Seasonal Dynamics of Periderm Maintenance and Phellogen Re-Initiation in Aesculus hippocastanum
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling, Section Preparation, and Microscopic Observation
2.3. Estimating the Phellogen Activity
3. Results
3.1. Initiation of the Phellogen and Its Activity in the First Year
3.2. Initiation of the Subsidiary Phellogen and Its Activity
3.3. Phellogen Activity and Periderm Development in 2- and 3-Year-Old Stems
3.4. Periderm Development in Old Trunks
3.5. Structure of the Thick U-Shaped Cell Wall of the Phellem Cells
4. Discussion
5. Conclusions
- Meristematic phellogen cells are not permanent and can be replaced by new ones, re-initiated from the phelloderm or collenchyma cells. Together with the subsidiary phellogen initiation, both mechanisms play a crucial role in the maintenance of the periderm integrity.
- Only 1–2 phelloderm cells are formed per year, suggesting their role as a source for meristematic cell re-initiation.
- The phellogen is active for a short time during the vegetative season; its activity changes seasonally, with the intensive divisions in the first year and the decrease in activity in consecutive years.
- The differentiation of the periderm cells changes intra-annually, with six developmental stages distinguished in the first year of periderm development and upon the re-initiation of the phellogen from living cells of the secondary phloem. However, in consecutive years, the developmental program is shortened, and only one type of phellem cell, with the U-shaped secondary cell wall, is formed.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lev-Yadun, S. Bark. eLS 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Grünhofer, P.; Schreiber, L. Humboldt Review: Cutinized and suberized barriers in leaves and roots: Similarities and differences. J. Plant Physiol. 2023, 282, 153921. [Google Scholar] [CrossRef] [PubMed]
- Serra, O.; Mähönen, A.P.; Hetherington, A.J.; Ragni, L. The making of plant armor: The periderm. Ann. Rev. Plant Biol. 2022, 20, 405–432. [Google Scholar] [CrossRef]
- Ohse, M.; Irohara, R.; Iizuka, E.; Arakawa, I.; Kitin, P.; Funada, R.; Nakaba, S. Sequent periderm formation and changes in the cellular contents of phloem parenchyma during rhytidome development in Cryptomeria japonica. J. Wood Sci. 2022, 68, 19. [Google Scholar] [CrossRef]
- Angyalossy, V.; Pace, M.R.; Evert, R.F.; Marcati, C.R.; Oskolski, A.A.; Terrazas, T.; Kotina, E.; Lens, F.; Mazzoni-Viveiros, S.C.; Angeles, G.; et al. IAWA list of microscopic bark features. IAWA J. 2016, 37, 517–615. [Google Scholar] [CrossRef]
- Arzee, T.; Waisel, Y.; Liphschitz, N. Periderm development and phellogen activity in the shoots of Acacia raddiana Savi. New Phytol. 1970, 69, 395–398. [Google Scholar] [CrossRef]
- Patel, R.N. Bark anatomy of radiata pine, corsican pine, and douglas fir grown in New Zealand. N. Z. J. Bot. 1975, 13, 149–167. [Google Scholar] [CrossRef]
- Chang, Y.P. Bark Structure of North American Conifers; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Godkin, S.E.; Grozdits, G.A.; Keith, C.T. The periderms of three north American conifers: Part 2: Fine structure. Wood Sci. Technol. 1983, 17, 13–30. [Google Scholar] [CrossRef]
- Teixeira, R.T. Cork development: What lies within. Plants 2022, 11, 2671. [Google Scholar] [CrossRef] [PubMed]
- Grozdits, G.A.; Godkin, S.E.; Keith, C.T. The periderms of three North American conifers: Part 1: Anatomy. Wood Sci. Technol. 1982, 16, 305–316. [Google Scholar] [CrossRef]
- Myśkow, E. Occurrence of atypical phellem in representatives of Cornus. Int. J. Plant Sci. 2014, 175, 328–335. [Google Scholar] [CrossRef]
- Gričar, J.; Jagodic, Š.; Prislan, P. Structure and subsequent seasonal changes in the bark of sessile oak (Quercus petraea). Trees 2015, 29, 747–757. [Google Scholar] [CrossRef]
- Caritat, A.; Gutiérrez, E.; Molinas, M. Influence of weather on cork-ring width. Tree Physiol. 2000, 20, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Trockenbrodt, M. Survey and discussion of the terminology used in bark anatomy. IAWA J. 1990, 11, 141–166. [Google Scholar] [CrossRef]
- Arzee, T.; Liphschitz, N.; Waisel, Y. The origin and development of the phellogen in Robinia pseudoaccacia L. New Phytol. 1968, 67, 87–93. [Google Scholar] [CrossRef]
