Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (185)

Search Parameters:
Keywords = suberization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1399 KiB  
Article
Content of Phytomelatonin in Acorns (Quercus sp.) in Its Possible Use as a Phytogenic in Animal Nutrition
by Soundouss Kaabi, Brahim El Bouzdoudi, Mohammed L’bachir El Kbiach, Antonio Cano, Josefa Hernández-Ruiz and Marino B. Arnao
Processes 2025, 13(7), 2202; https://doi.org/10.3390/pr13072202 - 9 Jul 2025
Viewed by 361
Abstract
Phytogenics are functional compounds with a growing interest in animal nutrition. These plant-derived compounds are often used to improve health and behavioral aspects in livestock, and used as antipathogenic agents. Melatonin, an indolic hormonal compound, has been studied as an interesting phytogenic in [...] Read more.
Phytogenics are functional compounds with a growing interest in animal nutrition. These plant-derived compounds are often used to improve health and behavioral aspects in livestock, and used as antipathogenic agents. Melatonin, an indolic hormonal compound, has been studied as an interesting phytogenic in animal nutrition. This study analyzes the possibilities of acorn-fed flour as a phytomelatonin contributor and its beneficial roles for health. The fruits of two varieties of acorns (Quercus suber var. Maamora and var. Bouhachem), recollected in two different regions of Morocco, have been studied according to their eco-physiological origin. The content in phytomelatonin was analyzed using a solid extractive method and determined by liquid chromatography with fluorescence detection. The results show great morphological differences between the two varieties, and also significant differences in their phytomelatonin content. It is concluded that acorn-fed flour can be an interesting raw material as a phytomelatonin contributor for the functionality of certain feeds and animals. More specific studies using phytomelatonin-rich plants as feed have been proposed to implement specific functionalities in livestock. Full article
Show Figures

Figure 1

17 pages, 2220 KiB  
Article
Soil Prokaryotic Diversity Responds to Seasonality in Dehesas, Modulated by Tree Identity and Canopy Effect
by José Manjón-Cabeza, Mercedes Ibáñez, María José Leiva, Cristina Chocarro, Anders Lanzén, Lur Epelde and Maria Teresa Sebastià
Microbiol. Res. 2025, 16(7), 153; https://doi.org/10.3390/microbiolres16070153 - 5 Jul 2025
Viewed by 219
Abstract
Dehesas are mosaics of open grassland and standalone trees that are diversity reservoirs. However, they have recently faced abandonment and intensification, being replaced by plantations of fast-growing trees or subject to encroachment. Following a change in dehesa communities and structure, a change in [...] Read more.
Dehesas are mosaics of open grassland and standalone trees that are diversity reservoirs. However, they have recently faced abandonment and intensification, being replaced by plantations of fast-growing trees or subject to encroachment. Following a change in dehesa communities and structure, a change in soil microbial diversity and functionality in dehesas is expected, but dehesas’ microbial diversity is still a big unknown. In this work, we bring to light the soil prokaryotic taxonomic diversity in dehesa ecosystems and present a first approach to assessing their metabolic diversity through metabarcoding data. For this, we compared three dehesas dominated by different tree species: (i) one dehesa dominated by Quercus ilex; (ii) one dominated by Pinus pinea; and (iii) one dominated by a mixture of Q. ilex and Q. suber. At each dehesa, samples were taken under the canopy and in the open grassland, as well as through two seasons of peak vegetation productivity (autumn and spring). Our results show the following findings: (1) seasonality plays an important role in prokaryotic richness, showing higher values in autumn, and higher evenness in spring; (2) the effect of seasonality on the soil’s prokaryotic diversity is often modulated by the effect of tree species and canopy; (3) taxonomic diversity is driven mainly by the site effects, i.e., the opposite of the metabolic diversity that seemed to be driven by complex interactions among seasons, tree species, and canopies. Full article
Show Figures

