. Propuesta de diseño de un biodigestor industrial de cachaza para la generación de energía eléctrica. Rev. Univ. Y Soc. 2021, 13, 74–80. [Google Scholar]
- Mustafa, A.M.; Li, H.; Radwan, A.A.; Sheng, K.; Chen, X. Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour. Technol. 2018, 259, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Janke, L.; Weinrich, S.; Leite, A.F.; Sträuber, H.; Nikolausz, M.; Nelles, M.; Stinner, W. Pre-treatment of filter cake for anaerobic digestion in sugarcane biorefineries: Assessment of batch versus semi-continuous experiments. Renew. Energy 2019, 143, 1416–1426. [Google Scholar] [CrossRef]
- Paulsen, S.; Hoffstadt, K.; Krafft, S.; Leite, A.; Zang, J.; Fonseca-Zang, W.; Kuperjans, I. Continuous biogas production from sugarcane as sole substrate. Energy Rep. 2020, 6, 153–158. [Google Scholar] [CrossRef]
- Barbosa-Nuñez, J.; Palacios, O.; Mondragón-Cortez, P.; Alvarez, H.O. Chemical and Physical Affinity of Microalga–Azospirillum Consortium Co-cultured in Suspension During CO2 Fixation from Biogas. BioEnergy Res. 2023, 16, 579–592. [Google Scholar] [CrossRef]
- Alfonso-Cardero, A.; Pagés-Díaz, J.; Contino, F.; Lorenzo-Llanes, J. Process simulation and techno-economic assessment of vinasse-to-biogas in Cuba. Chem. Eng. Res. Des. 2021, 169, 33–45. [Google Scholar] [CrossRef]
- Parsaee, M.; Kiani Deh Kiani, M.; Karimi, K. A review of biogas production from sugarcane vinasse. Biomass Bioenergy 2019, 122, 117–125. [Google Scholar] [CrossRef]
- Wongarmat, W.; Sittijunda, S.; Mamimin, C.; Reungsang, A. Acidogenic phase anaerobic digestion of pretreated sugarcane filter cake for co-digestion with biogas effluent to enhance the methane production. Fuel 2022, 310, 122466. [Google Scholar] [CrossRef]
- Pajampa, K.; Laloon, K.; Suksri, A.; Phadungton, S.; Ratpukdi, T.; Posom, J.; Wongwuttanasatian, T. A way towards zero-waste campaign and sustainability in sugar industries; filter cake valorisation as energy pellets. Ain Shams Eng. J. 2024, 15, 102459. [Google Scholar] [CrossRef]
- Widyastuti, N.; Hidayat, M.; Purnomo, C.W. Enhanced Biogas Production from Sugarcane Vinasse Using Electro-Fenton as Pre-Treatment Method. Proc. Iop Conf. Ser. Earth Environ. Sci. 2021, 830, 012079. [Google Scholar] [CrossRef]
- Ma, H.; Chen, L.; Guo, W.; Wang, L.; Zhang, J.; Zhang, D. Synergistic Promotion of Direct Interspecies Electron Transfer by Biochar and Fe3O4 Nanoparticles Enhance Methanogenesis in Anaerobic Digestion of Vegetable Waste. Fermentation 2024, 10, 656. [Google Scholar] [CrossRef]
- Masala, F.; Groppi, D.; Nastasi, B.; Piras, G.; Astiaso Garcia, D. Techno-economic analysis of biogas production and use scenarios in a small island energy system. Energy 2022, 258, 124831. [Google Scholar] [CrossRef]
- Srinivas, G.; Ramesh, P.; Radhika, G.; Srinivas, T. Chapter 28—Modeling and technoeconomic analysis of biogas production from waste food. In Biofuels and Bioenergy; Gurunathan, B., Sahadevan, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 673–685. [Google Scholar] [CrossRef]
- Tian, H.; Wang, X.; Lim, E.Y.; Lee, J.T.; Ee, A.W.; Zhang, J.; Tong, Y.W. Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization. Renew. Sustain. Energy Rev. 2021, 150, 111489. [Google Scholar] [CrossRef]
- Arelli, V.; Mamindlapelli, N.K.; Juntupally, S.; Begum, S.; Anupoju, G.R. Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: Impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity. Bioresour. Technol. 2021, 340, 125675. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.K.; Kumar, M.; Ghosh, P.; Kumar, S.S.; Singh, L.; Vijay, V.K.; Kumar, V. Anaerobic digestion of sugarcane bagasse for biogas production and digestate valorization. Chemosphere 2022, 295, 133893. [Google Scholar] [CrossRef]
- Volpi, M.P.C.; Fuess, L.T.; Moraes, B.S. Anaerobic co-digestion of residues in 1G2G sugarcane biorefineries for enhanced electricity and biomethane production. Bioresour. Technol. 2021, 330, 124999. [Google Scholar] [CrossRef]
- Romaniuk, W.; Rogovskii, I.; Polishchuk, V.; Titova, L.; Borek, K.; Shvorov, S.; Roman, K.; Solomka, O.; Tarasenko, S.; Didur, V.; et al. Study of Technological Process of Fermentation of Molasses Vinasse in Biogas Plants. Processes 2022, 10, 2011. [Google Scholar] [CrossRef]
- Cheong, W.L.; Chan, Y.J.; Tiong, T.J.; Chong, W.C.; Kiatkittipong, W.; Kiatkittipong, K.; Mohamad, M.; Daud, H.; Suryawan, I.W.K.; Sari, M.M.; et al. Anaerobic Co-Digestion of Food Waste with Sewage Sludge: Simulation and Optimization for Maximum Biogas Production. Water 2022, 14, 1075. [Google Scholar] [CrossRef]
- Wongarmat, W.; Sittijunda, S.; Imai, T.; Reungsang, A. Co-digestion of filter cake, biogas effluent, and anaerobic sludge for hydrogen and methane production: Optimizing energy recovery through two-stage anaerobic digestion. Carbon Resour. Convers. 2025, 8, 100248. [Google Scholar] [CrossRef]
