Eliminating Effect of Moisture Content in Prediction of Lower Heating Value and Ash Content in Sugarcane Leaves Biomass
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Spectral Data Collection
2.3. Reference Analysis
2.3.1. Moisture Content
2.3.2. Lower Heating Value
2.3.3. Ash Content
2.4. Standard Error of Laboratory of References Values
2.5. Model Development
- Method I: This involved using the complete spectrum of wavelengths without filtering or selection. By including all available wavelengths, the model had access to the full range of spectral information. This approach may improve model accuracy but can also increase computational complexity and the risk of overfitting.
- Method II: This method used a genetic algorithm (GA) to select wavelengths relevant to water content. The variables not selected for water content were then used separately to develop models for the lower heating value (LHV) and ash content. This approach aimed to optimize variable selection for each target property.
- Method IV: This method removed variables following the coefficient of correlation (r) with water, selecting wavelengths excluding water-related bands with a p-value less than 0.05.
2.6. Model Performance Evaluation
3. Results and Discussion
3.1. NIR Spectra Profiles of Pellet Samples
3.2. Statistical Data of LHV and Ash Content
3.3. PLS Regression Results of the LHV and Ash Content of the Pellet Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
D1 | First Derivative |
D2 | Second Derivative |
GA | Genetic Algorithms |
HHV | Higher Heating Value |
LHV | Lower Heating Value |
MC | Moisture Content |
NIR | Near Infrared |
PLS | Partial Least Squares |
r | Coefficient of correlation |
R2 | Coefficient of Determination |
RMSEc | Root Mean Square Error of Calibration |
RMSEcv | Root Mean Square Error of Cross-Validation |
RPD | Ratio of Performance Deviation |
SD | Standard Deviation |
SEL | Standard Error of Laboratory |
SNV | Standard Normal Variate |
References
- Fiorino, D.J. Renewable Energy. In Elgar Encyclopedia of Climate Policy; Edward Elgar Publishing: Cheltenham, UK, 2024; pp. 190–194. [Google Scholar] [CrossRef]
- Sakilu, O.B.; Chen, H. Realizing Carbon Neutrality in Top-Emitter Countries: Do Green Technology Innovation, Renewable Energy, Financial Development, and Environmental Tax Matters? Sustainability 2024, 17, 37. [Google Scholar] [CrossRef]
- Paopun, Y.; Thanomchat, P. Analysis of Biosilica in Sugarcane Leaves. Microsc. Microanal. Res. 2022, 35, 5–9. [Google Scholar]
- Posom, J.; Shrestha, A.; Saechua, W.; Sirisomboon, P. Rapid Non-Destructive Evaluation of Moisture Content and Higher Heating Value of Leucaena leucocephala Pellets Using Near Infrared Spectroscopy. Energy 2016, 107, 464–472. [Google Scholar] [CrossRef]
- Choi, H.L.; Sudiarto, S.I.A.; Renggaman, A. Prediction of Livestock Manure and Mixture Higher Heating Value Based on Fundamental Analysis. Fuel 2014, 116, 772–780. [Google Scholar] [CrossRef]
- Posom, J.; Sirisomboon, P. Evaluation of Lower Heating Value and Elemental Composition of Bamboo Using Near Infrared Spectroscopy. Energy 2017, 121, 147–158. [Google Scholar] [CrossRef]
- Skvaril, J.; Kyprianidis, K.G.; Dahlquist, E. Applications of Near-Infrared Spectroscopy (NIRS) in Biomass Energy Conversion Processes: A Review. Appl. Spectrosc. Rev. 2017, 52, 675–728. [Google Scholar] [CrossRef]
- Lestander, T.A.; Rhén, C. Multivariate NIR Spectroscopy Models for Moisture, Ash and Calorific Content in Biofuels Using Bi-Orthogonal Partial Least Squares Regression. Analyst 2005, 130, 1182–1189. [Google Scholar] [CrossRef]
- Pitak, L.; Laloon, K.; Wongpichet, S.; Sirisomboon, P.; Posom, J. Machine Learning-Based Prediction of Selected Parameters of Commercial Biomass Pellets Using Line Scan Near Infrared-Hyperspectral Image. Processes 2021, 9, 316. [Google Scholar] [CrossRef]
- Pitak, L.; Sirisomboon, P.; Saengprachatanarug, K.; Wongpichet, S.; Posom, J. Rapid Elemental Composition Measurement of Commercial Pellets Using Line-Scan Hyperspectral Imaging Analysis. Energy 2021, 220, 119698. [Google Scholar] [CrossRef]
- Posom, J.; Sirisomboon, P. Evaluation of the Moisture Content of Jatropha curcas Kernels and the Heating Value of the Oil-Extracted Residue Using Near-Infrared Spectroscopy. Biosyst. Eng. 2015, 130, 52–59. [Google Scholar] [CrossRef]