Figure 1

20 pages, 2729 KiB  
Article
Occurrence of Philaenus spumarius in Xylella fastidiosa Demarcated Zones of Northern Portugal
by Talita Loureiro, Luís Serra, Ângela Martins, Isabel Cortez and Patrícia Poeta
Microbiol. Res. 2025, 16(7), 145; https://doi.org/10.3390/microbiolres16070145 - 2 Jul 2025
Viewed by 283
Abstract
The introduction of non-native species like Xylella fastidiosa to new environments can lead to potentially catastrophic ecological and economic repercussions. This work comprehended the prospection phase (insect sampling and submission of samples to the laboratory) from X. fastidiosa demarcated zones of Área Metropolitana [...] Read more.
The introduction of non-native species like Xylella fastidiosa to new environments can lead to potentially catastrophic ecological and economic repercussions. This work comprehended the prospection phase (insect sampling and submission of samples to the laboratory) from X. fastidiosa demarcated zones of Área Metropolitana do Porto; Sabrosa; Alijó; Baião; Mirandela; Mirandela II; and Bougado and the research phase (collecting and organizing data and statistical treatment). The results of this study showed the presence of the bacterium in some tested spittlebugs species captured in DZ of Área Metropolitana do Porto, which highlights the role of the vector in mediating the disease’s propagation. Most insects were found in public gardens and in nurseries/gardens where there is a diverse array of food sources, shelter, mating locations, and suitable substrates for egg laying that serve as ideal conditions for the population of Philaenus spumarius. We observed that most insects were found in the first trimester (36.5%), followed by the third trimester (23.2%). Finally, it was shown that, in our study, the most frequent host plants where insects were found included Lavandula dentata, Ulex minor, Ulex europaeus, Quercus suber, Plantago lanceolata. Our findings imply a robust connection between plant communities, ecological conditions, and insect populations with the occurrence of Xylella fastidiosa, particularly within the examined climatic context. Full article
Show Figures

Figure 1

22 pages, 2369 KiB  
Review
Satellite Remote Sensing for Monitoring Cork Oak Woodlands—A Comprehensive Literature Review
by Emma Bambagioni, Solaria Anzilotti, Costanza Borghi, Gherardo Chirici, Fabio Salbitano, Marco Marchetti and Saverio Francini
Diversity 2025, 17(6), 420; https://doi.org/10.3390/d17060420 - 14 Jun 2025
Viewed by 746
Abstract
Cork oak (Quercus suber) woodlands hold significant ecological, cultural, and economic value in the Mediterranean basin, particularly due to cork production, one of the most valued non-wood forest products worldwide. However, cork oak ecosystems are increasingly threatened by climate change, land-use [...] Read more.
Cork oak (Quercus suber) woodlands hold significant ecological, cultural, and economic value in the Mediterranean basin, particularly due to cork production, one of the most valued non-wood forest products worldwide. However, cork oak ecosystems are increasingly threatened by climate change, land-use intensification, and rural abandonment, leading to widespread signs of decline. To address these challenges, data-driven and scalable methods are more essential than ever. Satellite-based remote sensing (RS) offers a promising approach for large-scale, cost-effective, and timely monitoring of cork oak forests dynamics and health, but an exhaustive review about this topic is missing. This study reviews 35 peer-reviewed articles published between 2010 and 2025, assessing how satellite RS has been applied to monitor cork oak landscapes. The results show that key research topics include forest disturbances, land cover classification, and forest and environmental variables monitoring. Landsat is the most frequently used satellite mission, and NDVI is the most applied vegetation index. Although machine learning techniques and accuracy metrics are heterogeneous, with results that are difficult to compare, relevant performances have been achieved. For instance, the highest classification accuracy (98%) was reached in mapping cork oak mortality. However, the field remains fragmented, with limited attention to key ecological indicators such as biodiversity, resilience, and ecosystem services. RS for cork oak monitoring is still a relatively young discipline with high potential for development, requiring greater methodological consistency and stronger integration with conservation strategies to support adaptive management in the face of future environmental pressures. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

