Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = subtropical Pacific coast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 23516 KiB  
Article
Distribution and Seasonality of the Omura’s Whale (Balaenoptera omurai) in Australia Based on Passive Acoustic Recordings
by Ciara Edan Browne, Christine Erbe and Robert D. McCauley
Animals 2024, 14(20), 2944; https://doi.org/10.3390/ani14202944 - 12 Oct 2024
Cited by 3 | Viewed by 2785
Abstract
The Omura’s whale (Balaenoptera omurai) is one of the most recently described species of baleen whale. Initially known only from stranding and whaling specimens, it has now been identified in all ocean basins excluding the central and eastern Pacific. Unlike most [...] Read more.
The Omura’s whale (Balaenoptera omurai) is one of the most recently described species of baleen whale. Initially known only from stranding and whaling specimens, it has now been identified in all ocean basins excluding the central and eastern Pacific. Unlike most baleen whales that migrate between the poles and the equator seasonally, the Omura’s whale is known to inhabit tropical to sub-tropical waters year-round. In Australian waters, there remain fewer than 30 confirmed visual sightings over the past decade. However, based on acoustic records, the Omura’s whale has been detected off areas of the northwest coast of Australia year-round. This study utilises passive acoustic recordings from 41 locations around Australia from 2005 to 2023 to assess the distribution and seasonality of the Omura’s whale. The seasonal presence of Omura’s whale vocalisations varied by location, with higher presence at lower latitudes. Vocalisations were detected year-round in the Joseph Bonaparte Gulf in the Timor Sea, and near Browse Island and Scott Reef, in the Kimberley region. In the Pilbara region, acoustic presence mostly peaked from February to April and no acoustic presence was consistently observed from July to September across all sites. The most southerly occurrence of Omura’s whale vocalisations was recorded off the North West Cape in the Gascoyne region. Vocalisations similar but not identical to those of the Omura’s whale were detected in the Great Barrier Reef. The identified seasonal distribution provides valuable information to assess environmental and anthropogenic pressures on the Omura’s whale and to aid in creating management and conservation policies for the species in Australia. Full article
Show Figures

Figure 1

14 pages, 13059 KiB  
Article
Regional Controls on Climate and Weather Variability on the Southwest Coast of Peru
by Mark R. Jury
Coasts 2024, 4(1), 49-62; https://doi.org/10.3390/coasts4010004 - 25 Jan 2024
Cited by 1 | Viewed by 1949
Abstract
Southwestern Peru has an arid climate typical of subtropical west coasts bordering cold ocean currents. Mountain runoff is barely able to sustain urban needs and motivates this research. Using high-resolution satellite reanalysis products, the meso-scale climate and weather variability are explored via point-to-field [...] Read more.
Southwestern Peru has an arid climate typical of subtropical west coasts bordering cold ocean currents. Mountain runoff is barely able to sustain urban needs and motivates this research. Using high-resolution satellite reanalysis products, the meso-scale climate and weather variability are explored via point-to-field regression. A time series spanning 1970–2022 of Tacna area (18 S, 70.2 W, 570 m) rainfall, potential evaporation, wind, and weather parameters were evaluated for thermodynamic and kinematic features. Although sea breezes draw marine air inland, they simultaneously generate low-level divergence and subsidence aloft. Potential evaporation in early summer causes water deficits that are rarely offset by late summer runoff from the Andes Mountains. Winter (May–September) showers from passing cold fronts are more frequent during El Niño. Warming of the tropical east Pacific accelerates subtropical westerly winds that lift over the coastal plains. Quasi-stationary Rossby wave patterns amplify transient troughs at 70 W, but the winter showers rarely exceed 4 mm/day due to low-level stability from negative heat fluxes over cool seawater offshore. Two winter wet spells were studied using satellite and surface data (July 2002, July 2009). Light showers were prominent in elevations from 400 to 900 m. An early summer dry spell was considered (November 2020), wherein southeast winds, coastal upwelling, and low dewpoint temperatures coincided with La Niña conditions. A rain-gauge transect showed that summer convection stays east of the Andes escarpment and seldom benefits the coastal plains. Thus, water resources in Tacna are strained beyond the carrying capacity. Full article
Show Figures