- Shi, H.; Mahinpey, N.; Aqsha, A.; Silbermann, R. Characterization, Thermochemical Conversion Studies, and Heating Value Modeling of Municipal Solid Waste. Waste Manag. 2016, 48, 34–47. [Google Scholar] [CrossRef]
- Cordero, T.; Marquez, F.; Rodriguez-Mirasol, J.; Rodriguez, J.J. Predicting Heating Values of Lignocellulosics and Carbonaceous Materials from Proximate Analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of Moisture and Hydrogen Content on the Heating Value of Fuels. Energy Sources Part A Recovery Util. Environ. Eff. 2007, 29, 649–655. [Google Scholar] [CrossRef]
- Komilis, D.; Kissas, K.; Symeonidis, A. Effect of Organic Matter and Moisture on the Calorific Value of Solid Wastes: An Update of the Tanner Diagram. Waste Manag. 2014, 34, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Erdoğan, S. LHV and HHV Prediction Model Using Regression Analysis with the Help of Bond Energies for Biodiesel. Fuel 2021, 301, 121065. [Google Scholar] [CrossRef]
- Fearn, T. Calculating Standard Deviations. NIR News 2005, 16, 7–8. [Google Scholar] [CrossRef]
- Meier, K.J.; Brudney, J.L.; Bohte, J. Applied Statistics for Public and Nonprofit Administration; Cengage Learning: Boston, MA, USA, 2009; ISBN 0495501107. [Google Scholar]
- Cheepsomsong, T.; Sangwanangkul, P.; Puttipipatkajorn, A.; Terdwongworakul, A.; Puttipipatkajorn, A.; Kulmutiwat, S.; Phuangsombut, A. Multi-parameter Index for Durian Maturity and Its Prediction Using Miniature Near Infrared Spectrometer. Postharvest Biol. Technol. 2023, 205, 112487. [Google Scholar] [CrossRef]
- Hopkins, D.W. What Is a Norris Derivative? NIR News 2001, 12, 3–5. [Google Scholar] [CrossRef]
- Büning-Pfaue, H. Analysis of Water in Food by Near Infrared Spectroscopy. Food Chem. 2003, 82, 107–115. [Google Scholar] [CrossRef]
- Curcio, J.A.; Petty, C.C. The Near Infrared Absorption Spectrum of Liquid Water. J. Opt. Soc. Am. 1951, 41, 302–304. [Google Scholar] [CrossRef]
- Goldstein, R.; Penner, S.S. The Near-Infrared Absorption of Liquid Water at Temperatures between 27 and 209 °C. J. Quant. Spectrosc. Radiat. Transf. 1964, 4, 441–451. [Google Scholar] [CrossRef]
- Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries, 2nd ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 1987. [Google Scholar]
- Chang, C.W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Chen, Z.; Han, D. Development of Multi-Cultivar Models for Predicting the Soluble Solid Content and Firmness of European Pear (Pyrus communis L.) Using Portable Vis–NIR Spectroscopy. Postharvest Biol. Technol. 2017, 129, 143–151. [Google Scholar] [CrossRef]
- Li, Y.; Xu, H.; Lan, X.; Wang, J.; Su, X.; Bai, X.; Via, B.K.; Pei, Z. Predicting Calorific Value and Ash Content of Sand Shrub Using Vis-NIR Spectra and Various Chemometrics. Renew. Energy 2024, 230, 120805. [Google Scholar] [CrossRef]
- Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific & Technical: Harlow, Essex, UK, 1993. [Google Scholar]
- Unchaisri, T.; Fukuda, S. Investigation of Ash Formation and Deposit Characteristics in CFB Co-Combustion of Coal with Various Biomass Fuels. J. Energy Inst. 2022, 105, 42–52. [Google Scholar] [CrossRef]
- Scown, C.D.; Baral, N.R.; Tanjore, D.; Rapp, V. Matching Diverse Feedstocks to Conversion Processes for the Future Bioeconomy. Curr. Opin. Biotechnol. 2023, 84, 103017. [Google Scholar] [CrossRef]
- Neacsu, A.; Gheorghe, D. Characterization of Some Co-Fired Agricultural By-Products for Energetic Use. J. Mex. Chem. Soc. 2022, 66, 408–420. [Google Scholar] [CrossRef]
- Nielsen, N.P.K.; Gardner, D.J.; Poulsen, T.; Felby, C. Importance of Temperature, Moisture Content, and Species for the Conversion Process of Wood Residues into Fuel Pellets. Wood Fiber Sci. 2009, 41, 414–425. [Google Scholar]
- Demirbas, A. Relationships Between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels. Energy Explor. Exploit. 2002, 20, 105–111. [Google Scholar] [CrossRef]
- Williams, P. Near-Infrared Technology—Getting the Best out of Light. In A Short Course in the Practical Implementation of Near-Infrared Spectroscopy for the User, 5.4 ed.; PDK Grain: Nanaimo, BC, Canada, 2010. [Google Scholar]
- Williams, P.; Manley, M.; Antoniszyn, J. Near Infrared Technology: Getting the Best out of Light; African Sun Media: Stellenbosch, South Africa, 2019; Available online: https://books.google.co.th/books?id=xSSyDwAAQBAJ (accessed on 23 March 2025).