22 pages, 2170 KiB  
Article
Seasonal and Edaphic Modulation Influences the Phenolic Contents and Antioxidant Activity in Cork Oak (Quercus suber L.): Evidence from the Algerian Mediterranean Forest
by Melia Hoceini-Bentaha, Saliha Kadi-Bennane, Mohand Ouidir Boussoum, El-Hafid Nabti, Nassima Kadir, Nadjet Mestar-Guechaoui, Nasir A. Ibrahim, Mohammed Saad Aleissa, Nosiba S. Basher, Malika Boudiaf, Lamia Trabelsi and Karim Houali
Forests 2025, 16(6), 906; https://doi.org/10.3390/f16060906 - 28 May 2025
Viewed by 511
Abstract
The cork oak (Quercus suber L.), an emblematic species of Mediterranean biodiversity, is the focus of this study, which aimed to characterize the relationships between abiotic factors and variations in its secondary metabolites. Rhizospheric soil samples (collected at two depths: 0–15 cm [...] Read more.
The cork oak (Quercus suber L.), an emblematic species of Mediterranean biodiversity, is the focus of this study, which aimed to characterize the relationships between abiotic factors and variations in its secondary metabolites. Rhizospheric soil samples (collected at two depths: 0–15 cm and 15–25 cm), roots, and leaves were gathered in Azouza forest (Kabylia, Algeria) during the winter and summer seasons of 2019. Analyses were conducted on total polyphenol (TPP), flavonoid (FLAV), and tannin (TT) contents, and their antioxidant activities were assessed using DPPH, FRAP, and TAC assays. The results reveal seasonal and soil-depth variability, with the highest concentrations observed in leaves (170.2 mg GAE/g DW for TPP, 14.15 mg TAE/g DW for TT, and 6.4 mg QE/g DW for FLAV). Antioxidant activity was also more pronounced in leaves, with IC50 values of 130.90 µg/mL (DPPH) and 61.22 µg/mL (FRAP). Roots from the deeper layer (15–25 cm) exhibited higher phenolic compound levels and greater antioxidant activity compared to those from the superficial layer (0–15 cm). Principal component analysis showed that 93% of the variance was explained by seasonal factors and sampling depth, confirming their key role in secondary metabolite synthesis and biological activity. The cork oak’s biochemical adaptability to environmental changes reveals climate adaptation strategies, highlighting soil–plant influences on its metabolic responses in Mediterranean ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

15 pages, 3161 KiB  
Article
Characterisation of Cork Volatile Organic Compounds Using TD-GC-MS: Effects of Origin, Washing Process, and Thermal Processing of Cork Stoppers
by Patricia Jové, Raquel de Nadal, Maria Verdum and Núria Fiol
Processes 2025, 13(5), 1505; https://doi.org/10.3390/pr13051505 - 14 May 2025
Viewed by 458
Abstract
This study presents a green and solvent-free methodology based on thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS) to characterise cork’s volatile aromatic (VOC) profile. Samples from three geographical origins—Catalonia, Extremadura, and Sardinia—were analysed at different extraction temperatures. Cork stoppers from Sardinia were [...] Read more.
This study presents a green and solvent-free methodology based on thermal desorption coupled to gas chromatography-mass spectrometry (TD-GC-MS) to characterise cork’s volatile aromatic (VOC) profile. Samples from three geographical origins—Catalonia, Extremadura, and Sardinia—were analysed at different extraction temperatures. Cork stoppers from Sardinia were also analysed after two washing procedures (immersion and spray) and thermal treatment. The results showed that temperature and geographical origin significantly influenced the quantity and intensity of extracted VOCs, with higher extraction temperatures yielding a more comprehensive volatile profile. Vanillin was the most abundant compound in all samples. A multivariate analysis showed that cork from Extremadura was associated with carboxylic acids, Catalonia with furan derivatives and sugar-related compounds, and Sardinia with phenolic compounds linked to lignin degradation. Immersion-washed stoppers retained more lignin-derived and phenolic compounds, while spray-washed samples were characterised by a higher alkane content. Thermal treatment notably altered the VOC profile, increasing ketones such as acetophenone and 2-nonadecanone and reducing alkanes and fatty acids. These findings highlight the influence of the geographical origin and manufacturing process on the aromatic composition of cork, with potential applications in industries seeking natural active compounds. Full article
Show Figures