- Aili Hamzah, A.; Hamzah, M.; Mazlan, N.; Che Man, H.; Jamali, N.; Siajam, S.; Show, P. Optimization of subcritical water pre-treatment for biogas enhancement on co-digestion of pineapple waste and cow dung using the response surface methodology. Waste Manag. 2022, 150, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Tiong, J.S.M.; Chan, Y.J.; Lim, J.W.; Mohamad, M.; Ho, C.D.; Rahmah, A.U.; Kiatkittipong, W.; Sriseubsai, W.; Kumakiri, I. Simulation and Optimization of Anaerobic Co-Digestion of Food Waste with Palm Oil Mill Effluent for Biogas Production. Sustainability 2021, 13, 13665. [Google Scholar] [CrossRef]
- Mazuchi, M. Chapter 11—Life Cycle Assessment of Sugarcane Biorefinery: Energy Use, Environmental Assessment, and Other Sustainability Indicators. In Advances in Sugarcane Biorefinery; Chandel, A.K., Luciano Silveira, M.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 213–239. [Google Scholar] [CrossRef]
- Kapanji, K.K.; Farzad, S.; Görgens, J.F. Life cycle and sustainability assessments of biorefineries producing glucaric acid, sorbitol or levulinic acid annexed to a sugar mill. J. Clean. Prod. 2021, 295, 126339. [Google Scholar] [CrossRef]
- Karp, S.G.; Burgos, W.J.; Vandenberghe, L.P.; Diestra, K.V.; Torres, L.A.; Woiciechowski, A.L.; Letti, L.A.; Pereira, G.V.; Thomaz-Soccol, V.; Rodrigues, C.; et al. Sugarcane: A promising source of green carbon in the circular bioeconomy. Sugar Tech 2022, 24, 1230–1245. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J. Predicting biogas production from organic waste through anaerobic co-digestion. J. Clean. Prod. 2025, 496, 145122. [Google Scholar] [CrossRef]
- Mihi, M.; Ouhammou, B.; Aggour, M.; Daouchi, B.; Naaim, S.; Mers, E.M.E.; Kousksou, T. Modeling and forecasting biogas production from anaerobic digestion process for sustainable resource energy recovery. Heliyon 2024, 10, e38472. [Google Scholar] [CrossRef]
- Alvarez, Y.C.; Borges, R.J.; Vidal, C.D.P.; Leon, F.M.C.; Buendia, J.S.P.; Nolasco, J.A.S. Design Improvements and Best Practices in Small-Scale Biodigesters for Sustainable Biogas Production: A Case Study in the Chillon Valley, Perú. Energies 2025, 18, 338. [Google Scholar] [CrossRef]
- Singh, S.; Hariteja, N.; Sharma, S.; Raju, N.J.; Prasad, T.R. Production of biogas from human faeces mixed with the co-substrate poultry litter & cow dung. Environ. Technol. Innov. 2021, 23, 101551. [Google Scholar] [CrossRef]
- Hernández, D.; Pinilla, F.; Rebolledo-Leiva, R.; Aburto-Hole, J.; Díaz, J.; Quijano, G.; González-García, S.; Tenreiro, C. Anaerobic Co-Digestion of Agro-Industrial Waste Mixtures for Biogas Production: An Energetically Sustainable Solution. Sustainability 2024, 16, 2565. [Google Scholar] [CrossRef]
- Abilmazhinov, Y.; Shakerkhan, K.; Meshechkin, V.; Shayakhmetov, Y.; Nurgaliyev, N.; Suychinov, A. Mathematical Modeling for Evaluating the Sustainability of Biogas Generation through Anaerobic Digestion of Livestock Waste. Sustainability 2023, 15, 5707. [Google Scholar] [CrossRef]
- Gómez Montoya, J.P.; Castillo Alvarez, Y.; Fernandes De Magalhães, R.; Henrique Lermen, F. A thermo-economic analysis of a circular economy model for biomass in South America producing biofertilizers and biogas from municipal solid waste. Renew. Energy 2024, 225, 120254. [Google Scholar] [CrossRef]
- Campello, L.D.; de Oliveira Botan, M.C.C.; Filho, G.L.T.; Barros, R.M.; dos Santos, I.F.S.; Botan, A.C.B. Technical and economic feasibility of hybrid power generation from urban solid waste associated with solar energy, considering the impact of the sale of carbon credits. Renew. Energy 2024, 235, 121388. [Google Scholar] [CrossRef]
- Sanchumpu, P.; Suaili, W.; Nonsawang, S.; Ansuree, P.; Laloon, K. Predictive modelling of HHV and LHV for sugar industry by-products: A study on sugarcane trash leaves, bagasse, and filter cake. Int. J. Sustain. Eng. 2024, 17, 613–631. [Google Scholar] [CrossRef]
- Abdur Rawoof, S.A.; Kumar, P.S.; Vo, D.V.N.; Devaraj, T.; Subramanian, S. Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review. Renew. Sustain. Energy Rev. 2021, 152, 111700. [Google Scholar] [CrossRef]
- Gonzales, S.; Castillo, A.; Solís, J. Optimización de la capacidad de cogeneración mediante la adición de residuos de cosecha al bagazo en industria azucarera típica peruanas. Rev. TECNIA 2019, 28, 1–10. [Google Scholar] [CrossRef]
- Alonso-Estrada, D.; Díaz-de los Ríos, M.; Zhan, D.; Jian, J.; Zhang, Q.; Wang, S. Energetic and Environmental Integration in Factories of Sugar Cane Byproducts. Rev. Cienc. Técnicas Agropecu. 2020, 29, 32–41. [Google Scholar]
- Ajala, E.O.; Ighalo, J.O.; Ajala, M.A.; Adeniyi, A.G.; Ayanshola, A.M. Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess. 2021, 8, 87. [Google Scholar] [CrossRef]
- Janke, L.; Leite, A.; Nikolausz, M.; Schmidt, T.; Liebetrau, J. Biogas Production from Sugarcane Waste: Assessment of Kinetic Parameters for Process Design. Renew. Energy 2015, 83, 247–257. [Google Scholar]
- Hor, S.; Kongkeitkajorn, M.B.; Reungsang, A. Sugarcane bagasse-based ethanol production and utilization of its vinasse for xylitol production as an approach in integrated biorefinery. Fermentation 2022, 8, 340. [Google Scholar] [CrossRef]
