Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = subsea power cables

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9591 KiB  
Article
A Channel Centerline-Based Method for Modeling Turbidity Currents Morphodynamics: Case Study of the Baco–Malaylay Submarine Canyon System
by Alessandro Frascati, Michele Bolla Pittaluga, Octavio E. Sequeiros, Carlos Pirmez and Alessandro Cantelli
J. Mar. Sci. Eng. 2025, 13(8), 1495; https://doi.org/10.3390/jmse13081495 - 3 Aug 2025
Viewed by 193
Abstract
Turbidity currents pose significant threats to offshore seabed infrastructures, including subsea hydrocarbon production facilities and submarine communication cables. These powerful underwater flows can damage pipelines, potentially causing hydrocarbon spills that endanger local communities, the environment, and negatively impact energy production infrastructures. Therefore, a [...] Read more.
Turbidity currents pose significant threats to offshore seabed infrastructures, including subsea hydrocarbon production facilities and submarine communication cables. These powerful underwater flows can damage pipelines, potentially causing hydrocarbon spills that endanger local communities, the environment, and negatively impact energy production infrastructures. Therefore, a comprehensive understanding of the spatio-temporal development and destructive force of turbidity currents is essential. While numerical computation of 3D flow, sediment transport, and substrate exchange is possible, field-scale simulations are computationally intensive. In this study, we develop a simplified morphodynamic approach to model the flow properties of channelized turbidity currents and the associated trends of sediment accretion and erosion. This model is applied to the Baco–Malaylay submarine system to investigate the dynamics of a significant turbidity current event that impacted a submarine pipeline offshore the Philippines. The modeling results align with available seabed assessments and observed erosion trends of the protective rock berm. Our simplified modeling approach shows good agreement with simulations from a fully 3D numerical model, demonstrating its effectiveness in providing valuable insights while reducing computational demands. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