Figure 1

23 pages, 2549 KiB  
Article
Timing Is Everything: The Metabolic Partitioning of Suberin-Destined Carbon
by Jessica L. Sinka and Mark A. Bernards
Plants 2025, 14(10), 1433; https://doi.org/10.3390/plants14101433 - 10 May 2025
Viewed by 687
Abstract
Suberin is a cell wall-associated biopolymer that possesses both poly(phenolic) and poly(aliphatic) elements assembled into chemically and spatially distinct domains. Domain-specific monomers are formed via a branched pathway between phenolic and aliphatic metabolisms. Previous transcript accumulation data (RNAseq) from early stages of wound-induced [...] Read more.
Suberin is a cell wall-associated biopolymer that possesses both poly(phenolic) and poly(aliphatic) elements assembled into chemically and spatially distinct domains. Domain-specific monomers are formed via a branched pathway between phenolic and aliphatic metabolisms. Previous transcript accumulation data (RNAseq) from early stages of wound-induced suberization revealed highly coordinated, temporal changes in the regulation of these two branches. Notably, phenolic metabolism-associated transcripts accumulated first, indicating a preference toward phenolic production early on post-wounding. To better understand the dynamics of suberin monomer biosynthesis and assembly, we assessed carbon allocation between phenolic and aliphatic metabolisms during wound-induced suberization. To do so, [13C6]-glucose was administered to wound-healing potato tuber discs at different times post-wounding, and patterns of heavy carbon incorporation into (1) primary metabolites and (2) the suberin polymer were assessed. During early stages of wound-healing, carbon from glucose was rapidly incorporated into phenolic-destined metabolites, while at later stages it was shared between phenolic- and aliphatic-destined metabolites. Similarly, the pattern of labelled carbon incorporation into the poly(aliphatic) domain reflected a greater dedication of carbon towards 18:1 w-hydroxy fatty acid and 18:1 dioic acid (the two most abundant aliphatic monomers in potato suberin) later in the wound healing time course. Full article
(This article belongs to the Special Issue Biochemical Defenses of Plants)
Show Figures

Figure 1

17 pages, 1466 KiB  
Article
Regeneration Patterns in Cork Oak (Quercus suber L.) Stands: Insights from Transect and Cluster Sampling Inventory Designs
by Angelo Fierravanti and Teresa Fidalgo Fonseca
Forests 2025, 16(5), 751; https://doi.org/10.3390/f16050751 - 28 Apr 2025
Viewed by 555
Abstract
The resilience and regeneration of cork oak (Quercus suber L.) play a central role in sustaining the European oak landscape, particularly within the socio-economic and ecological frameworks of the Western Mediterranean. This species has a noticeable ability to withstand drought and temperature [...] Read more.
The resilience and regeneration of cork oak (Quercus suber L.) play a central role in sustaining the European oak landscape, particularly within the socio-economic and ecological frameworks of the Western Mediterranean. This species has a noticeable ability to withstand drought and temperature extremes. However, its natural regeneration is increasingly challenged by climate change and associated extreme weather events, as well as by competition among individuals for light, water, and nutrients. Monitoring this process in the field can be time-consuming, requiring the use of sampling techniques and the identification of appropriate inventory sampling design (ISD) schemes. Line transect (LT) and radial cluster (RC) inventory designs are widely used in ecological studies, botanical research, and plant species distribution assessments, as well as other environmental forestry studies. This research compares two inventory sampling designs (line transect vs. radial cluster) for inventorying and monitoring the dynamics of natural regeneration at the initial development stages of cork oak. In particular, this study evaluates the influences of inventory sampling design, time, and acorn density on the total living and dead seedlings over a two-year period, using the cork oak as a reference species in the Mediterranean climate of Northern Portugal. The results confirm the critical role of acorn availability in seedling regeneration dynamics within cork oak ecosystems and emphasize a temporal increase in the death of seedlings, markedly influenced by the day of year. The temporal component had a substantial impact on seedling mortality, which increased by 5.00‰ per day, meaning that one seedling died approximately every 200 days, whereas mortality spikes occur on specific days, suggesting temporal factors affecting seedling viability. The study also shows differences in regeneration estimates between the inventory designs. The line transect design records lower acorn density and seedlings than the radial cluster design. The results highlight an important but often overlooked source of variation in forest regeneration studies, emphasizing the need for careful consideration of inventory methods to ensure effective data collection and accurate representation of natural regeneration dynamics, ultimately supporting efforts to enhance cork oak regeneration and resilience against climate change and competitive pressures. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