- Manickavasagam, M.; Elango, T.; Selvarajan, L.; Elangovan, K. Maximizing sustainable power: Improving bagasse drying efficiency in Indian sugar mills. Biomass Convers. Biorefin. 2024, 14, 21579–21601. [Google Scholar] [CrossRef]
- Negrão, D.R.; Grandis, A.; Buckeridge, M.S.; Rocha, G.J.; Leal, M.R.L.; Driemeier, C. Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: A review. Renew. Sustain. Energy Rev. 2021, 148, 111268. [Google Scholar] [CrossRef]
- Pan, S.; Zabed, H.M.; Wei, Y.; Qi, X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: Current status, challenges and future outlook. Ind. Crop. Prod. 2022, 188, 115684. [Google Scholar] [CrossRef]
- Furtado, L.A.; Ribeiro, S.G.; Pradelle, F.; Parise, J.A.R. Modeling and techno-economic analysis of a hybrid sugarcane plant fed by vinasse biogas and bagasse surplus for electricity generation. J. Clean. Prod. 2023, 413, 137511. [Google Scholar] [CrossRef]
- Santos, P.S.; Zaiat, M.; Oller do Nascimento, C.A.; Fuess, L.T. Does sugarcane vinasse composition variability affect the bioenergy yield in anaerobic systems? A dual kinetic-energetic assessment. J. Clean. Prod. 2019, 240, 118005. [Google Scholar] [CrossRef]
- Latiza, R.J.P.; Rubi, R.V. Circular Economy Integration in 1G+ 2G Sugarcane Bioethanol Production: Application of Carbon Capture, Utilization and Storage, Closed-Loop Systems, and Waste Valorization for Sustainability. Appl. Sci. Eng. Prog. 2025, 18, 7448. [Google Scholar]
- Fuess, L.T.; de Araújo Júnior, M.M.; Garcia, M.L.; Zaiat, M. Designing full-scale biodigestion plants for the treatment of vinasse in sugarcane biorefineries: How phase separation and alkalinization impact biogas and electricity production costs? Chem. Eng. Res. Des. 2017, 119, 209–220. [Google Scholar] [CrossRef]
- López, M.V.; Villarrubia, J. Producción de biogás en vertederos de Residuos Sólidos Urbanos (RSU). Montajes Instal. Rev. Técnica Sobre Construcción Ing. Instal. 2001, 31, 95–104. [Google Scholar]
- Sarker, T.C.; Azam, S.M.G.G.; Bonanomi, G. Recent Advances in Sugarcane Industry Solid By-Products Valorization. Waste Biomass Valorization 2017, 8, 241–266. [Google Scholar] [CrossRef]
- Sanchumpu, P.; Suaili, W.; Nonsawang, S.; Junsiri, C.; Ansuree, P.; Laloon, K. Biomass pellet processing from sugar industry byproducts: A study on pelletizing behavior and energy usage. Sustainability 2024, 16, 6035. [Google Scholar] [CrossRef]
- Lima, I.M.; Beacorn, J.A. Targeting a Sustainable Sugar Crops Processing Industry: A Review (Part I)—By-Product Applications. Sugar Tech 2022, 24, 970–991. [Google Scholar] [CrossRef]
- Cisneros de la Cueva, S.; Álvarez Guzman, C.L.; Salmerón, I.; Pérez Vega, S.B.; Santiago Adame, R. Producción de biocombustibles a partir de melaza de caña de azúcar usando Serratia marcescens. Rev. Int. Contam. Ambient. 2024. [Google Scholar] [CrossRef]
- Lagos-Burbano, E.; Castro-Rincón, E. Sugar cane and by-products of the sugar agro-industry in ruminant feeding: A review. Agron. Mesoam. 2019, 30, 917–934. [Google Scholar] [CrossRef]
- Formann, S.; Hahn, A.; Janke, L.; Stinner, W.; Sträuber, H.; Logroño, W.; Nikolausz, M. Beyond Sugar and Ethanol Production: Value Generation Opportunities Through Sugarcane Residues. Front. Energy Res. 2020, 8, 579577. [Google Scholar] [CrossRef]
- Barrera Cardoso, E.L.; Spanjers, H.; Dewulf, J.; Romero, O.; Rosa, E. The sulfur chain in biogas production from sulfate-rich liquid substrates: A review on dynamic modeling with vinasse as model substrate. J. Chem. Technol. Biotechnol. 2013, 88, 1405–1420. [Google Scholar] [CrossRef]
- Budiyono, I.S.; Sumardiono, S. Biogas production from vinasse waste: Kinetic models using modified Gompertz equation and first-order. Bioresour. Technol. 2013, 149, 276–283. [Google Scholar] [CrossRef]
- Budiyono, I.S.; Sumardiono, S. Kinetic model of biogas yield production from vinasse at various initial pH: Comparison between modified Gompertz model and first order kinetic model. Res. J. Appl. Sci. Eng. Technol. 2014, 7, 2798–2805. [Google Scholar] [CrossRef]
- Ariza Calvo, D.; Rincón Ravelo, M.; Paz Cadavid, C.A.; Gutiérrez-Montero, D.J. Evaluación de producción de biogás y reducción de carga orgánica de vinazas mediante digestión anaerobia. Rev. Colomb. Biotecnol. 2019, 21, 118–130. [Google Scholar] [CrossRef]
- Lesme Jaén, R.; Peña Pupo, L.; Silva Lora, E.E.; Cabello Eras, J.J.; Sagastume Gutiérrez, A. Assessing biomass production and electricity generation potential in current and future decarbonization scenarios in Cuba until 2050. Energy Convers. Manag. 2025, 332, 119698. [Google Scholar] [CrossRef]
- Fuess, L.T.; Zaiat, M.; do Nascimento, C.A.O. Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresour. Technol. 2019, 286, 121379. [Google Scholar] [CrossRef]
- Barbosa, M.Y.U.; Damianovic, M.H.R.Z.; Pires, E.C. Thermophilic two-phase anaerobic digestion using an innovative fixed-structured bed reactor treating sugarcane vinasse. J. Water Process Eng. 2022, 49, 103306. [Google Scholar] [CrossRef]
- Hashemi, S.S.; Karimi, K.; Taherzadeh, M.J. Valorization of vinasse and whey to protein and biogas through an environmental fungi-based biorefinery. J. Environ. Manag. 2022, 303, 114138. [Google Scholar] [CrossRef]