18 pages, 8569 KiB  
Article
Real-Time Prediction of the Dynamic Spatial Configuration of Umbilical Cables Based on Monitoring Data During Deep-Sea In-Situ Mining
by Chaojun Huang, Shuqing Wang, Jiancheng Liu, Lei Li, Wencheng Liu, Lin Huang, Zhihao Yu, Wen Shen, Yuankun Sun, Yu Liu and Yuanyuan Liu
J. Mar. Sci. Eng. 2025, 13(2), 376; https://doi.org/10.3390/jmse13020376 - 18 Feb 2025
Viewed by 698
Abstract
Prediction of the spatial configuration of the umbilical cable during deep-sea mining in-situ tests is of great significance because dynamic change may cause the umbilical cable to touch the ground or overturn the mining vehicle. In the present paper, a real-time prediction method [...] Read more.
Prediction of the spatial configuration of the umbilical cable during deep-sea mining in-situ tests is of great significance because dynamic change may cause the umbilical cable to touch the ground or overturn the mining vehicle. In the present paper, a real-time prediction method for the dynamic spatial configuration of the umbilical cable during the deep-sea mining process is proposed. At first, the environmental information, position and motion of the vessel–umbilical cable–mining system were collected by sensors arranged at different locations. Then, the data were converted and transformed to the local vessel coordinate system. After that, the commercial software OrcaFlex was employed to conduct real-time simulation, in which the spatial configuration of the umbilical cable was predicted by the lumped mass method. Furthermore, the proposed real-time simulation method was employed in a sea trial test of deep-sea mining in an area with a water depth of 1100 m. Comparing the prediction results with the trajectory of the USBL beacon obtained from the monitoring data, the maximum distance of some specific points was close to 5 m, and most of them were less than 3 m. Meanwhile, it could also give the dynamic responses of the deep-sea mining system. For example, the maximum top tension of the umbilical cable was less than 15 kN, which could be used to evaluate the health condition of the system. During the sea trial test, the proposed method played an important role in ensuring the safety of the umbilical cable during wide-range movement of the mining vehicle. With characteristics of good real-time performance, accurate prediction, high reliability and stability, the proposed method could enhance the confidence of engineers for on-site operation as a powerful digital tool for visualization of the subsea working state. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 15343 KiB  
Article
Numerical Study on Electromagnetic Thermal Performance of Non-Metallic Armoured Optoelectronic Cable Winch System
by Wenhua Li, Huaizhao Wu, Shanying Lin, Weiwei Shen and Qingtao Lv
J. Mar. Sci. Eng. 2024, 12(6), 895; https://doi.org/10.3390/jmse12060895 - 28 May 2024
Cited by 2 | Viewed by 1633
Abstract
Non-metallic armoured optoelectronic cable winch systems (NAOCWSs) play critical roles in facilitating signal transmission and powering subsea equipment. Due to the varying depths in these applications, deploying the entire cable length is unnecessary. However, the portion of the cable that remains coiled around [...] Read more.
Non-metallic armoured optoelectronic cable winch systems (NAOCWSs) play critical roles in facilitating signal transmission and powering subsea equipment. Due to the varying depths in these applications, deploying the entire cable length is unnecessary. However, the portion of the cable that remains coiled around the winch can generate an electromagnetic field, which may interfere with signal transmission and induce electromagnetic heating. This can lead to elevated temperatures within the system, affecting the cable’s lifespan. Consequently, this study examines the distributions of magnetic and temperature fields within the NAOCWS with different currents (10–30 A) and numbers of winding layers (1–10). Findings indicate that the magnetic flux density (MFD) changes periodically, and the period is closely related to the distance between the cables. At the centre of the cable, the flux density is minimum. Temperature distribution correlates with both current amplitude and the number of winding layers, where an increase in either parameter amplifies the temperature variance between the edge and intermediate cables within the same layer. The current does not affect the internal temperature distribution pattern. With the number of winding layers determined, the layer where the highest temperature of the system is located is well defined and does not vary with current. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 3601 KiB  
Article
Selection of an Optimal Frequency for Offshore Wind Farms
by Byeonghyeon An, Junsoo Che, Taehun Kim and Taesik Park
Energies 2024, 17(10), 2440; https://doi.org/10.3390/en17102440 - 20 May 2024
Cited by 3 | Viewed by 1462
Abstract
Offshore wind power has attracted significant attention due to its high potential, capability for large-scale farms, and high capacity factor. However, it faces high investment costs and issues with subsea power transmission. Conventional high-voltage AC (HVAC) methods are limited by charging current, while [...] Read more.
Offshore wind power has attracted significant attention due to its high potential, capability for large-scale farms, and high capacity factor. However, it faces high investment costs and issues with subsea power transmission. Conventional high-voltage AC (HVAC) methods are limited by charging current, while high-voltage DC (HVDC) methods suffer from the high cost of power conversion stations. The low-frequency AC (LFAC) method mitigates the charging current through low-frequency operation and can reduce power conversion station costs. This paper aims to identify the economically optimal frequency by comparing the investment costs of LFAC systems at various frequencies. The components of LFAC, including transformers, offshore platforms, and cables, exhibit frequency-dependent characteristics. Lower frequencies result in an increased size and volume of transformers, leading to higher investment costs for offshore platforms. In contrast, cable charging currents and losses are proportional to frequency, causing the total cost to reach a minimum at a specific frequency. To determine the optimal frequency, simulations of investment costs for varying capacities and distances were conducted. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