- Williams, P. Near-Infrared Technology—Getting the Best out of Light, 5.0 ed.; PDK Grain: Nanaimo, BC, Canada, 2007. [Google Scholar]
- Sundaram, J.; Mani, S.; Kandala, C.V.K.; Holser, R.A. Application of NIR Reflectance Spectroscopy on Rapid Determination of Moisture Content of Wood Pellets. Am. J. Anal. Chem. 2015, 6, 923–932. [Google Scholar] [CrossRef]
- Nakawajana, N.; Posom, J.; Paeoui, J. Prediction of Higher Heating Value, Lower Heating Value and Ash Content of Rice Husk Using FT-NIR Spectroscopy. Eng. J. 2018, 22, 45–56. [Google Scholar] [CrossRef]
- Gillespie, G.D.; Everard, C.D.; McDonnell, K.P. Prediction of Biomass Pellet Quality Indices Using Near Infrared Spectroscopy. Energy 2015, 80, 582–588. [Google Scholar] [CrossRef]
- Posom, J.; Sirisomboon, P. Evaluation of the Higher Heating Value, Volatile Matter, Fixed Carbon and Ash Content of Ground Bamboo Using Near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2017, 25, 301–310. [Google Scholar] [CrossRef]
Time | Parameters | Max | Min | Mean | SD |
---|---|---|---|---|---|
Week 1 | MC (%) | 44.41 | 13.83 | 22.67 | 7.30 |
Week 2 | MC (%) | 43.57 | 11.72 | 21.96 | 6.01 |
Week 3 | MC (%) | 34.84 | 7.72 | 17.29 | 5.20 |
LHV (J/g) | 18,300.50 | 11,984.00 | 15,973.78 | 1368.38 | |
Ash content (%) | 28.77 | 2.21 | 11.82 | 6.22 |
Parameter | N | Max | Min | Mean | SD |
---|---|---|---|---|---|
MC (%) | 186 | 44.41 | 7.72 | 20.50 | 6.59 |
LHV (J/g) | 186 | 18,300 | 11,984 | 15,941 | 1424 |
Ash content (%) | 62 | 28.77 | 2.21 | 12.04 | 6.46 |
Parameter | N | SEL |
---|---|---|
MC (%) | 186 | 1.27 |
LHV (J/g) | 62 | 101.05 |
Ash content (%) | 62 | 0.15 |
Algorithm | Region (nm) | Parameter | Preprocessing | LVs | R2c | RMSEc | R2cv | RMSEcv | RPD |
---|---|---|---|---|---|---|---|---|---|
Method I | 860–1760 | LHV (J/g) | Raw | 8 | 0.66 | 767.37 | 0.60 | 838.03 | 1.51 |
SNV | 6 | 0.62 | 815.83 | 0.55 | 884.94 | 1.43 | |||
Baseline | 8 | 0.67 | 759.84 | 0.59 | 846.65 | 1.50 | |||
D1 | 8 | 0.71 | 705.10 | 0.62 | 818.98 | 1.55 | |||
D2 | 9 | 0.79 | 606.88 | 0.69 | 735.98 | 1.72 | |||
860–1760 | Ash content (%) | Raw | 8 | 0.51 | 5.69 | 0.43 | 6.17 | 1.33 | |
SNV | 3 | 0.42 | 6.22 | 0.40 | 6.34 | 1.29 | |||
Baseline | 8 | 0.53 | 5.61 | 0.43 | 6.18 | 1.32 | |||
D1 | 6 | 0.51 | 5.70 | 0.43 | 6.15 | 1.33 | |||
D2 | 6 | 0.53 | 5.59 | 0.46 | 6.03 | 1.36 | |||
Method II | 860–1750 | LHV (J/g) | Raw | 8 | 0.65 | 776.14 | 0.58 | 856.45 | 1.48 |
SNV | 6 | 0.62 | 815.98 | 0.55 | 885.46 | 1.43 | |||
Baseline | 7 | 0.62 | 810.75 | 0.56 | 879.59 | 1.44 | |||
D1 | 9 | 0.74 | 677.73 | 0.62 | 816.75 | 1.55 | |||
