The Controlling of the Subtropical High Leading Modes on the Spatial Pattern of Tropical Cyclone Genesis in the Western North Pacific and Tracks Landing on the East Coast of China
Abstract
:1. Introduction
2. Data and Method
3. Dominant Modes of the WPSH and Associations with TC Activity
4. Thermodynamic and Dynamic Factors Associated with the Two Leading Modes of WPSH Affect TC Genesis
5. The Steering Flows Associated with the Two Leading Modes of the WPSH Affect Landing TCs
6. Reproduction and Forecasting of Landing TCs by the Two Leading WPSH Modes
7. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Wu, L.; Liu, Q. Tropical cyclone damages in China 1983–2006. Bull. Am. Meteorol. Soc. 2009, 90, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Peduzzi, P.; Chatenoux, B.; Dao, H.; De Bono, A.; Herold, C.; Kossin, J.; Mouton, F.; Nordbeck, O. Global trends in tropical cyclone risk. Nat. Clim. Change 2012, 2, 289–294. [Google Scholar] [CrossRef]
- Wang, B.; Chan, J.C.L. How strong ENSO events affect tropical storm activity over the western North Pacific. J. Clim. 2002, 15, 1643–1658. [Google Scholar] [CrossRef]
- Wu, M.C.; Chang, W.L.; Leung, W.M. Impacts of El Nino-Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific. J. Clim. 2004, 17, 1419–1428. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.H.; Baik, J.J.; Kim, J.H.; Gong, D.Y.; Sui, C.H. Interdecadal changes in summertime typhoon tracks. J. Clim. 2004, 17, 1767–1776. [Google Scholar] [CrossRef]
- He, H.; Yang, J.; Gong, R.; Wang, Y.; Gao, M. Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Clim. Dyn. 2015, 45, 3317–3329. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity in the northwest Pacific in relation to the El Nino/Southern Oscillation phenomenon. Mon. Weather Rev. 1985, 113, 599–606. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity over the western North Pacific associated with El Nino and La Nina events. J. Clim. 2000, 13, 2960–2972. [Google Scholar] [CrossRef]
- Lander, M.A. An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Weather Rev. 1994, 122, 636–651. [Google Scholar] [CrossRef]
- Camargo, S.J.; Sobel, A.H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 2005, 18, 2996–3006. [Google Scholar] [CrossRef]
- Chen, G.; Tam, C.-Y. Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys. Res. Lett. 2010, 37, L01803. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wu, L.; Zhou, W. Assessing the influence of the ENSO on tropical cyclone prevailing tracks in the western North Pacific. Adv. Atmos. Sci. 2010, 27, 1361–1371. [Google Scholar] [CrossRef]
- Kim, H.-M.; Webster, P.J.; Curry, J.A. Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Clim. 2011, 24, 1839–1849. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Xiang, B.; Lee, J. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA 2013, 110, 2718–2722. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, H.; Jin, F.-F.; Stuecker, M.F.; Turner, A.G.; Klingaman, N.P. The annual-cycle modulation of meridional asymmetry in ENSO’s atmospheric response and its dependence on ENSO zonal structure. J. Clim. 2015, 28, 5795–5812. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wu, L. Interannual shift of the tropical upper-tropospheric trough and its influence on tropical cyclone formation over the Western North Pacific. J. Clim. 2016, 29, 4203–4211. [Google Scholar] [CrossRef]
- Yang, Y.X.; Xie, R.H.; Wang, F.M.; Huang, F. Impacts of decaying eastern and central Pacific El Nino on tropical cyclone activities over the western North Pacific in summer. Theor. Appl. Climtol. 2017, 125, 175–185. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.; Mu, M.; Duan, W. Seasonal modulations of different impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific. Clim. Dyn. 2013, 40, 2887–2902. [Google Scholar] [CrossRef]
- Wang, C.; Wu, L.; Zhao, H.; Cao, J.; Tian, W. Is there a quiescent typhoon season over the western North Pacific following a strong El Niño event? Int. J. Climatol. 2018, 39, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Yang, L.; Xie, S.-P. Tropical Indian Ocean influence on Northwest Pacific tropical cyclones in summer following strong El Niño. J. Clim. 2011, 24, 315–322. [Google Scholar] [CrossRef]
- Ha, Y.; Zhong, Z.; Yang, X.; Sun, Y. Contribution of East Indian Ocean SSTA to Western North Pacific tropical cyclone activity under El Niño/La Niña conditions. Int. J. Climatol. 2015, 35, 506–519. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Lei, X. Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of Northwest Pacific tropical cyclone frequency. J. Clim. 2011, 24, 509–521. [Google Scholar] [CrossRef]