17 pages, 5530 KiB  
Technical Note
Attitude-Independent Route Tracking for Subsea Power Cables Using a Scalar Magnetometer under High Sea Conditions
by Guozhu Li, Xuxing Geng, Shangqing Liang, Yuanpeng Chen, Guangming Huang, Gaoxiang Li, Xueting Zhang and Guoqing Yang
Remote Sens. 2024, 16(2), 226; https://doi.org/10.3390/rs16020226 - 6 Jan 2024
Cited by 3 | Viewed by 2188
Abstract
To overcome the shortcoming wherein the accuracy of subsea cable detection can be affected by the determination of the bias vector, scale factors, and non-orthogonality corrections of the vector magnetometer, a real-time attitude-independent route tracking method for subsea power cables is investigated theoretically [...] Read more.
To overcome the shortcoming wherein the accuracy of subsea cable detection can be affected by the determination of the bias vector, scale factors, and non-orthogonality corrections of the vector magnetometer, a real-time attitude-independent route tracking method for subsea power cables is investigated theoretically and experimentally by means of scalar magnetic field checking. The measurement of the magnetic field Bc produced by the current in a cable is made immune to the influence of the platform attitude by extracting the component of Bc along the geomagnetic field using a high-bandwidth self-oscillating optically pumped magnetometer. The self-oscillating frequency is proved to be independent of the attitude of the magnetometer with the theoretical model. Experiments are carried out to test the attitude-independent performance, and the effectiveness of route tracking is verified by the results of the sea experiment. The proposed method will effectively improve the ability to locate subsea cables under high sea conditions. Full article
(This article belongs to the Special Issue Recent Advances in Underwater and Terrestrial Remote Sensing)
Show Figures

Figure 1

10 pages, 2267 KiB  
Communication
Cryogenic Comminution of Subsea Cables and Flowlines: A Pathway for Circular Recycling of End-of-Life Offshore Infrastructure
by Ibukun Oluwoye and Arun Mathew
Sustainability 2023, 15(21), 15651; https://doi.org/10.3390/su152115651 - 6 Nov 2023
Cited by 2 | Viewed by 2764
Abstract
Hundreds of thousands of kilometers of communication and power (umbilical) cables and flowlines lie undersea worldwide. Most of these offshore cables and flowlines have reached or will soon be nearing the end of their service life, prompting the need for a viable recycling [...] Read more.
Hundreds of thousands of kilometers of communication and power (umbilical) cables and flowlines lie undersea worldwide. Most of these offshore cables and flowlines have reached or will soon be nearing the end of their service life, prompting the need for a viable recycling approach to recover some valuable material, e.g., copper. However, separation into constituent materials has proven very challenging due to the highly robust design of the composite cables (and flowlines) to withstand service conditions and the tough external plastic sheaths that protect against seawater corrosion. This study aims at promoting sustainable practices in the offshore energy sector. Here, we summarize the findings of the cryogenic comminution of subsea cables and flowlines for an effective separation and recovery of component materials. Heat transfer analyses of complex multilayer flowlines and umbilicals were conducted to evaluate the time required for these structures to reach their respective critical brittle-transition temperatures. Subsequently, the time was used as a guide to crush the flowline and umbilical cables under cryogenic conditions. The results show that the flowlines and umbilical cables will reach the brittle-transition temperature after approximately 1000s (i.e., 17 min) of submergence in liquid nitrogen (LN). Comminution of the materials at temperatures near the brittle-transition temperature was proven relatively efficient compared to room-temperature processing. The present evaluation of heat transfer and lab-scale crushing will afford accurate process modelling and design of a pilot cryogenic comminution of decommissioned subsea cables and flowlines, enabling the sustainable recovery of valuable materials that can provide a new stream of waste-to-wealth economy. Full article
Show Figures