Figure 1

15 pages, 5365 KiB  
Article
Subseasonal Variation Characteristics of Low-Cloud Fraction in Southeastern and Northwestern North Pacific
by Qian Wang, Haiming Xu, Jing Ma and Jiechun Deng
Atmosphere 2023, 14(11), 1668; https://doi.org/10.3390/atmos14111668 - 10 Nov 2023
Cited by 1 | Viewed by 1301
Abstract
The subseasonal variability of the low-cloud fraction (LCF) over the southeastern North Pacific (SENP) and northwestern North Pacific (NWNP) was studied using satellite observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. It is found that subseasonal variability of the LCF [...] Read more.
The subseasonal variability of the low-cloud fraction (LCF) over the southeastern North Pacific (SENP) and northwestern North Pacific (NWNP) was studied using satellite observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. It is found that subseasonal variability of the LCF was closely related to variations in the estimated inversion strength (EIS), sea surface wind speed (SSW), sensible heat flux (SHF), sea surface temperature (SST), surface temperature advection (Tadv), relative humidity (RH), surface level pressure (SLP) and surface air temperature (SAT). An increase in the LCF over the SENP is associated with the development of an anomalous anticyclonic circulation, which is located on the west coast of America. The cold advection, together with the subsidence warming associated with the anticyclonic circulation, strengthens the temperature inversion, favoring the development of the LCF. In the NWNP, the maximum LCF anomaly was also correlated with the stable boundary layer. The southerly wind blows airflow over the Kuroshio Extension from the subtropics, which brings warm and moist air. When air flows to the colder sea surface, it is cooled and condensed by the intensified heat exchange. A lead-lag composite analysis indicates that the mechanisms are different between the SENP and the NWNP, possibly due to the different types of low-level clouds over these two regions. In the SENP, the trade cumulus dominates under a strong capping inversion over the subtropics, whereas fog and stratus often occur under a shallow capping inversion in the NWNP. The effects of atmospheric circulation are also discussed. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 2933 KiB  
Article
First Records with Biological Notes of Umbrina ronchus, Valenciennes, 1843 (Osteichthyes, Sciaenidae) in the Strait of Sicily (Central Mediterranean Sea)
by Giacomo Sardo, Michele Luca Geraci, Fabio Falsone, Salvatore Gancitano, Vita Gancitano, Daniela Massi, Charles Odilichukwu R. Okpala, Danilo Scannella, Antonino Titone, Sergio Vitale and Fabio Fiorentino
Fishes 2023, 8(9), 434; https://doi.org/10.3390/fishes8090434 - 24 Aug 2023
Cited by 2 | Viewed by 1528
Abstract
Between September and October 2021, a total of seven adult specimens (five females and two males) of Umbrina ronchus Valenciennes, 1843 were caught in the waters off Portopalo di Capo Passero and Porto Empedocle (the south-eastern coast of Sicily). This was the first [...] Read more.
Between September and October 2021, a total of seven adult specimens (five females and two males) of Umbrina ronchus Valenciennes, 1843 were caught in the waters off Portopalo di Capo Passero and Porto Empedocle (the south-eastern coast of Sicily). This was the first record of this species in the Strait of Sicily and the deepest record of this species within the Mediterranean Sea. Individuals of U. ronchus ranged from 180–240 mm total length and 69–149 g total weight. Gonad stages ranged from maturing to spent/resting. Otoliths sagittae were oval shaped with high rectangular yet complex contour. Counting the growth zones by transverse section, the estimated age ranged from 3 to 5 years. Since sciaenids are considered a high-longevity species, a quite recent settlement of U. ronchus in the Strait of Sicily is suggested. As the biogeographic nature of the Strait of Sicily is the main boundary between the western basin, which is characterized by a high affinity for (sub)tropical Atlantic species such as U. ronchus, and the eastern basin, which has an affinity for the indo-pacific warm waters species, the present records could be the limit to the eastward expansion of the geographic distribution of U. ronchus in the Mediterranean Sea. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