28 pages, 4318 KiB  
Article
Cork Oak Regeneration Prediction Through Multilayer Perceptron Architectures
by Angelo Fierravanti, Lorena Balducci and Teresa Fonseca
Forests 2025, 16(4), 645; https://doi.org/10.3390/f16040645 - 8 Apr 2025
Viewed by 623
Abstract
In Mediterranean ecosystems, a thorough understanding of seedling regeneration dynamics as well as a good predictive ability of the process is essential for sustainable forest management. Leveraging the predictive capacity of the multilayer perceptron (MLP) as recognized as artificial intelligence methodology, the authors [...] Read more.
In Mediterranean ecosystems, a thorough understanding of seedling regeneration dynamics as well as a good predictive ability of the process is essential for sustainable forest management. Leveraging the predictive capacity of the multilayer perceptron (MLP) as recognized as artificial intelligence methodology, the authors analyzed a real case study with a dataset encompassing environmental, ecological, and forestry variables. The study focused on the cork oak (Quercus suber, L.) seedling regeneration dynamic, which is a critical process for maintaining ecosystem resilience. A set of 10 MLP with a block from 5 to 50 neurons with hyperbolic tangent (TanH), linear (LIN), and Gaussian (GAUS) activation function were tested and their performance for predictive purposes was compared with traditional quantitative approaches. The MLP configured with 40–50 neurons per activation function (TanH, LIN, GAUS) demonstrated outstanding predictive performance, achieving an area under the curve (AUC) of the receiver operating characteristic and precision-recall scores above 0.80. These models made few prediction errors, effectively explaining the majority of the data variance, as indicated by a high generalized R2 and a low mislearning ratio. This approach outperformed traditional statistical models in predicting seedling regeneration. Tree density, stand density index, and acorn number played an important role, influencing the cork oak seedling prediction. In conclusion, the results of this research determined the importance of an AI classification modeling technique in the prediction of cork oak regeneration, providing practical references for future forest management strategy decisions. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