Figure 1

19 pages, 6122 KiB  
Review
Critical Issues of Optimal Reactive Power Compensation Based on an HVAC Transmission System for an Offshore Wind Farm
by Asad Rehman, Mohsin Ali Koondhar, Zafar Ali, Munawar Jamali and Ragab A. El-Sehiemy
Sustainability 2023, 15(19), 14175; https://doi.org/10.3390/su151914175 - 25 Sep 2023
Cited by 14 | Viewed by 5494
Abstract
The reactive power (RP) control of the high voltage alternating current transmission system (HVAC TS) for offshore wind farms (OWFs) is a crucial task to assure the consistent and efficient operation of the system. The importance of RP compensation (RPC) in power system [...] Read more.
The reactive power (RP) control of the high voltage alternating current transmission system (HVAC TS) for offshore wind farms (OWFs) is a crucial task to assure the consistent and efficient operation of the system. The importance of RP compensation (RPC) in power system operation is to maintain voltage stability and reduce power losses. Offshore wind farms present unique challenges for power system operation due to their distance from the onshore grid, variable wind conditions, and complex electrical infrastructure. The HVAC TS is common for OWFs as it is well-suited for transmitting large amounts of power over long distances. In this paper, a literature-based analysis helps in improving the operation and reliability of OWFs, ultimately leading to greater renewable energy utilization. This paper concludes that optimal RPC is a critical task for ensuring the stable and efficient operation of HVAC TSs for OWFs. Advanced control and optimization techniques can help achieve an optimal RPC, thereby minimizing TLS and improving the overall system efficiency. Furthermore, the study investigates the possible benefits of incorporating novel technologies and approaches, such as RESs, into the power compensation process. By offering insightful information on how to optimize HVAC TSs for OWFs, for example, subsea power cables with multiple layers must be used to carry electricity from large offshore wind farms, the development of more sustainable and effective energy solutions is possible. The research concludes by stating that ensuring the steady and effective operation of HVAC TSs for OWFs is a crucial responsibility. Advanced optimization and control solutions can reduce TLS and increase system efficiency by assisting in achieving the optimal RPC. Full article
(This article belongs to the Special Issue Sustainable Future of Power System: Estimation and Optimization)
Show Figures

Figure 1

17 pages, 2937 KiB  
Article
Subsea Power Cable Health Management Using Machine Learning Analysis of Low-Frequency Wide-Band Sonar Data
by Wenshuo Tang, Keith Brown, Daniel Mitchell, Jamie Blanche and David Flynn
Energies 2023, 16(17), 6172; https://doi.org/10.3390/en16176172 - 25 Aug 2023
Cited by 10 | Viewed by 3078
Abstract
Subsea power cables are critical assets for electrical transmission and distribution networks, and highly relevant to regional, national, and international energy security and decarbonization given the growth in offshore renewable energy generation. Existing condition monitoring techniques are restricted to highly constrained online monitoring [...] Read more.
Subsea power cables are critical assets for electrical transmission and distribution networks, and highly relevant to regional, national, and international energy security and decarbonization given the growth in offshore renewable energy generation. Existing condition monitoring techniques are restricted to highly constrained online monitoring systems that only prioritize internal failure modes, representing only 30% of cable failure mechanisms, and has limited capacity to provide precursor indicators of such failures or damages. To overcome these limitations, we propose an innovative fusion prognostics approach that can provide the in situ integrity analysis of the subsea cable. In this paper, we developed low-frequency wide-band sonar (LFWBS) technology to collect acoustic response data from different subsea power cable sample types, with different inner structure configurations, and collate signatures from induced physical failure modes as to obtain integrity data at various cable degradation levels. We demonstrate how a machine learning approach, e.g., SVM, KNN, BP, and CNN algorithms, can be used for integrity analysis under a hybrid, holistic condition monitoring framework. The results of data analysis demonstrate the ability to distinguish subsea cables by differences of 5 mm in diameter and cable types, as well as achieving an overall 95%+ accuracy rate to detect different cable degradation stages. We also present a tailored, hybrid prognostic and health management solution for subsea cables, for cable remaining useful life (RUL) prediction. Our findings addresses a clear capability and knowledge gap in evaluating and forecasting subsea cable RUL. Thus, supporting a more advanced asset management and planning capability for critical subsea power cables. Full article
(This article belongs to the Special Issue Condition Monitoring of Power System Components)
Show Figures