14 pages, 10287 KiB  
Article
Application of the Self-Organizing Map Method in February Temperature and Precipitation Pattern over China: Comparison between 2021 and 2022
by Zengping Zhang, Yu Gu, Zhikuan Wang, Siyuan Luo, Siyuan Sun, Shuting Wang and Guolin Feng
Atmosphere 2023, 14(7), 1182; https://doi.org/10.3390/atmos14071182 - 21 Jul 2023
Cited by 1 | Viewed by 1932
Abstract
In this study, we compared two anomalous wet February periods in 2021 and 2022 in China. The same anomalies appeared in the spatial distribution of precipitation, with anomalous precipitation centered over the southeast coast. However, temperature discrepancies appeared in most of China, with [...] Read more.
In this study, we compared two anomalous wet February periods in 2021 and 2022 in China. The same anomalies appeared in the spatial distribution of precipitation, with anomalous precipitation centered over the southeast coast. However, temperature discrepancies appeared in most of China, with anomalously high temperatures in 2021 and lower temperatures in 2022. Both instances of increased precipitation were attributed to warm and moist advection from the south, with transport in 2021 being partly enhanced by the South China Sea cyclone, whereas transport in 2022 was mainly due to the subtropical western North Pacific anticyclone. Therefore, in this study, we aimed to compare and analyze temperature and precipitation anomalies in February 2021 and 2022 using the self-organizing map method. Warm events in East Asia and cold events in Siberia and the Tibetan Plateau types were obtained by mode 1, which contained 2021. Mode 6 exhibited opposite warm types in Siberia and cold types in southern Asia, including February temperature and precipitation anomalies in 2022. Based on the results of this study, we can conclude that precipitation anomalies in February 2021 and 2022 occurred under different temperature and circulation anomalies, and both were influenced by La Niña events. Autumn sea ice loss in the Barents Sea contributed significantly to warm and rainy events in February 2021. However, the cold and rainy events of February 2022 were closely related to the strengthening of the Siberian High. Full article
(This article belongs to the Special Issue Extreme Climate in Arid and Semi-arid Regions)
Show Figures

Figure 1

24 pages, 24682 KiB  
Article
Seeing the Forest for the Trees: Mapping Cover and Counting Trees from Aerial Images of a Mangrove Forest Using Artificial Intelligence
by Daniel Schürholz, Gustavo Adolfo Castellanos-Galindo, Elisa Casella, Juan Carlos Mejía-Rentería and Arjun Chennu
Remote Sens. 2023, 15(13), 3334; https://doi.org/10.3390/rs15133334 - 29 Jun 2023
Cited by 13 | Viewed by 5985
Abstract
Mangrove forests provide valuable ecosystem services to coastal communities across tropical and subtropical regions. Current anthropogenic stressors threaten these ecosystems and urge researchers to create improved monitoring methods for better environmental management. Recent efforts that have focused on automatically quantifying the above-ground biomass [...] Read more.
Mangrove forests provide valuable ecosystem services to coastal communities across tropical and subtropical regions. Current anthropogenic stressors threaten these ecosystems and urge researchers to create improved monitoring methods for better environmental management. Recent efforts that have focused on automatically quantifying the above-ground biomass using image analysis have found some success on high resolution imagery of mangrove forests that have sparse vegetation. In this study, we focus on stands of mangrove forests with dense vegetation consisting of the endemic Pelliciera rhizophorae and the more widespread Rhizophora mangle mangrove species located in the remote Utría National Park in the Colombian Pacific coast. Our developed workflow used consumer-grade Unoccupied Aerial System (UAS) imagery of the mangrove forests, from which large orthophoto mosaics and digital surface models are built. We apply convolutional neural networks (CNNs) for instance segmentation to accurately delineate (33% instance average precision) individual tree canopies for the Pelliciera rhizophorae species. We also apply CNNs for semantic segmentation to accurately identify (97% precision and 87% recall) the area coverage of the Rhizophora mangle mangrove tree species as well as the area coverage of surrounding mud and water land-cover classes. We provide a novel algorithm for merging predicted instance segmentation tiles of trees to recover tree shapes and sizes in overlapping border regions of tiles. Using the automatically segmented ground areas we interpolate their height from the digital surface model to generate a digital elevation model, significantly reducing the effort for ground pixel selection. Finally, we calculate a canopy height model from the digital surface and elevation models and combine it with the inventory of Pelliciera rhizophorae trees to derive the height of each individual mangrove tree. The resulting inventory of a mangrove forest, with individual P. rhizophorae tree height information, as well as crown shape and size descriptions, enables the use of allometric equations to calculate important monitoring metrics, such as above-ground biomass and carbon stocks. Full article
(This article belongs to the Special Issue UAV Applications for Forest Management: Wood Volume, Biomass, Mapping)
Show Figures