- Zhan, R.; Wang, Y.; Tao, L. Intensified impact of East Indian Ocean SST anomaly on tropical cyclone genesis frequency over the Western North Pacific. J. Clim. 2014, 27, 8724–8739. [Google Scholar] [CrossRef]
- Wu, L.; Wang, B.; Geng, S. Growing typhoon influence on east Asia. Geophys. Res. Lett. 2005, 32, L18703. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.S.; Chan, J.C.L. Interdecadal variability of Western North Pacific tropical cyclone tracks. J. Clim. 2008, 21, 4464–4476. [Google Scholar] [CrossRef]
- Zhang, W.; Vecchi, G.A.; Murakami, H.; Villarini, G.; Delworth, T.L.; Yang, X.; Jia, L. Dominant Role of Atlantic Multidecadal Oscillation in the recent decadal changes in western North Pacific tropical cyclone activity. Geophys. Res. Lett. 2018, 45, 354–362. [Google Scholar] [CrossRef]
- Zhao, J.; Zhan, R.; Wang, Y.; Xu, H. Contribution of Interdecadal Pacific Oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Clim. 2018, 31, 8211–8224. [Google Scholar] [CrossRef]
- Kim, H.-M.; Seo, K.-H.; Veh, S.-W.; Kang, N.-Y.; Moon, B.-K. Asymmetric impact of Central Pacific ENSO on the reduction of tropical cyclone genesis frequency over the western North Pacific since the late 1990s. Clim. Dyn. 2020, 54, 661–673. [Google Scholar] [CrossRef]
- Wang, C.; Wang, B. Tropical cyclone predictability shaped by western Pacific subtropical high: Integration of trans-basin sea surface temperature effects. Clim. Dyn. 2019, 53, 2697–2714. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, G. Progress in the study on the formation of the summertime subtropical anticyclone. Adv. Atmos. Sci. 2004, 14, 289–308. [Google Scholar] [CrossRef]
- Miyasaka, T.; Nakamura, H. Structure and formation mechanisms of the northern hemisphere summertime subtropical highs. J. Clim. 2005, 18, 5046–5065. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. 2005, 110, D08104. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Yu, R.; Zhang, J.; Drange, H.; Cassou, C.; Deser, C.; Hodson, D.L.; Sanchez-Gomez, E.; Li, J.; Keenlyside, N.; et al. Why the western Pacific subtropical high has extended westward since the late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhong, Z.; Yi, L.; Li, T.; Chen, M.; Wan, H.; Wang, Y.; Zhong, K. Dependence of the Relationship between the Tropical Cyclone Track and Western Pacific Subtropical High Intensity on Initial Storm Size: A Numerical Investigation. J. Geophys. Res. 2015, 120, 11451–11467. [Google Scholar] [CrossRef]
- Chen, T.C.; Wang, S.Y.; Yen, M.C.; Clark, A.J. Impact of the interseasonal variability of the Western North Pacific large-scale circulation on tropical cyclone tracks. J. Clim. 2009, 24, 646–666. [Google Scholar] [CrossRef]
- Liu, K.S.; Chan, J.C.L. Inactive period of Western North Pacific tropical cyclone activity in 1998–2011. J. Clim. 2013, 26, 2614–2630. [Google Scholar] [CrossRef]
- Tu, J.; Chou, C.; Chu, P. The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with Western North Pacific–East Asian climate change. J. Clim. 2009, 22, 3616–3628. [Google Scholar] [CrossRef]
- Xiang, B.; Wang, B.; Yu, W.; Xu, S. How can anomalous western North Pacific Subtropical High intensify in late summer? Geophys. Res. Lett. 2013, 40, 2349–2354. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Peterson, T.C.; Lawrimore, J. Improvements to NOAA’s historical merged land ocean surface temperature analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Emanuel, K.; Nolan, D.S. Tropical cyclone activity and the global climate system. In Proceedings of the 26th Conference on Hurricanes and Tropical Meteorolgy, Miami, FL, USA, 3–7 May 2004; pp. 141–240. [Google Scholar]
- Chan, J.C.L. Thermodynamic control on the climate of intense tropical cyclones. Proc. Roy. Soc. A 2009, 465, 3011–3021. [Google Scholar] [CrossRef]
- Chen, T.C.; Weng, S.P.; Yamamzaki, N.; Kiehne, S. Interannual variation in the tropical cyclone formation over the western North Pacific. Mon. Weather Rev. 1998, 126, 1080–1090. [Google Scholar] [CrossRef]
- Holland, G.J. Chaper 3: Tropical Cyclone Motion. In Global Guide to Tropical Cyclone Forecasting, 1st ed.; WMO: Geneva, Switzerland, 1993. Available online: http://www.bom.gov.au/bmrc/pubs/tcguide/ch3/ch3_tableofcontents.htm (accessed on 3 January 2018).