- Gbadeyan, T.; Olanrewaju, O.A.; Kabeyi, M.J.B. Waste-to-energy: The recycling and reuse of sugar industry waste for different sustainable applications. Biofuels Bioprod. Biorefining 2024, 18, 99–117. [Google Scholar] [CrossRef]
- Fuess, L.; Cruz, R.; Zaiat, M.; Nascimento, C. Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery. Renew. Sustain. Energy Rev. 2021, 147, 111246. [Google Scholar] [CrossRef]
- Vilela, M.A.F.; Fuess, L.T.; Moraes, B.S. Modelación y análisis tecnoeconómico de una planta híbrida de caña de azúcar alimentada con biogás de vinaza y excedentes de bagazo para generación de electricidad. Energy Convers. Manag. 2023, 276, 116673. [Google Scholar] [CrossRef]
- Mendieta, M.; de la Torre, M.F.; Pérez, S. Modelado matemático del proceso de producción de biogás a partir del lavado gastado de destilería en la primera etapa. Bioresour. Technol. 2020, 302, 122957. [Google Scholar] [CrossRef]
- Asante, E.; Asiedu, N.Y.; Sarpong, S.; Agyemang, E.O.; Ajani, I.; Ntiamoah, A.; Adjaottor, A.A.; Addo, A. Modeling and assessment of the techno-economic analysis of biogas and its potential for the generation of electricity from water hyacinth biomass. J. Eng. Appl. Sci. 2024, 71, 98. [Google Scholar] [CrossRef]
- Zucaro, A.; Ansanelli, G.; Cerbone, A.; Picarelli, A.; Rinaldi, C.; Beltrani, T.; Sbaffoni, S.; Fiorentino, G. Life Cycle Assessment of Electricity Production from Different Biomass Sources in Italy. Energies 2024, 17, 2771. [Google Scholar] [CrossRef]
- Samson-Bręk, I.; Owczuk, M.; Matuszewska, A.; Biernat, K. Environmental Assessment of the Life Cycle of Electricity Generation from Biogas in Polish Conditions. Energies 2022, 15, 5601. [Google Scholar] [CrossRef]
- Shonhiwa, C.; Mukumba, P.; Makaka, G. Análisis tecnoeconómico de una minicentral eléctrica de biogás (MBEP) para una explotación agrícola típica en zonas aisladas de la red eléctrica de Zimbabue. Biomass Convers. Biorefin. 2025, 15, 4579–4595. [Google Scholar] [CrossRef]
- Klintenberg, P.; Mabeacu, F.; Schwede, S. Is small-scale biogas production a viable source of electricity in rural Sub-Saharan Africa? Proc. Energy Proc. 2022. Available online: https://www.researchgate.net/publication/379514139_Is_small-scale_biogas_production_a_viable_source_of_electricity_in_rural_Sub-Saharan_Africa (accessed on 13 April 2025).
- Duarte Junior, R.; Rossa, Ü.B.; Chiarello, L.M.; Scharf, D.R.; Somensi, C.A.; Vischetti, C.; Gonçalves, L.F.S. Producción de biogás y generación de electricidad a partir de un sistema de tratamiento de aguas residuales de estiércol de codorniz por profundidad de agua. Rev. Bras. Ciências Ambient. 2023, 58, 293–303. [Google Scholar] [CrossRef]
- Rodríguez Romero, T.E.; Cabello Eras, J.J.; Sagastume Gutierrez, A.; Mendoza Fandiño, J.M.; Rueda Bayona, J.G. The Energy Potential of Agricultural Biomass Residues for Household Use in Rural Areas in the Department La Guajira (Colombia). Sustainability 2025, 17, 974. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Technologies for biogas to electricity conversion. Energy Rep. 2022, 8, 774–786. [Google Scholar] [CrossRef]
- Lobo, R.; Gutiérrez, S.; Villatoro, H. Technical Feasibility of an Electrical Generation Plant from Municipal Solid Waste in Honduras, Central America. In Proceedings of the 20th LACCEI International Multi-Conference for Engineering, Education, and Technology: Education, Research, and Leadership in Post-Pandemic Engineering: Resilient, Inclusive and Sustainable Approaches, Boca Raton, FL, USA, 18–22 July 2022. [Google Scholar] [CrossRef]
- Arshad, M.; Ansari, A.R.; Qadir, R.; Tahir, M.H.; Nadeem, A.; Mehmood, T.; Alhumade, H.; Khan, N. Green electricity generation from biogas of cattle manure: An assessment of potential and feasibility in Pakistan. Front. Energy Res. 2022. [Google Scholar] [CrossRef]
- Balcioglu, G.; Jeswani, H.K.; Azapagic, A. Evaluating the environmental and economic sustainability of energy from anaerobic digestion of different feedstocks in Turkey. Sustain. Prod. Consum. 2022, 32, 924–941. [Google Scholar] [CrossRef]
- Banaget, C.K.; Frick, B.; Saud, M.N.I.L. Analysis of Electricity Generation from Landfill Gas (Case Study: Manggar Landfill, Balikpapan). IOP Conf. Ser. Earth Environ. Sci. 2020, 448, 012003. [Google Scholar] [CrossRef]
- Isaka, I.; Mwakitalima, R.; Kumar, N.M. Integración de una fuente de energía solar fotovoltaica y un sistema de energía a base de biogás para aumentar el acceso a la electricidad en zonas rurales de Tanzania. Int. J. Photoenergy 2023. [Google Scholar] [CrossRef]
- Barragán-Escandón, A.; Olmedo Ruiz, J.M.; Curillo Tigre, J.D.; Zalamea-León, E.F. Assessment of Power Generation Using Biogas from Landfills in an Equatorial Tropical Context. Sustainability 2020, 12, 2669. [Google Scholar] [CrossRef]
- Oficina Nacional de Estadística e Información (ONEI). Anuario Estadístico de Cuba 2022; Oficina Nacional de Estadística e Información: La Habana, Cuba, 2023; Available online: http://www.onei.gob.cu (accessed on 2 June 2025).