Figure 1

15 pages, 5381 KiB  
Article
Intraseasonal Oscillation Features of the Two Types of Persistent High Temperature Events over Jiangnan Region
by Yan Li, Qingjiu Gao, Qi You and Yuanbo Yue
Atmosphere 2023, 14(1), 185; https://doi.org/10.3390/atmos14010185 - 15 Jan 2023
Cited by 2 | Viewed by 2042
Abstract
In order to find potential low-frequency signals and provide new ideas for extended-range forecasting, the intraseasonal oscillation (ISO) characteristics of persistent high temperature events (PHTEs) in the extended summer in Jiangnan area are explored by using daily maximum air temperature (Tmax) data from [...] Read more.
In order to find potential low-frequency signals and provide new ideas for extended-range forecasting, the intraseasonal oscillation (ISO) characteristics of persistent high temperature events (PHTEs) in the extended summer in Jiangnan area are explored by using daily maximum air temperature (Tmax) data from the China Meteorological Data Network and daily reanalysis data provided by NCEP/DOE. The results show that the low-frequency PHTEs can be classified into three types according to the position variation of the Western Pacific subtropical high (WPSH). For the first two types of PHTEs, a southwestward migrating mid-latitude wave train from the North American coast to the central and eastern China can be clearly seen in the whole troposphere. Whereas the two types of PHTEs show different features in the low-latitude. It is found that a significantly westward extension of the WPSH during the first type of PHTEs, with the low-frequency anticyclone moving westward in the mid-lower troposphere. For the second type of PHTEs, the WPSH is mainly located in the southeastern China with slightly movement. Analysis of the low-frequency vertical circulation and the thermodynamic equation further reveal that the increase of temperature in Jiangnan region is primarily attributed to the descending airflow. Full article
(This article belongs to the Special Issue Heat Waves: Perspectives from Observations, Reanalysis and Modeling)
Show Figures

Figure 1

15 pages, 4969 KiB  
Article
USV-Observed Turbulent Heat Flux Induced by Late Spring Cold Dry Air Incursion over Sub-Mesoscale Warm Regions off Sanriku, Japan
by Akira Nagano, Takuya Hasegawa, Keisuke Ariyoshi, Takeshi Iinuma, Tatsuya Fukuda, Nobuhiro Fujii, Fumiaki Tomita and Ryota Hino
Sensors 2022, 22(24), 9695; https://doi.org/10.3390/s22249695 - 10 Dec 2022
Cited by 4 | Viewed by 2482
Abstract
We performed oceanic and atmospheric observations in the region off the Sanriku coast, Japan, from May 11 to 5 July 2022, using a wave-propelled unmanned surface vehicle, a Wave Glider (WG). Despite the severe weather conditions of atmospheric low-pressure system crossings, we successfully [...] Read more.
We performed oceanic and atmospheric observations in the region off the Sanriku coast, Japan, from May 11 to 5 July 2022, using a wave-propelled unmanned surface vehicle, a Wave Glider (WG). Despite the severe weather conditions of atmospheric low-pressure system crossings, we successfully measured wind, air temperature, humidity, and sea surface temperature over the course of 55 days to calculate the turbulent heat flux. The WG observed that the atmosphere became more humid due to the southerly wind along the northwestern rim of the North Pacific subtropical high. The warm Kuroshio water expanded to the southeast of Hokkaido as a result of the northward shedding of an anticyclonic mesoscale (~100 km) eddy, called a warm-core ring, from the Kuroshio Extension. The WG traversed smaller (sub-mesoscale) water regions that were warmer and saltier than the surrounding Kuroshio water. The observations indicate that cold, dry air masses advected by northerly winds following the passage of atmospheric low-pressure systems generate a substantial upward turbulent heat flux over sub-mesoscale warm water regions, contrasting to no heat flux in the surrounding Kuroshio water region. Full article
(This article belongs to the Special Issue Advanced Sensing Technology for Ocean Observation)
Show Figures