14 pages, 8900 KiB  
Article
Genome-Wide Identification of β-Ketoacyl CoA Synthase Gene Family in Melon (Cucumis melo L.) and Its Expression Analysis in Autotoxicity, Saline-Alkali, and Microplastic Exposure Environments
by Lizhen Zhang, Mingcheng Wang, Xianhuan Tang, Xinyue Yang, Zhizhong Zhang and Jinghua Wu
Curr. Issues Mol. Biol. 2025, 47(3), 195; https://doi.org/10.3390/cimb47030195 - 16 Mar 2025
Viewed by 696
Abstract
β-ketoacyl CoA synthase (KCS) is a key enzyme in the synthesis of long-chain fatty acids. It affects plant stress resistance by regulating the chain length of fatty acid elongation products, the wax deposition in plant epidermis, and the formation of suberization layers. Through [...] Read more.
β-ketoacyl CoA synthase (KCS) is a key enzyme in the synthesis of long-chain fatty acids. It affects plant stress resistance by regulating the chain length of fatty acid elongation products, the wax deposition in plant epidermis, and the formation of suberization layers. Through a comprehensive, genome-wide analysis, we identified members of the melon KCS (CmKCS) family and characterized their sequence features, phylogenetic relationships, and expression profiles under three abiotic stress conditions, employing bioinformatics tools and methods. Fifteen CmKCSs were identified in the melon genome and found to be unevenly distributed across eight chromosomes. The subcellular localization of most members is located on the cytoplasmic membrane and chloroplasts. The CmKCS family amplifies its members in a tandem repeat manner, which is more closely related to the cucumber KCS and has similar gene functions. Subfamilies I, IV, and VI exhibit variations in conserved domain sequences, which may indicate specific functional differentiation. The promoter region harbors various cis-acting elements related to plant hormones and abiotic stress responses. Among these, the most abundant are elements responsive to abscisic acid, methyl jasmonate, salicylic acid, and anaerobic induction. CmKCS5, CmKCS6, CmKCS10, and CmKCS12 showed high expression in autotoxicity, saline-alkali stress, and microplastic exposure environments. These four CmKCSs may play important roles in melon development and stress response. In conclusion, this study provides a comprehensive analysis of the CmKCS gene family, revealing its potential roles in melon’s response to abiotic stresses and laying a foundation for further functional characterization of these genes in stress tolerance mechanisms. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 3710 KiB  
Article
Delayed Vegetation Mortality After Wildfire: Insights from a Mediterranean Ecosystem
by Giulia Calderisi, Ivo Rossetti, Donatella Cogoni and Giuseppe Fenu
Plants 2025, 14(5), 730; https://doi.org/10.3390/plants14050730 - 27 Feb 2025
Cited by 2 | Viewed by 1479
Abstract
Wildfires, one of the most important ecological disturbances, influence the composition and dynamics of ecosystems all around the world. Changes in fire regimes brought on by climate change are making their effects worse by increasing the frequency and size of fires. This study [...] Read more.
Wildfires, one of the most important ecological disturbances, influence the composition and dynamics of ecosystems all around the world. Changes in fire regimes brought on by climate change are making their effects worse by increasing the frequency and size of fires. This study examined the issue of delayed mortality at the species and community levels, concentrating on Mediterranean forests dominated by Quercus ilex and Quercus suber. This research examined areas lacking spectral recovery following a megafire, which, although relatively small compared to the total burned area, represented significant ecological disturbances. The results highlighted distinct post-fire dynamics at both the woodland and species levels. Q. ilex experienced higher delayed mortality, particularly in areas of lower fire severity (NR), likely due to increased intra-specific competition. Because of its thick bark, which offers stronger fire resistance and encourages regeneration even in high-severity fire zones (HR), Q. suber showed greater resilience. Responses from the shrub layer varied, and some species, such as Pteridium aquilinum and Cytisus villosus, showed post-fire proliferation. To improve our knowledge of ecosystem resilience and guide forest management in fire-prone areas, these findings highlight the intricacy of post-fire ecological processes and the need to integrate species-specific features with more general community-level patterns. Full article
Show Figures