Figure 1

22 pages, 19078 KiB  
Article
A Location-Allocation Model with Obstacle and Capacity Constraints for the Layout Optimization of a Subsea Transmission Network with Line-Shaped Conduction Structures
by Cheng Hong, Yuxi Wang and Segen F. Estefen
J. Mar. Sci. Eng. 2023, 11(6), 1171; https://doi.org/10.3390/jmse11061171 - 2 Jun 2023
Cited by 2 | Viewed by 2295
Abstract
The idea of this paper comes from the need for a practical layout design for the subsea pipe line network and the power transmission network of offshore wind farms with subsea cables, which are both subsea transmission networks with line-shaped conduction structures. In [...] Read more.
The idea of this paper comes from the need for a practical layout design for the subsea pipe line network and the power transmission network of offshore wind farms with subsea cables, which are both subsea transmission networks with line-shaped conduction structures. In this paper, this practical need is treated as an location-allocation problem, with the objective of minimizing the total cost, and a mixed-integer linear programming model (MILP) for layout optimization is developed. Through the model, the locations of service centers and theit corresponding sizes, the allocations between customers and service centers, as well as the transmission routes can all be figured out. This work makes two key contributions. First, facilities’ capacity restrictions and the avoidance of subsea obstacles are both integrated, making the description of the layout closer to practical situations. Secondly, a “global to local” search process based on the Delaunay triangulation method is constructed to solve the model, resulting in a high-quality solution. An offshore field layout design scenario is taken as a case study, through which the validity, feasibility, and stability of the proposed model, as well as the solution strategy, are presented. Furthermore, in the case study, the effect of the manifold number on the layout optimization is analyzed, indicating the flexibility of the model’s applications. Full article
Show Figures

Figure 1

18 pages, 2581 KiB  
Article
The Effects of Anthropogenic Electromagnetic Fields (EMF) on the Early Development of Two Commercially Important Crustaceans, European Lobster, Homarus gammarus (L.) and Edible Crab, Cancer pagurus (L.)
by Petra Harsanyi, Kevin Scott, Blair A. A. Easton, Guadalupe de la Cruz Ortiz, Erica C. N. Chapman, Althea J. R. Piper, Corentine M. V. Rochas and Alastair R. Lyndon
J. Mar. Sci. Eng. 2022, 10(5), 564; https://doi.org/10.3390/jmse10050564 - 21 Apr 2022
Cited by 16 | Viewed by 13836
Abstract
Proposed offshore windfarm sites could overlap with the brooding and spawning habitats of commercially important crustacea, including European lobster, Homarus gammarus and Edible crab, Cancer pagurus. Concerns have been raised on the biological effects of Electromagnetic Fields (EMFs) emitted from subsea power [...] Read more.
Proposed offshore windfarm sites could overlap with the brooding and spawning habitats of commercially important crustacea, including European lobster, Homarus gammarus and Edible crab, Cancer pagurus. Concerns have been raised on the biological effects of Electromagnetic Fields (EMFs) emitted from subsea power cables on the early life history of these species. In this study, ovigerous female H. gammarus and C. pagurus were exposed to static (Direct Current, DC) EMFs (2.8 mT) throughout embryonic development. Embryonic and larval parameters, deformities, and vertical swimming speed of freshly hatched stage I lobster and zoea I crab larvae were assessed. EMF did not alter embryonic development time, larval release time, or vertical swimming speed for either species. Chronic exposure to 2.8 mT EMF throughout embryonic development resulted in significant differences in stage-specific egg volume and resulted in stage I lobster and zoea I crab larvae exhibiting decreased carapace height, total length, and maximum eye diameter. An increased occurrence of larval deformities was observed in addition to reduced swimming test success rate amongst lobster larvae. These traits may ultimately affect larval mortality, recruitment and dispersal. This study increases our understanding on the effects of anthropogenic, static EMFs on crustacean developmental biology and suggests that EMF emissions from subsea power cables could have a measurable impact on the early life history and consequently the population dynamics of H. gammarus and C. pagurus. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