Figure 1

20 pages, 4747 KiB  
Article
Revisiting a Mei-Yu Front Associated with Heavy Rainfall over Taiwan during 6–7 June 2003
by Yi-Leng Chen, Chuan-Kai Wang, Chuan-Chi Tu, Feng Hsiao and Pay-Liam Lin
Atmosphere 2022, 13(5), 644; https://doi.org/10.3390/atmos13050644 - 19 Apr 2022
Cited by 3 | Viewed by 3032
Abstract
During 6–7 June 2003, a Mei-Yu jet/front system over Southern China is characterized by appreciable horizontal temperature contrast below the 850 hPa level (>8 K), where the cold, dry, postfrontal northeasterlies converge with the warm, moist southwesterly flow, and above the 400–hPa level [...] Read more.
During 6–7 June 2003, a Mei-Yu jet/front system over Southern China is characterized by appreciable horizontal temperature contrast below the 850 hPa level (>8 K), where the cold, dry, postfrontal northeasterlies converge with the warm, moist southwesterly flow, and above the 400–hPa level (>18 K) associated with an upper-level front. The frontal baroclinic zone tilts northward with a slope of ~1/100. During the passage of a midlatitude trough, the upper-level jet/front system advances southeastward. The thermally direct circulation across the subsynoptic low-level jet (SLLJ)/Mei-Yu front system, coupled with dynamic forcing aloft on the equatorial side of the entrance region of a subsynoptic upper-level jet (SULJ), provides a favorable environment for the development of a frontal cyclone over Southern China. A southwesterly marine boundary layer jet (MBLJ) develops between the deepening Mei-Yu frontal cyclone and the West Pacific Subtropical High (WPSH). The MBLJ transports moisture from the northern South China Sea (NSCS) to Southern China. All three jets (SULJ, SLLJ, and MBLJ) interact together during the deepening of the Mei-Yu frontal cyclone with positive feedback effects of latent heat release. On 7 June 2003, as the Mei-Yu front arrives near the Taiwan area, the warm, moist, and unstable air associated with the MBLJ decelerates as it approaches the Central Mountain Range (CMR). The warm, moist, and unstable air is orographically lifted by the CMR and enhances the vertical motion already present with the frontal zone. A region of widespread heavy rainfall develops, with a maximum of more than 350 mm/day, over a region extending from the southwestern coast of Taiwan to the windward slopes of the CMR. Full article
(This article belongs to the Special Issue Feature Papers in Meteorological Science)
Show Figures

Figure 1

3 pages, 1141 KiB  
Interesting Images
Alveopora japonica Conquering Temperate Reefs despite Massive Coral Bleaching
by Taihun Kim, Taeho Kim, Hyun-Sung Yang, Sun Kyeong Choi, Young Baek Son and Do-Hyung Kang
Diversity 2022, 14(2), 86; https://doi.org/10.3390/d14020086 - 26 Jan 2022
Cited by 12 | Viewed by 3425
Abstract
Alveopora japonica is restricted to the Asia-Pacific region, ranging from subtropical to temperate waters. In 2016, a massive bleaching event of an A. japonica population was observed at the south coast of Jeju Island, South Korea, which is within its northernmost limit. After [...] Read more.
Alveopora japonica is restricted to the Asia-Pacific region, ranging from subtropical to temperate waters. In 2016, a massive bleaching event of an A. japonica population was observed at the south coast of Jeju Island, South Korea, which is within its northernmost limit. After the bleaching event, most of the colonies had recovered by 2017. Full article
(This article belongs to the Collection Interesting Images from the Sea)
Show Figures