Figure 1

17 pages, 7353 KiB  
Article
Multifluid Metabolomics Identifies Novel Biomarkers for Irritable Bowel Syndrome
by Daniel Kirk, Panayiotis Louca, Ilias Attaye, Xinyuan Zhang, Kari E. Wong, Gregory A. Michelotti, Mario Falchi, Ana M. Valdes, Frances M. K. Williams and Cristina Menni
Metabolites 2025, 15(2), 121; https://doi.org/10.3390/metabo15020121 - 12 Feb 2025
Cited by 2 | Viewed by 1734
Abstract
Background/Objectives: Irritable bowel syndrome (IBS) is a complex disorder affecting 10% of the global population, but the underlying mechanisms remain poorly understood. By integrating multifluid metabolomics, we aimed to identify metabolite markers of IBS in a large population-based cohort. Methods: We [...] Read more.
Background/Objectives: Irritable bowel syndrome (IBS) is a complex disorder affecting 10% of the global population, but the underlying mechanisms remain poorly understood. By integrating multifluid metabolomics, we aimed to identify metabolite markers of IBS in a large population-based cohort. Methods: We included individuals from TwinsUK with and without IBS, ascertained using the Rome III criteria, and analysed serum (232 cases, 1707 controls), urine (185 cases, 1341 controls), and stool (186 cases, 1284 controls) metabolites (Metabolon Inc.). Results: After adjusting for covariates, and multiple testing, 44 unique metabolites (25 novel) were associated with IBS, including lipids, amino acids, and xenobiotics. Androsterone sulphate, a sulfated steroid hormone precursor, was associated with lower odds of IBS in both urine (0.69 [95% confidence interval = 0.56–0.85], p = 2.34 × 10−4) and serum (0.75 [0.63–0.90], p = 1.54 × 10−3. Moreover, suberate (C8-DC) was associated with higher odds of IBS in serum (1.36 [1.15–1.61]; p = 1.84 × 10−4) and lower odds of IBS in stool (0.76 [0.63–0.91]; p = 2.30 × 10−3). On the contrary, 32 metabolites appeared to be fluid-specific, including indole, 13-HODE + 9-HODE, pterin, bilirubin (E,Z or Z,Z), and urolithin. The remaining 10 metabolites were associated with IBS in one fluid with suggestive evidence (p < 0.05) in another fluid. Finally, we identified androgenic signalling, dicarboxylates, haemoglobin, and porphyrin metabolism to be significantly over-represented in individuals with IBS compared to controls. Conclusions: Our results highlight the utility of a multi-fluid approach in IBS research, revealing distinct metabolic signatures across biofluids. Full article
(This article belongs to the Special Issue Advances in Metabolomics and Multi-Omics Integration)
Show Figures

Figure 1

15 pages, 3459 KiB  
Article
Analysis of Crown and Root Orientation of Quercus suber in Relation to the Irrigation System Using a Magnetic Digitizer
by Kristýna Šleglová, Constança Camilo-Alves, Ana Poeiras, João Ribeiro, Nuno de Almeida Ribeiro and Peter Surový
Agronomy 2025, 15(2), 373; https://doi.org/10.3390/agronomy15020373 - 30 Jan 2025
Viewed by 845
Abstract
This study investigates the effect of the spatial distribution of soil water and nutrients on cork oak (Quercus suber) architecture. Fertirrigation is being tested in cork oak plantations to accelerate tree growth up to the production stage. To assess the impact [...] Read more.
This study investigates the effect of the spatial distribution of soil water and nutrients on cork oak (Quercus suber) architecture. Fertirrigation is being tested in cork oak plantations to accelerate tree growth up to the production stage. To assess the impact of wet bulb location on tree development, six trees (three subjected to subsurface drip irrigation and three controls) were fully excavated at a sandy soil site, along with a seventh tree subjected to surface drip irrigation at a sandy loam soil site. The aerial parts of the trees were digitized using a Polhemus Fastrak magnetic digitizer and segmented into orders starting from the main trunk. Roots with diameters greater than 0.5 cm were digitized during excavation and segmented by size and order from the root collar. For each segment, length, orientation, and spatial location were calculated. General linear models were then applied to compare total root length across orientation and quadrant classes. Crown architecture was influenced by factors such as light competition. Irrigation treatments did not significantly affect root architecture when wet bulb formation was constrained. However, tree no. 7 had 50% of its total root length located within the wet bulb quadrant. These findings suggest that differences in soil type and irrigation method influence wet bulb formation, potentially reducing the impact of fertirrigation on root architecture. Strategies to minimize tree dependence on wet bulb zones are crucial for enabling future irrigation suppression. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