23 pages, 2067 KiB  
Article
Life Cycle Climate Change Impact of a Cost-Optimal HVDC Connection to Import Solar Energy from Australia to Singapore
by Srikkanth Ramachandran, Kais Siala, Cristina de La Rúa, Tobias Massier, Arif Ahmed and Thomas Hamacher
Energies 2021, 14(21), 7178; https://doi.org/10.3390/en14217178 - 1 Nov 2021
Cited by 6 | Viewed by 3380
Abstract
This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model was [...] Read more.
This paper aims to evaluate the life cycle greenhouse gas (GHG) emissions of importing electrical power into Singapore, generated from a large-scale solar photovoltaic (PV) power plant in Australia, through a long-distance subsea high-voltage direct current (HVDC) cable. A cost optimization model was developed to estimate the capacities of the system components. A comprehensive life cycle assessment model was built to estimate emissions of manufacturing and use of these components. Our evaluation shows that, for covering one fifth of Singapore’s electrical energy needs, a system with an installed capacity of 13GWPV, 17 GWh battery storage and 3.2GW subsea cable is required. The life cycle GHG emissions of such a system are estimated to be 110gCO2eq/kWh, with the majority coming from the manufacturing of solar PV panels. Cable manufacturing does not contribute largely toward GHG emissions. By varying full-load hours and cable lengths, it was assessed that sites closer to Singapore might provide the same energy at same/lower carbon footprint and reduced cost, despite the lower insolation as compared to Australia. However, these sites could cause greater emissions from land use changes than the deserts of Australia, offsetting the advantages of a shorter HVDC cable. Full article
Show Figures

Figure 1

17 pages, 5154 KiB  
Article
Design, Performance Evaluation and Field Test of a Water Jet Tool for ROV Trencher
by Ji-Hong Li, Mun-Jik Lee, Hyungjoo Kang, Min-Gyu Kim and Gun Rae Cho
J. Mar. Sci. Eng. 2021, 9(3), 296; https://doi.org/10.3390/jmse9030296 - 8 Mar 2021
Cited by 6 | Viewed by 3634
Abstract
ROV trencher is a kind of ROV which trenches the sea floor using a specifically designed tool and buries the subsea cables and pipelines. According to the soil conditions, this trenching method can have two different types, one is mechanical cutting and the [...] Read more.
ROV trencher is a kind of ROV which trenches the sea floor using a specifically designed tool and buries the subsea cables and pipelines. According to the soil conditions, this trenching method can have two different types, one is mechanical cutting and the other one is water jetting. In this paper, we present a water jet tool design method for a 2500 m depth-rated ROV trencher. A series of CFD simulations and laboratory tests with one nozzle, and a ground test using 1:6 scale jetting arm model were carried out to derive and demonstrate the jetting tool design parameters. In October 2018, the constructed ROV trencher was put into the sea trial in the East Sea of Korea to evaluate its final performances. In addition, in December 2019, the trencher was applied in a construction site to bury subsea water pipelines near the Yogji Island in the Korea. Through these two field tests and operation, the trencher was demonstrated for both its operational capability and trenching performance. The main contribution of this paper is that it presents the entire design procedures of water jet tools, including CFD simulations, laboratory tests, field test with 1:6 scaled jetting tool, and the final prototype tool design. These consecutive procedures are carried out in order for us to set up sort of relationship between jetting angle, trench depth, trench speed, and jetting power, from which we can predict and evaluate the trenching performance of the prototype jetting tool. Full article
(This article belongs to the Special Issue Unconventional Marine Vehicles)
Show Figures