Figure 1

21 pages, 10943 KiB  
Article
Four-Year Field Survey of Black Band Disease and Skeletal Growth Anomalies in Encrusting Montipora spp. Corals around Sesoko Island, Okinawa
by Rocktim Ramen Das, Haruka Wada, Giovanni Diego Masucci, Tanya Singh, Parviz Tavakoli-Kolour, Naohisa Wada, Sen-Lin Tang, Hideyuki Yamashiro and James Davis Reimer
Diversity 2022, 14(1), 32; https://doi.org/10.3390/d14010032 - 4 Jan 2022
Cited by 11 | Viewed by 4930
Abstract
The Indo-Pacific zooxanthellate scleractinian coral genus Montipora is the host of many coral diseases. Among these are cyanobacterial Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs), but in general data on both diseases are lacking from many regions of the Indo-Pacific, including [...] Read more.
The Indo-Pacific zooxanthellate scleractinian coral genus Montipora is the host of many coral diseases. Among these are cyanobacterial Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs), but in general data on both diseases are lacking from many regions of the Indo-Pacific, including from Okinawa, southern Japan. In this study, we collected annual prevalence data of Black Band Disease (BBD) and Skeletal Growth Anomalies (GAs) affecting the encrusting form of genus Montipora within the shallow reefs of the subtropical Sesoko Island (off the central west coast of Okinawajima Island) from summer to autumn for four years (2017 to 2020). In 2020 Montipora percent coverage and colony count were also assessed. Generalized Linear Models (GLM) were used to understand the spatial and temporal variation of both BBD and GAs in the nearshore (NE) and reef edge (RE) sites, which revealed higher probability of BBD occurrence in RE sites. BBD prevalence was significantly higher in 2017 in some sites than all other years with site S12 having significant higher probability during all four surveyed years. In terms of GAs, certain sites in 2020 had higher probability of occurrence than during the other years. While the general trend of GAs increased from 2017 to 2020, it was observed to be non-fatal to colonies. In both diseases, the interaction between sites and years was significant. We also observed certain BBD-infected colonies escaping complete mortality. BBD progression rates were monitored in 2020 at site S4, and progression was related to seawater temperatures and was suppressed during periods of heavy rain and large strong typhoons. Our results suggest that higher BBD progression rates are linked with high sea water temperatures (SST > bleaching threshold SST) and higher light levels (>1400 µmol m−2 s−1), indicating the need for further controlled laboratory experiments. The current research will help form the basis for continued future research into these diseases and their causes in Okinawa and the Indo-Pacific Ocean. Full article
(This article belongs to the Special Issue Marginal Reef Systems: Resilience in A Rapidly Changing World)
Show Figures

Figure 1

13 pages, 26170 KiB  
Article
The Controlling of the Subtropical High Leading Modes on the Spatial Pattern of Tropical Cyclone Genesis in the Western North Pacific and Tracks Landing on the East Coast of China
by Tingting Fan, Yuxing Yang and Shibin Xu
Atmosphere 2022, 13(1), 79; https://doi.org/10.3390/atmos13010079 - 4 Jan 2022
Cited by 2 | Viewed by 2434
Abstract
As a prime circulation system, the western Pacific subtropical high (WPSH) significantly impacts tropical cyclone (TC) activities over the western North Pacific (WNP), especially TCs landing on the east coast of China; however, the associated mechanism is not firmly established. This study investigates [...] Read more.
As a prime circulation system, the western Pacific subtropical high (WPSH) significantly impacts tropical cyclone (TC) activities over the western North Pacific (WNP), especially TCs landing on the east coast of China; however, the associated mechanism is not firmly established. This study investigates the underlying dynamic impact of the first two empirical orthogonal function (EOF) modes of the WPSH on the interannual variability in the genesis and number of TCs landing over the WNP. The results show that these two dominant modes control the WNP TC activity over different subregions via different environmental factors. The first mode (EOF1) affects the TC genesis number over region I (105°–128° E, 5°–30° N) (r = −0.49) and region II (130°–175° E, 17°–30° N) (r = −0.5) and controls the TCs landing on the east coast of China, while the second mode (EOF2) affects the TC genesis number over region III (128°–175° E, 5°–17° N) (r = −0.69). The EOF1 mode, a southwest-northeast-oriented enhanced pattern, causes the WPSH to expand (retreat) along the southwest-northeast direction, which makes both mid-low-level relative humidity and low-level vorticity unfavorable (favorable) for TC genesis in region I and region II and steers fewer (more) TC tracks to land on the coast of China. The EOF2 mode features a strengthened WPSH over the southeast quarter of the WNP region. The active (inactive) phases of this mode control the low-level vorticity and vertical wind shear in region III, which lead to less (more) TC genesis over this region. The prediction equations combining the two modes of the WPSH for the total number of TCs and TCs that make landfall show high correlation coefficients. Our findings verify the high prediction skill of the WPSH on WNP TC activities, provide a new way to predict TCs that will make landfall on the east coast of China, and help to improve the future projection of WNP TC activity. Full article
(This article belongs to the Special Issue Tropical Cyclones in the Indian Ocean)
Show Figures