17 pages, 6888 KiB  
Article
Seasonal Dynamics of Periderm Maintenance and Phellogen Re-Initiation in Aesculus hippocastanum
by Anna Brzostowska, Edyta M. Gola and Elżbieta Myśkow
Forests 2025, 16(1), 176; https://doi.org/10.3390/f16010176 - 18 Jan 2025
Cited by 1 | Viewed by 1142
Abstract
The periderm plays a crucial role in trees, acting as a barrier protecting internal tissues against biotic and abiotic stresses, thus having an impact on tree physiology, ecology, and general performance. It consists of the meristematic phellogen, whose activity gives rise to suberized [...] Read more.
The periderm plays a crucial role in trees, acting as a barrier protecting internal tissues against biotic and abiotic stresses, thus having an impact on tree physiology, ecology, and general performance. It consists of the meristematic phellogen, whose activity gives rise to suberized phellem (cork) cells outwardly and the parenchymatous phelloderm inwardly. Despite the periderm importance, intra-annual and seasonal changes in phellogen activity and phellem and phelloderm differentiation are poorly recognized. Therefore, we aimed to compare periderm development and functioning in successive years in horse chestnut, utilizing standard histological methods. We distinguished six stages of periderm development, including phellogen initiation and the differentiation of its derivatives. In the following years, the phellogen was active for a similar period, but produced fewer derivative cells. Importantly, some phellogen cells lost their meristematic characteristics before the end of the season and differentiated into phellem. To maintain periderm integrity, the remaining phelloderm cells underwent divisions, leading to phellogen re-initiation. Alternatively, when all periderm cells differentiated into the phellem, the new (subsidiary) phellogen originated from the underneath collenchyma. We postulate that phellogen re-initiation could be a mechanism ensuring the functional integrity of the periderm and discuss the role of phelloderm or collenchyma cells in this process. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

16 pages, 1892 KiB  
Article
Morphological and Chemical Changes in the Hemolymph of the Wax Moth Galleria mellonella Infected by the Entomopathogenic Fungus Conidiobolus coronatus
by Mieczysława Irena Boguś, Agata Kaczmarek, Anna Katarzyna Wrońska, Mikołaj Drozdowski, Lena Siecińska, Ewelina Mokijewska and Marek Gołębiowski
Pathogens 2025, 14(1), 38; https://doi.org/10.3390/pathogens14010038 - 7 Jan 2025
Viewed by 1088
Abstract
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected [...] Read more.
Hemolymph enables communication between organs in insects and ensures necessary coordination and homeostasis. Its composition can provide important information about the physiological state of an insect and can have diagnostic significance, which might be particularly important in the case of harmful insects subjected to biological control. Galleria mellonella Linnaeus 1758 (Lepidoptera: Pyralidae) is a global pest to honey bee colonies. The hemolymph of its larvae was examined after infection with the soil fungus Conidiobolus coronatus (Constantin) Batko 1964 (Entomophthorales). It was found that after one hour of contact with the fungus, the volume of the hemolymph increased while its total protein content decreased. In larvae with a high pathogen load, just before death, hemolymph volume decreased to nearly initial levels, while total protein content and synthesis (incorporation of 35S-labeled methionine) increased. The hemolymph polypeptide profile (SDS-PAGE followed by autoradiography) of infected insects was significantly different from that of healthy larvae. Hemocytes of infected larvae did not surround the fungal hyphae, although they encapsulated small foreign bodies (phase contrast microscopy). Infection had a negative effect on hemocytes, causing oenocyte and spherulocyte deformation, granulocyte degranulation, plasmatocyte vacuolization, and hemocyte disintegration. GC-MS analysis revealed the presence of 21 compounds in the hemolymph of control insects. C. coronatus infection caused the appearance of 5 fatty acids absent in healthy larvae (heptanoic, decanoic, adipic, suberic, tridecanoic), the disappearance of 4 compounds (monopalmitoylglycerol, monooleoylglycerol, monostearin, and cholesterol), and changes in the concentrations of 8 compounds. It remains an open question whether substances appearing in the hemolymph of infected insects are a product of the fungus or if they are released from the insect tissues damaged by the growing hyphae. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

Back to TopTop