- Wang, L.; Yu, J.Y.; Paek, H. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Hong, C.C.; Chang, T.C.; Hsu, H.H. Enhanced relationship between the tropical Atlantic SST and the summertime estern North Pacific subtropical high after the early 1980s. J. Geophys. Res. Atmos. 2014, 119, 3715–3722. [Google Scholar] [CrossRef]
- Cao, X.; Wu, R.G.; Xiao, X. A new perspective of intensified impact of El Niño−Southern Oscillation Modoki on tropical cyclogenesis over the western North Pacific around 1990s. Int. J. Climatol. 2018, 38, 4262–4275. [Google Scholar] [CrossRef]
- Cao, X.; Chen, S.F.; Chen, G.H.; Wu, R.G. Intensified Impact of Northern Tropical Atlantic SST on Tropical Cyclogenesis Frequency over the Western North Pacific after the Late 1980s. Adv. Atmos. Sci. 2016, 33, 919–930. [Google Scholar] [CrossRef]
- Wu, M.M.; Wang, L.; Chen, B.Y. Recent weakening in interannual variability of mean tropical cyclogenesis latitude over the western North Pacific during boreal summer. J. Meteor. Res. 2020, 34, 1183–1198. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Z.; Zhang, W.; Shen, X. Effects of tropical North Atlantic sea surface temperature on intense tropical cyclones landfalling in China. Int. J. Climatol. 2021, 41, 1056–1065. [Google Scholar] [CrossRef]
- Camargo, S.J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 2013, 26, 9880–9902. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.A. Resolving tropical cyclone intensity in models. Geophys. Res. Lett. 2018, 45, 2082–2087. [Google Scholar] [CrossRef]
- Tory, K.J.; Chand, S.S.; McBride, J.L.; Ye, H.; Dare, R.A. Projected changes in late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from phase 5 of the coupled model intercomparison project. J. Clim. 2013, 26, 9946–9959. [Google Scholar] [CrossRef]
TC Genesis Number | Landing TC Number | ||||
---|---|---|---|---|---|
Region I(105° E–128° E, 5° N–30° N) | Region II(128° E–175° E, 17° N–30° N) | Region III(128° E–175° E, 5° N–17° N) | Total | East coast of China (Region A) | |
PC1 | −0.49 ** | −0.50 ** | 0.18 | −0.54 ** | −0.54 ** |
PC2 | 0.21 | −0.05 | −0.69 ** | −0.40 * | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, T.; Yang, Y.; Xu, S. The Controlling of the Subtropical High Leading Modes on the Spatial Pattern of Tropical Cyclone Genesis in the Western North Pacific and Tracks Landing on the East Coast of China. Atmosphere 2022, 13, 79. https://doi.org/10.3390/atmos13010079
Fan T, Yang Y, Xu S. The Controlling of the Subtropical High Leading Modes on the Spatial Pattern of Tropical Cyclone Genesis in the Western North Pacific and Tracks Landing on the East Coast of China. Atmosphere. 2022; 13(1):79. https://doi.org/10.3390/atmos13010079
Chicago/Turabian StyleFan, Tingting, Yuxing Yang, and Shibin Xu. 2022. "The Controlling of the Subtropical High Leading Modes on the Spatial Pattern of Tropical Cyclone Genesis in the Western North Pacific and Tracks Landing on the East Coast of China" Atmosphere 13, no. 1: 79. https://doi.org/10.3390/atmos13010079
APA StyleFan, T., Yang, Y., & Xu, S. (2022). The Controlling of the Subtropical High Leading Modes on the Spatial Pattern of Tropical Cyclone Genesis in the Western North Pacific and Tracks Landing on the East Coast of China. Atmosphere, 13(1), 79. https://doi.org/10.3390/atmos13010079