Figure 1

21 pages, 9006 KiB  
Article
Unprecedented Outbreak of Harmful Algae in Pacific Coastal Waters off Southeast Hokkaido, Japan, during Late Summer 2021 after Record-Breaking Marine Heatwaves
by Hiroshi Kuroda, Tomonori Azumaya, Takashi Setou and Natsuki Hasegawa
J. Mar. Sci. Eng. 2021, 9(12), 1335; https://doi.org/10.3390/jmse9121335 - 27 Nov 2021
Cited by 39 | Viewed by 5641
Abstract
Unprecedented large-scale harmful algae blooms (HABs) were reported in coastal waters off the south-eastern coast of Hokkaido, Japan, in mid-to-late September 2021, about a month after very intense and extensive marine heatwaves subsided. To understand the physical–biological processes associated with development of the [...] Read more.
Unprecedented large-scale harmful algae blooms (HABs) were reported in coastal waters off the south-eastern coast of Hokkaido, Japan, in mid-to-late September 2021, about a month after very intense and extensive marine heatwaves subsided. To understand the physical–biological processes associated with development of the HABs, we conducted analyses via a combination of realistic ocean circulation models, particle-tracking simulations, and satellite measurements. The satellite-derived chlorophyll concentrations (SCCs) and areal extent of the high SCCs associated with the HABs were the highest recorded since 1998. More specifically, the extent of SCCs exceeding 5 or 10 mg m−3 started to slowly increase after 20 August, when the marine heatwaves subsided, intermittently exceeded the climatological daily maximum after late August, and reached record-breaking extremes in mid-to-late September. About 70% of the SCCs that exceeded 10 mg m−3 occurred in places where water depths were <300 m, i.e., coastal shelf waters. The high SCCs were also tightly linked with low-salinity water (e.g., subarctic Oyashio and river-influenced waters). High-salinity subtropical water (e.g., Soya Warm Current water) appeared to suppress the occurrence of HABs. The expansion of the area of high SCCs seemed to be synchronized with the deepening of surface mixed layer depths in subarctic waters on the Pacific shelves. That deepening began around 10 August, when the marine heatwaves weakened abruptly. However, another mechanism was needed to explain the intensification of the SCCs in very nearshore waters off southeast Hokkaido. Particle-tracking simulations based on ocean circulation models identified three potential source areas of the HABs: the Pacific Ocean east of the Kamchatka Peninsula, the Sea of Japan, and the Sea of Okhotsk east of the Sakhalin Island. Different processes of HAB development were proposed because distance, time, and probability for transport of harmful algae from the potential source areas to the study region differed greatly between the three source areas. Full article
(This article belongs to the Special Issue Advances in Ocean Monitoring and Modeling for Marine Biology)
Show Figures