Figure 1

17 pages, 6527 KiB  
Article
Design and Performance Analysis for the Low-Power Holding Mechanism of the All-Electric Subsea Gate Valve Actuator
by Honghai Wang, Peng Jia, Liquan Wang, Feihong Yun, Gang Wang, Aiguo Zhang, Min Xu and Xiangyu Wang
Appl. Sci. 2020, 10(17), 6119; https://doi.org/10.3390/app10176119 - 3 Sep 2020
Cited by 5 | Viewed by 4122
Abstract
The all-electric subsea gate valve actuator is one of the critical components of the all-electric subsea production control system. To bridge the gap of the low-power holding mechanism in the all-electric subsea gate valve actuator of the subsea production system, minimize the power [...] Read more.
The all-electric subsea gate valve actuator is one of the critical components of the all-electric subsea production control system. To bridge the gap of the low-power holding mechanism in the all-electric subsea gate valve actuator of the subsea production system, minimize the power consumption and cable number for control and improve the open-position keeping performance of all-electric subsea gate valve actuator, this paper proposed a novel low-power holding mechanism for the all-electric subsea gate valve actuator which can be applied to all-electric subsea gate valve actuators with various valve sizes and process pressure ratings. The proposed low-power holding mechanism uses an electromagnet as a driving element, combines the spiral transmission and the cam-like transmission, and only requires a holding force of approximately 2–7% of the maximum load of the closing spring to keep the valve open. The proposed low-power holding mechanism converts the axial force of the closing spring into the circumferential force, which substantially reduces the output force required for the driving element of the low-power holding mechanism and the number of the actuator’s control cables. Analytic models are created for the lockable maximum load of the closing spring and the permissible stroke of the locking tab with regard to the design variables. The parameter effects and the corresponding sensitivities are discussed by numerical analysis. The design parameters and the lockable maximum load of the closing spring of the low-power holding mechanism are obtained. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

24 pages, 1259 KiB  
Article
Environmental Permitting and Compliance Cost Reduction Strategies for the MHK Industry: Lessons Learned from Other Industries
by Sharon Kramer, Craig Jones, Geoffrey Klise, Jesse Roberts, Anna West and Zach Barr
J. Mar. Sci. Eng. 2020, 8(8), 554; https://doi.org/10.3390/jmse8080554 - 24 Jul 2020
Cited by 10 | Viewed by 4900
Abstract
The marine and hydrokinetic (MHK) industry plays a vital role in the U.S. clean energy strategy by providing a renewable, domestic energy source that may offset the need for traditional energy sources. The first MHK deployments in the U.S. have incurred very high [...] Read more.
The marine and hydrokinetic (MHK) industry plays a vital role in the U.S. clean energy strategy by providing a renewable, domestic energy source that may offset the need for traditional energy sources. The first MHK deployments in the U.S. have incurred very high permitting costs and long timelines for deploying projects, which increases project risk and discourages investment. A key challenge to advancing an economically competitive U.S. MHK industry is reducing the time and cost required for environmental permitting and compliance with government regulations. Other industries such as offshore oil and gas, offshore wind energy, subsea power and data cables, onshore wind energy, and solar energy facilities have all developed more robust permitting and compliance pathways that provide lessons for the MHK industry in the U.S. and may help inform the global consenting process. Based on in-depth review and research into each of the other industries, we describe the environmental permitting pathways, the main environmental concerns and types of monitoring typically associated with them, and factors that appear to have eased environmental permitting and compliance issues. Full article
Show Figures

Figure 1

18 pages, 4738 KiB  
Article
A Novel Fault Location Approach for Scientific Cabled Seafloor Observatories
by Fan Yang and Feng Lyu
J. Mar. Sci. Eng. 2020, 8(3), 190; https://doi.org/10.3390/jmse8030190 - 11 Mar 2020
Cited by 9 | Viewed by 2322
Abstract
The maintenance of scientific cabled seafloor observatories (CSOs) is not only extremely difficult but also of high cost for their subsea location. Therefore, the cable fault detection and location are essential and must be carried out accurately. For this purpose, a novel on-line [...] Read more.
The maintenance of scientific cabled seafloor observatories (CSOs) is not only extremely difficult but also of high cost for their subsea location. Therefore, the cable fault detection and location are essential and must be carried out accurately. For this purpose, a novel on-line fault location approach based on robust state estimation is proposed, considering state data gross errors in sensor measurements and the influence of temperature on system parameter variation. The circuit theory is used to build state estimation equations and identify the power system topology of faulty CSOs. This method can increase the accuracy of fault location, and reduce the lose form shutting down a faulty CSO in traditional fault location methods. It is verified by computer simulation and the laboratory prototype of a planned CSO in the East China Sea, and the fault location error is proved to be less than 1 km. Full article
Show Figures

Figure 1

Back to TopTop