- Dirección General de Seguimiento y Evaluación de Políticas, MINAGRI. Industria Azucarera Nacional y Mercado Internacional. Serie Histórica de las Principales Variables de la Industria Azucarera en el Perú (1914–2018). Available online: https://www.gob.pe/minagri (accessed on 2 June 2025).
- Pereira, I.Z.; dos Santos, I.F.S.; Barros, R.M.; de Castro e Silva, H.L.; Tiago Filho, G.L.; Moni e Silva, A.P. Vinasse biogas energy and economic analysis in the state of São Paulo, Brazil. J. Clean. Prod. 2020, 260, 121018. [Google Scholar] [CrossRef]
- Kiani Deh Kiani, M.; Parsaee, M.; Safieddin Ardebili, S.M.; Reyes, I.P.; Fuess, L.T.; Karimi, K. Different bioreactor configurations for biogas production from sugarcane vinasse: A comprehensive review. Biomass Bioenergy 2022, 161, 106446. [Google Scholar] [CrossRef]
- Matsueda, Y.; Antunes, E. A review of current technologies for the sustainable valorisation of sugarcane bagasse. J. Environ. Chem. Eng. 2024, 12, 114900. [Google Scholar] [CrossRef]
- Lorenzo-Llanes, J.; Pagés-Díaz, J.; Kalogirou, E.; Contino, F. Development and application in Aspen Plus of a process simulation model for the anaerobic digestion of vinasses in UASB reactors: Hydrodynamics and biochemical reactions. J. Environ. Chem. Eng. 2020, 8, 103540. [Google Scholar] [CrossRef]
- Dupont, G.K.; Oliveira, M.M.; Clerici, N.J.; Serafini, C.G.; Daroit, D.J.; Wenzel, B.M. Kinetic modelling and improvement of methane production from the anaerobic co-digestion of swine manure and cassava bagasse. Biomass Bioenergy 2023, 176, 106900. [Google Scholar] [CrossRef]
- Moraes, B.S.; Junqueira, T.L.; Pavanello, L.G.; Cavalett, O.; Mantelatto, P.E.; Bonomi, A.; Zaiat, M. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense? Appl. Energy 2014, 113, 825–835. [Google Scholar] [CrossRef]
- do Vale Borges, A.; Fuess, L.T.; Alves, I.; Takeda, P.Y.; Damianovic, M.H.R.Z. Co-digesting sugarcane vinasse and distilled glycerol to enhance bioenergy generation in biofuel-producing plants. Energy Convers. Manag. 2021, 250, 114897. [Google Scholar] [CrossRef]
- Junior, L.M.C.; Júnior, E.P.S.; da Silva, C.F.F.; de Oliveira, B.H.C.; Dantas, J.B.C.; dos Reis, J.V.; Schramm, V.B.; Schramm, F.; Carvalho, M. Supply of bioelectricity from sugarcane bagasse in Brazil: A space–time analysis. Sustain. Environ. Res. 2024, 34, 17. [Google Scholar] [CrossRef]
- Aburto, J.; Martinez-Hernandez, E.; Amezcua-Allieri, M.A. Techno-Economic Feasibility of Steam and Electric Power Generation from the Gasification of Several Biomass in a Sugarcane Mill. BioEnergy Res. 2022, 15, 1777–1786. [Google Scholar] [CrossRef]
- Soares, A.d.A.V.L.; Prado, R.d.M.; Bertani, R.M.d.A.; da Silva, A.P.R.; Deus, A.C.F.; Kano, C.; Furlaneto, F.d.P.B. Contribution of Using Filter Cake and Vinasse as a Source of Nutrients for Sustainable Agriculture—A Review. Sustainability 2024, 16, 5411. [Google Scholar] [CrossRef]
- Usmania, A.; Pangkumhang, B.; Wongaree, M.; Wantalad, K.; Khunphono, R. Kinetic study of biogas production from anaerobic digestion of vinasse waste. Water Pract. Technol. 2021, 16, 886. [Google Scholar] [CrossRef]
- Mauky, E.; Weinrich, S.; Nägele, H.J.; Jacobi, H.F.; Liebetrau, J.; Nelles, M. Model Predictive Control for Demand-Driven Biogas Production in Full Scale. Chem. Eng. Technol. 2016, 39, 652–664. [Google Scholar] [CrossRef]
- Dasí-Crespo, D.; Carcerller-Toselli, A.; Roldán-Blay, C.; Escrivá-Escrivá, G.; Roldán-Porta, C. Design and Implementation of a Biogas Pilot Plant for Bioaugmentation Strategies in a Rural Municipality. In Proceedings of the 22nd International Conference on Renewable Energies and Power Quality (ICREPQ’24), Bilbao, Spain, 26–28 June 2024; Volume 22. [Google Scholar] [CrossRef]
- Sica, P.; Marabesi, A.O.; Seleghim, A.R.; Das, K.; Baptista, A.S. Effects of vinasse concentration on biogas production: An experimental work and case study in the context of RenovaBio in Brazil. Bioresour. Technol. Rep. 2024, 25, 101698. [Google Scholar] [CrossRef]
- Estévez, S.; Rebolledo-Leiva, R.; Hernández, D.; González-García, S.; Feijoo, G.; Moreira, M.T. Benchmarking composting, anaerobic digestion and dark fermentation for apple vinasse management as a strategy for sustainable energy production. Energy 2023, 274, 127319. [Google Scholar] [CrossRef]
- Lindorfer, H.; Demmig, C. Foam Formation in Biogas Plants – A Survey on Causes and Control Strategies. Chem. Eng. Technol. 2016, 39, 620–626. [Google Scholar] [CrossRef]