Figure 1

25 pages, 7693 KiB  
Article
Association between the Biophysical Environment in Coastal South China Sea and Large-Scale Synoptic Circulation Patterns: The Role of the Northwest Pacific Subtropical High and Typhoons
by Shuhong Liu, Yuanjian Yang, Danling Tang, Hong Yan and Guicai Ning
Remote Sens. 2021, 13(16), 3250; https://doi.org/10.3390/rs13163250 - 17 Aug 2021
Cited by 8 | Viewed by 3733
Abstract
Synoptic weather conditions can modulate short-term variations in the marine biophysical environment. However, the impact of large-scale synoptic circulation patterns (LSCPs) on variations in chlorophyll-a (chl-a) and sea surface temperature (SST) in the South China Sea (SCS) remains unclear. Using a T-mode principal [...] Read more.
Synoptic weather conditions can modulate short-term variations in the marine biophysical environment. However, the impact of large-scale synoptic circulation patterns (LSCPs) on variations in chlorophyll-a (chl-a) and sea surface temperature (SST) in the South China Sea (SCS) remains unclear. Using a T-mode principal component analysis method, four types of LSCP related to the Northwest Pacific subtropical high are objectively identified over the SCS for the summers of 2015–2018. Type 1 exhibits a lower chl-a concentration of <0.3 mg m−3 offshore of southern Vietnam with respect to the other three types. For Type 2, the high chl-a concentration zone (>0.3 mg m−3) along the coast of Guangdong exhibits the widest areas of coverage. The offshore chl-a bloom jet (>0.3 mg m−3) formed in southern Vietnam is the most obvious under Type 3. Under Type 4, the high chl-a concentration zone along the coast of Guangdong is the narrowest, while the chl-a concentration in the middle of the SCS is the lowest (<0.1 mg m−3). These type differences are mostly caused by the various monsoon circulations, local ocean mesoscale processes and resultant differences in localized precipitation, wind vectors, photosynthetically active radiation and SST. In particular, precipitation over land helps to transport nutrients from the land to the shore, which is conducive to the increase of chl-a. However, precipitation over ocean will dilute the upper seawater and reduce chl-a. Typhoons pump the deeper seawater with nutrients to the surface, and therefore make a positive contribution to chl-a in most offshore areas; however, they also disturb shallower water and hinder the growth of phytoplankton, making a negative contribution near the coast of Guangdong. In general, our findings will provide a better understanding of wind pump impact: the responses of marine biophysical environments to LSCPs. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

8 pages, 4753 KiB  
Article
Tracking a Coastal Wave Buoy, Lost from the Southern Coast of Jeju Island, Using Lagrangian Particle Modeling
by Seongbong Seo and Young-Gyu Park
J. Mar. Sci. Eng. 2021, 9(8), 795; https://doi.org/10.3390/jmse9080795 - 23 Jul 2021
Cited by 7 | Viewed by 2595
Abstract
A coastal wave buoy was lost near Jeju Island, Korea, in late July 2014 and found at Cape Mendocino, USA, in April 2020. The buoy’s journey was simulated with a Lagrangian particle tracking model using surface ocean currents and wind data at 10 [...] Read more.
A coastal wave buoy was lost near Jeju Island, Korea, in late July 2014 and found at Cape Mendocino, USA, in April 2020. The buoy’s journey was simulated with a Lagrangian particle tracking model using surface ocean currents and wind data at 10 m above sea level. Experiments were conducted with windage values of 0, 2, and 4%. Particles were released along the southern coast of Jeju Island from 31 July to 8 August 2014. When the windage was 0 or 2%, most particles reached the northwest Pacific via the East/Japan Sea or East China Sea, respectively. With 4% windage, very few particles entered the North Pacific. Under 0% windage, particles accumulated in the Great Pacific Garbage Patch (GPGP) and never reached the USA. Under 2%, particles were able to escape the GPGP and started to reach the USA coast 2 years and 7 months after the release. The trajectory of the buoy was deduced from the trajectories of particles with a similar travel time. The buoy likely moved to East China and then to the subtropical convergence zone, where it must have circulated for approximately 2 years before being pushed toward Cape Mendocino by the intensified winter westerlies. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

Back to TopTop