D2 | 9 | 0.80 | 595.80 | 0.70 | 728.21 | 1.74 | |||
860–1750 | Ash content (%) | Raw | 7 | 0.49 | 5.80 | 0.40 | 6.31 | 1.29 | |
SNV | 6 | 0.48 | 5.86 | 0.41 | 6.27 | 1.30 | |||
Baseline | 6 | 0.48 | 5.89 | 0.40 | 6.30 | 1.30 | |||
D1 | 7 | 0.53 | 5.60 | 0.44 | 6.11 | 1.34 | |||
D2 | 7 | 0.55 | 5.46 | 0.47 | 5.95 | 1.37 | |||
Method III | 860–957, 1048–1397, 1523–1754 | LHV (J/g) | Raw | 7 | 0.66 | 771.00 | 0.61 | 828.46 | 1.53 |
SNV | 7 | 0.62 | 808.23 | 0.56 | 878.68 | 1.44 | |||
Baseline | 8 | 0.67 | 756.17 | 0.60 | 837.04 | 1.52 | |||
D1 | 10 | 0.76 | 645.34 | 0.67 | 765.30 | 1.66 | |||
D2 | 10 | 0.78 | 623.94 | 0.69 | 732.44 | 1.73 | |||
860–957, 1048–1397, 1523–1754 | Ash content (%) | Raw | 7 | 0.51 | 5.69 | 0.44 | 6.13 | 1.33 | |
SNV | 6 | 0.48 | 5.86 | 0.41 | 6.30 | 1.30 | |||
Baseline | 8 | 0.53 | 5.58 | 0.44 | 6.12 | 1.34 | |||
D1 | 6 | 0.52 | 5.63 | 0.44 | 6.09 | 1.34 | |||
D2 | 6 | 0.54 | 5.56 | 0.46 | 5.98 | 1.37 | |||
Method IV | 860–1385, 1694–1754 | LHV (J/g) | Raw | 7 | 0.65 | 776.98 | 0.59 | 842.41 | 1.51 |
SNV | 7 | 0.63 | 797.21 | 0.55 | 884.01 | 1.44 | |||
Baseline | 6 | 0.63 | 801.11 | 0.57 | 863.33 | 1.47 | |||
D1 | 5 | 0.65 | 778.49 | 0.60 | 831.28 | 1.53 | |||
D2 | 6 | 0.68 | 750.97 | 0.56 | 880.62 | 1.44 | |||
860–1385, 1694–1754 | Ash content (%) | Raw | 7 | 0.51 | 5.71 | 0.45 | 6.08 | 1.35 | |
SNV | 7 | 0.50 | 5.78 | 0.40 | 6.33 | 1.29 | |||
Baseline | 7 | 0.52 | 5.66 | 0.45 | 6.08 | 1.34 | |||
D1 | 5 | 0.51 | 5.71 | 0.45 | 6.07 | 1.35 | |||
D2 | 6 | 0.53 | 5.60 | 0.46 | 6.00 | 1.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maraphum, K.; Phoomwarin, K.; Khongthon, N.; Posom, J. Eliminating Effect of Moisture Content in Prediction of Lower Heating Value and Ash Content in Sugarcane Leaves Biomass. Energies 2025, 18, 3352. https://doi.org/10.3390/en18133352
Maraphum K, Phoomwarin K, Khongthon N, Posom J. Eliminating Effect of Moisture Content in Prediction of Lower Heating Value and Ash Content in Sugarcane Leaves Biomass. Energies. 2025; 18(13):3352. https://doi.org/10.3390/en18133352
Chicago/Turabian StyleMaraphum, Kanvisit, Kantisa Phoomwarin, Nirattisak Khongthon, and Jetsada Posom. 2025. "Eliminating Effect of Moisture Content in Prediction of Lower Heating Value and Ash Content in Sugarcane Leaves Biomass" Energies 18, no. 13: 3352. https://doi.org/10.3390/en18133352
APA StyleMaraphum, K., Phoomwarin, K., Khongthon, N., & Posom, J. (2025). Eliminating Effect of Moisture Content in Prediction of Lower Heating Value and Ash Content in Sugarcane Leaves Biomass. Energies, 18(13), 3352. https://doi.org/10.3390/en18133352