- Garcia-Perez, T.; Ortiz-Ulloa, J.A.; Jara-Cobos, L.E.; Pelaez-Samaniego, M.R. Adding Value to Sugarcane Bagasse Ash: Potential Integration of Biogas Scrubbing with Vinasse Anaerobic Digestion. Sustainability 2023, 15, 15218. [Google Scholar] [CrossRef]
- Albuquerque, J.; Ratusznei, S.; Rodrigues, J. Biomethane production by thermophilic co-digestion of sugarcane vinasse and whey in an AnSBBR: Effects of composition, organic load, feed strategy and temperature. J. Environ. Manag. 2019, 251, 109606. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.C.; de Souza Vandenberghe, L.P.; Sydney, E.B.; Karp, S.G.; Magalhães, A.I.; Martinez-Burgos, W.J.; Medeiros, A.B.P.; Thomaz-Soccol, V.; Vieira, S.; Letti, L.A.J.; et al. Biomethane Production from Sugarcane Vinasse in a Circular Economy: Developments and Innovations. Fermentation 2023, 9, 349. [Google Scholar] [CrossRef]
Reference | By-Product | Estimated Biogas Production | Notes/Context |
---|---|---|---|
[7] | Bagasse | 119–181 Nm3 CH4/t FM | BMP tests in Brazil |
[9] | Bagasse | 270–280 Nm3 CH4/t DM | Global technical review |
[64] | Bagasse | 180 Nm3 CH4/t | Estimated power generation for Cuban SEN |
[65] | Vinasse | 109–132.6 mL CH4/g COD | Batch digestion, Gompertz model |
[66] | Vinasse | 37,409 mL/g COD (1:3) | Maximum anaerobic conversion |
[48] | Vinasse | 246–302 mL CH4/g COD ≈ 5–11 Nm3/t FM | Brazilian plants |
[8] | Vinasse | 16 m3 CH4/m3 | UASB reactor |
[67] | Vinasse | 10–26.4 m3 biogas/m3 vinasse (6–16 CH4) | Technical review |
[16] | Vinasse | 0.185–0.402 m3 CH4/kg COD | 30 reactor configurations |
[68] | Vinasse | 21 m3 CH4/t vinasse | Simulated Cuban study |
[69] | Vinasse | 0.0001–2.61 MJ/L ethanol | Energy estimation |
[27] | Molasses vinasse | 300 L/kg DOM (without CH4) | Only CO2; no methane |
[15] | Vinasse | 18 m3 biogas/m3 vinasse | High methane concentration (65%) |
[70] | Vinasse | 0.40 L CH4/g COD | UASB reactor startup |
[71] | Vinasse | COD: 45.2 g/L; Sulfate: 158 mg/L | High organic load with low sulfate content |
Reference | By-Product | Estimated Biogas Production | Context |
---|---|---|---|
[19] | Vinasse | Initial COD: 126,750 mg/L | Too high for direct digestion; pre-treatment required |
[10] | Filter cake | 90 Nm3 CH4/t | Cuban plant |
[48] | Filter cake | 50–58 Nm3 CH4/t FM | Technical data from Brazil |
[72] | Molasses | 380 Nm3 CH4/t | Pure molasses digestion |
[73] | Fermented molasses | 321–348 NmL CH4/g COD | Thermophilic AnSTBR reactor |
[74] | Molasses | 323–350 NmL CH4/g COD | Outperforms vinasse in thermophilic digestion |
[13] | Whole cane | 500 mL CH4/g VS | Continuous digestion |
[63] | Energy cane | 417–599 LN/kg VS (avg. ∼242) | Silage without additives |
[75] | Sugarcane scum | 0.227 Nm3 CH4/kg VS | Best yield at 12.5% dilution |
Reference | Technology/Context | Electrical Efficiency (%) | Conversion (kWh/Nm3) | Remarks |
---|---|---|---|---|
[10] | Cummins AQL220 Engine – Cuba | implicit | 1.85 | Derived from 0.542 Nm3/kWh in pilot plant |
[76] | Thermodynamic model with 60% CH4 | 30–36% | 2.78–3.4 | Calculated using LHV (35.8 MJ/Nm3) and efficiency |
[77] | CHP, Italy | 34–36% | 1.8–2.2 | Field measurements and LCA simulation |
[78] | LFG (Landfill Gas) – Poland | 40% | 2.5 | Confirmed for active industrial plants |
[79] | Rural, Zimbabwe (cattle manure) | 35% | 2.16 | 62% CH4, calculated with thermal efficiency |
[80] | Adapted diesel engines | 25–30% | 1.5–1.8 | Africa, rural conditions with diluted biogas |
[81] | Quail manure, rural digester – Brazil | 28% | 1.65 | Validated in small-scale digesters |
[82] | Bagasse + manure – LAC | 32–35% | 2.0 | Reference value for energy policy |
[83] | SOFC and CHP | 35–40% | 2.5–2.9 | Optimal range in European plants |
[84] | 240 kW municipal plant | ∼34% | 1.85 | Electricity generation validated at 5760 kWh/day |
[85] | Cattle (Pakistan) | 30–33% | 2.1–2.4 | Pilot project on a remote farm |
[86] | CHP with mixed waste | 62–68% | 3.1–3.3 | Highly efficient (cogeneration system) |
Reference | Technology/Context | Electrical Efficiency (%) | Conversion (kWh/Nm3) | Remarks |
---|---|---|---|---|
[87] | 1200 kWe LFG engine | 42% | 2.6–2.8 | Performance measured via monthly monitoring |
[88] | Tanzania, hybrid system | 28–32% | 1.7–2.0 | Evaluation in rural off-grid areas |
[89] | LFG-powered generators | 38–40% | 2.3–2.5 | Urban cases, medium-scale plants |
[83] | Multi-technology (CHP, ORC, SOFC) | 15–54% | 1.0–3.5 | Broad review with technical comparisons |
Element | Details |
---|---|
(a) Growth Scenarios | |
Scenario E1 (Conservative) | Cane production remains constant (base 2011–2018) |
Scenario E2 (Moderate) | Linear growth of +2.5% per year |
Scenario E3 (Optimistic) | Technological improvement + growth: +5% per year |
(b) Historical Average of Cane Processed (2011–2018) | |
Peru | 10,256,777 tons annually |
Cuba | 15,400,000 tons annually |
(c) Technical Coefficients Applied per By-Product | |
Bagasse | 29.5% of processed cane → 180 Nm3 of biogas per ton |
Filter Cake | 3.72% of processed cane → 63.25 Nm3 of biogas per ton |
Molasses | 3.83% of processed cane → 344.4 Nm3 of biogas per ton |
Vinasse | 13.75% of processed cane → 12.6 Nm3 of biogas per ton |
Year | Milled Sugarcane (t) | (t) | % | (t) | % |
---|---|---|---|---|---|
2011 | 9,884,936 | 3,082,800 | 31.20% | 392,800 | 3.97% |
2012 | 10,368,866 | 3,101,500 | 29.90% | 395,800 | 3.82% |
2013 | 10,982,240 | 3,212,700 | 29.26% | 403,500 | 3.67% |
2014 | 11,389,617 | 3,325,000 | 29.20% | 414,700 | 3.64% |
2015 | 10,211,856 | 3,107,000 | 30.43% | 398,900 | 3.91% |
2016 | 9,832,526 | 3,062,500 | 31.15% | 391,800 | 3.98% |
2017 | 9,399,617 | 2,987,200 | 31.78% | 389,100 | 4.14% |
2018 | 10,336,177 | 3,103,700 | 30.03% | 394,600 | 3.82% |
Harvest Years | Milled Sugarcane (t) | (t) | % in Milled Cane |
---|---|---|---|
2013 | 428,012.92 | 12,033.03 | 3.76% |
2014 | 386,331.13 | 12,533.54 | 3.24% |
2015 | 421,039.46 | 16,257.76 | 3.86% |
2016 | 395,520.81 | 12,807.35 | 3.28% |
2017 | 432,554.32 | 21,730.67 | 5.02% |
Reference | Reported Percentage (%) | Notes/Context |
---|---|---|
[54] | 10–15% (usually 12%) | Empirical data from biogas plants |
[49] | 10–15 L/L of ethanol | Industrial use for xylitol production |
[16] | 15–20% L/L ethanol | Range per ton of cane |
[53] | 156–910 L/TC (15–91 L/t) | Range depending on installed technology |
[55] | 15–18% | Estimates from American plants |
[7] | 438–1038 L/t cane (≈40%) | Extreme values under suboptimal conditions in integrated distilleries |
By-Product | Values Used (Nm3/t) | Mean () | Std. Dev. (s) | Low | High |
---|---|---|---|---|---|
Bagasse | 119, 150, 180, 270, 280 | 199.8 | 67.3 | 119 | 280 |
Vinasse | 5, 8, 11, 18, 21 | 12.6 | 6.35 | 5 | 21 |
Filter cake | 50, 55, 58, 90 | 63.25 | 17.25 | 50 | 90 |
Molasses | 321, 323, 348, 350, 380 | 344.4 | 23.06 | 321 | 380 |
By-Product | Values Used (%) | Mean (%) | Std. Dev. | Low | High |
---|---|---|---|---|---|
Bagasse | 27.0, 28.0, 29.0, 30.2, 31.8 | 29.5 | 1.6 | 27.0 | 31.8 |
Filter Cake | 3.0, 3.2, 3.24, 3.28, 3.68, 3.7, 4.02, 4.50, 5.02 | 3.72 | 0.61 | 3.0 | 5.02 |
Molasses | 1.50, 2.8, 3.2, 3.83, 3.87, 3.96, 4.20 | 3.83 | 0.28 | 1.50 | 4.20 |
Vinasse | 10.0, 12.0, 13.0, 14.0, 15.0, 17.0, 18.0 | 13.75 | 2.05 | 10.0 | 18.0 |
Parameter | Result |
---|---|
Mean | 2.28 kWh/Nm3 |
Standard Deviation | 0.43 kWh/Nm3 |
Minimum Value | 1.65 kWh/Nm3 |
Maximum Value | 3.20 kWh/Nm3 |
Total Range | 1.55 kWh/Nm3 |
Year | Cuba (t) | Peru (t) |
---|---|---|
2000 | 32,100,000 | 7,135,154 |
2001 | 34,700,000 | 7,385,946 |
2002 | 23,000,000 | 8,419,786 |
2003 | 24,200,000 | 8,863,958 |
2004 | 11,900,000 | 6,945,686 |
2005 | 11,200,000 | 6,304,065 |
2006 | 12,700,000 | 7,245,833 |
2007 | 15,800,000 | 8,283,686 |
2008 | 15,000,000 | 9,395,959 |
2009 | 11,600,000 | 9,936,945 |
2010 | 11,900,000 | 9,854,961 |
2011 | 14,700,000 | 9,884,936 |
2012 | 16,100,000 | 10,368,866 |
2013 | 17,800,000 | 10,982,240 |
2014 | 15,800,000 | 11,389,617 |
2015 | 18,100,000 | 10,211,856 |
2016 | 19,900,000 | 9,832,526 |
2017 | 12,600,000 | 9,399,617 |
2018 | 17,100,000 | 10,336,177 |
Year | Sugarcane Milled (t) | Actual Bagasse (t) | Estimated Bagasse (t) | RPE Bagasse (%) | Actual Molasses (t) | Estimated Molasses (t) | RPE Molasses (%) |
---|---|---|---|---|---|---|---|
2011 | 9,884,936 | 3,082,800 | 2,914,604 | 5.5 | 392,800 | 378,648 | 3.6 |
2012 | 10,368,866 | 3,101,500 | 3,059,812 | 1.3 | 395,800 | 397,633 | 0.5 |
2013 | 10,982,240 | 3,212,700 | 3,239,761 | 0.84 | 403,500 | 420,584 | 4.23 |
2014 | 11,389,617 | 3,325,000 | 3,359,939 | 1.04 | 414,700 | 437,376 | 5.45 |
2015 | 10,211,856 | 3,107,000 | 3,013,508 | 3.0 | 398,900 | 391,119 | 1.95 |
2016 | 9,832,526 | 3,062,500 | 2,902,593 | 5.22 | 391,800 | 376,590 | 3.89 |
2017 | 9,399,617 | 2,987,200 | 2,772,886 | 7.17 | 389,100 | 359,020 | 7.74 |
2018 | 10,336,177 | 3,103,700 | 3,048,168 | 1.79 | 394,600 | 395,855 | 0.32 |
Indicator | Bagasse (%) | Molasses (%) |
---|---|---|
Mean RPE | 3.61 | 3.47 |
Standard deviation | 2.10 | 2.51 |
Maximum RPE | 7.17 | 7.74 |
Minimum RPE | 0.84 | 0.32 |
% of years with RPE ≤ 5% | 75% | 75% |
Scenario Type | Suggested Value (kWh/Nm3) | Justification |
---|---|---|
Conservative | 1.85 | Technical minimums in rural or hybrid engines |
Baseline Scenario | 2.28 | Validated arithmetic mean from the literature |
Optimistic Scenario | 3.1–3.2 | CHP, SOFC, and advanced cogeneration systems |
Reference | By-Product(s) | Model Type | Application | Gaps Compared to Your Model |
---|---|---|---|---|
This research | Bagasse, vinasse, molasses, filter cake | Multi-year predictive, validated | Biogas and electricity | — (central reference) |
[65] | Vinasse | Kinetic (Gompertz) | Biogas | Lab-scale only, not multi-residue or predictive |
[7] | Bagasse, filter cake | First-order kinetic | Biogas | No electricity estimate or projection |
[92] | Vinasse | Technical estimation | Biogas and energy | No scenarios or national validation |
[93] | Vinasse | Kinetic and balances | Biogas | Reactor-focused, not country-level |
[9] | Bagasse | Conceptual | 2G Biopower | No biogas quantification or projections |
[56] | Molasses, vinasse | Review + energy balance | Biogas | Not validated or predictive |
[94] | Bagasse, molasses | Conceptual estimation | Electricity | No use of historical data |
[95] | Molasses | Aspen Plus | Biogas | Only chemical simulation, not predictive |
[96] | Bagasse + manure | Logistic regression | Biogas | Single area, no electricity |
[97] | Vinasse | Empirical (L/tc) | Biogas | Not scalable, no multi-year |
[98] | Sugarcane slurry | Kinetic (batch) | Biogas | Not national, not multi-residue |
[18] | Filter cake | Pelletization + digestion | Biogas | Not predictive |
[27] | Molasses, vinasse | Fermentation | Bioethanol and by-products | No biogas quantification |
[99] | Bagasse | Thermoelectric model | Electricity | Not multi-residue or validated |
[100] | Bagasse | Techno-economic | Electricity | Not multi-residue |
[101] | Vinasse and filter cake | Empirical | Biogas | Specific plant, not predictive |
[102] | Vinasse | Kinetic review | Biogas | No predictions generated |
[103] | Vinasse | Volumetric estimation | Biogas | Predictive or scalable |
[104] | Bagasse | Pilot plant design | Biogas | No multi-year approach |
[105] | Vinasse | Experimental | Biogas | Not predictive |
[106] | Molasses | Anaerobic + bioethanol | Biogas and fuels | No predictive modeling |
[107] | Cane foam | Experimental | Biogas | Unusual by-product, not scalable |
[108] | Bagasse and straw | Ash analysis | Biogas | No predictive model |
[109] | Vinasse | Two-phase digestion | Biogas | Specific plant only |
[110] | Molasses, vinasse | Sustainability analysis | Biogas | No modeling or energy quantification |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo Alvarez, Y.; Jiménez Borges, R.; Alfonso-Francia, G.; Rodríguez Pérez, B.; Patiño Vidal, C.D.; Iturralde Carrera, L.A.; Rodríguez-Reséndiz, J. Transition to a Circular Bioeconomy in the Sugar Agro-Industry: Predictive Modeling to Estimate the Energy Potential of By-Products. Technologies 2025, 13, 238. https://doi.org/10.3390/technologies13060238
Castillo Alvarez Y, Jiménez Borges R, Alfonso-Francia G, Rodríguez Pérez B, Patiño Vidal CD, Iturralde Carrera LA, Rodríguez-Reséndiz J. Transition to a Circular Bioeconomy in the Sugar Agro-Industry: Predictive Modeling to Estimate the Energy Potential of By-Products. Technologies. 2025; 13(6):238. https://doi.org/10.3390/technologies13060238
Chicago/Turabian StyleCastillo Alvarez, Yoisdel, Reinier Jiménez Borges, Gendry Alfonso-Francia, Berlan Rodríguez Pérez, Carlos Diego Patiño Vidal, Luis Angel Iturralde Carrera, and Juvenal Rodríguez-Reséndiz. 2025. "Transition to a Circular Bioeconomy in the Sugar Agro-Industry: Predictive Modeling to Estimate the Energy Potential of By-Products" Technologies 13, no. 6: 238. https://doi.org/10.3390/technologies13060238
APA StyleCastillo Alvarez, Y., Jiménez Borges, R., Alfonso-Francia, G., Rodríguez Pérez, B., Patiño Vidal, C. D., Iturralde Carrera, L. A., & Rodríguez-Reséndiz, J. (2025). Transition to a Circular Bioeconomy in the Sugar Agro-Industry: Predictive Modeling to Estimate the Energy Potential of By-Products. Technologies, 13(6), 238. https://doi.org/10.3390/technologies13060238