- Wacowska, M.; Tarkowska, J.A. Ontogenesis and structure of phelloid in Viburnum opulus L. Acta Soc. Bot. Pol. 1983, 52, 107–114. [Google Scholar] [CrossRef]
- Graça, J.; Pereira, H. The periderm development in Quercus suber. IAWA J 2004, 25, 325–335. [Google Scholar] [CrossRef]
- Wacowska, M. Ontogenesis and structure of periderm in Acer negundo L. and × Fatshedera lizei Guillaum. Acta Soc. Bot. Pol. 1985, 54, 17–27. [Google Scholar] [CrossRef]
- Słupianek, A.; Wojtuń, B.; Myśkow, E. Origin, activity and environmental acclimation of stem secondary tissues of the polar willow (Salix polaris) in high-Arctic Spitsbergen. Polar Biol. 2019, 42, 759–770. [Google Scholar] [CrossRef]
- Arzee, T.; Arbel, E.; Cohen, L. Ontogeny of periderm and phellogen activity in Ceratonia siliqua L. Bot. Gaz. 1977, 138, 329–333. [Google Scholar] [CrossRef]
- Arbel, E.; Arzee, T. Development of peripheral periderm from cork strips in Ceratonia siliqua. Can. J. For. Res. 1976, 6, 425–428. [Google Scholar] [CrossRef]
- Boher, P.; Soler, M.; Sánchez, A.; Hoede, C.; Noirot, C.; Paiva, J.A.P.; Serra, O.; Figueras, M. A comparative transcriptomic approach to understanding the formation of cork. Plant Mol. Biol. 2018, 96, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Woolfson, K.N.; Esfandiari, M.; Bernards, M.A. Suberin biosynthesis, assembly, and regulation. Plants 2022, 11, 555. [Google Scholar] [CrossRef]
- Campilho, A.; Nieminen, K.; Ragni, L. The development of the periderm: The final frontier between a plant and its environment. Curr. Opin. Plant Biol. 2020, 53, 10–14. [Google Scholar] [CrossRef]
- Wunderling, A.; Ripper, D.; Barra-Jimenez, A.; Mahn, S.; Sajak, K.; Targem, M.B.; Ragni, L. A molecular framework to study periderm formation in Arabidopsis. New Phytol. 2018, 219, 216–229. [Google Scholar] [CrossRef] [PubMed]
- Caritat, A.; Molinas, M.; Gutierrez, E. Annual cork-ring width variability of Quercus suber L. in relation to temperature and precipitation (Extremadura, southwestern Spain). For. Ecol. Managem. 1996, 86, 113–120. [Google Scholar] [CrossRef]
- Costa, A.; Graça, J.; Barbosa, I.; Spiecker, H. Effect of climate on cork-ring width and density of Quercus suber L. in Southern Portugal. Trees 2022, 36, 1711–1720. [Google Scholar] [CrossRef]
- Shibui, H.; Sano, Y. Structure and formation of phellem of Betula maximowicziana. IAWA J. 2018, 39, 18–36. [Google Scholar] [CrossRef]
- Waisel, Y.; Liphschitz, N.; Arzee, T. Phellogen activity in Robinia pseudacacia L. New Phytol. 1995, 66, 331–335. [Google Scholar] [CrossRef]
- Lack, H.W. The discovery and rediscovery of the horse chestnut. Arnoldia 2002, 61, 15–19. [Google Scholar] [CrossRef]
- Petrova, S.; Yurukova, L.; Velcheva, I. Horse chestnut (Aesculus hippocastanum L.) as a biomonitor of air pollution in the town of Plovdiv (Bulgaria). J. BioSci. Biotech. 2012, 1, 241–247. [Google Scholar]
- Chonova, P.; Gecheva, G.M.; Gribacheva, P. Air pollution biomonitoring in urban ecosystems with Aesculus hippocastanum. Ecol. Balk. 2019, 11, 85–92. [Google Scholar]
- Konarska, A.; Grochowska, M.; Haratym, W.; Tietze, M.; Weryszko-Chmielewska, E.; Lechowski, L. Changes in Aesculus hippocastanum leaves during development of Cameraria ohridella. Urban For. Urban Green. 2020, 56, 126793. [Google Scholar] [CrossRef]
- Idris, S.; Mishra, A.; Khustar, M. Phytochemical, ethanomedicinal and pharmacological applications of escin from Aesculus hippocastanum L. towards future medicine. J. Basic Clin. Physiol. Pharmacol. 2020, 31, 20190115. [Google Scholar] [CrossRef] [PubMed]
- Owczarek, A.; Kolodziejczyk-Czepas, J.; Woźniak-Serwata, J.; Magiera, A.; Kobiela, N.; Wąsowicz, K.; Olszewska, M.A. Potential activity mechanisms of Aesculus hippocastanum bark: Antioxidant effects in chemical and biological in vitro models. Antioxidants 2021, 10, 995. [Google Scholar] [CrossRef]
- Myśkow, E.; Sokołowska, K.; Słupianek, A.; Gryc, V. Description of intra-annual changes in cambial activity and differentiation of secondary conductive tissues of Aesculus hippocastanum trees affected by the leaf miner Cameraria ohridella. Forests 2021, 12, 1537. [Google Scholar] [CrossRef]
- Ruzin, S.E. Plant Microtechnique and Microscopy; Oxford University Press Inc.: New York, NY, USA, 1999. [Google Scholar]
- Rossi, S.; Anfodillo, T.; Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 2006, 27, 89–97. [Google Scholar] [CrossRef]
- Schreiber, L.; Franke, R.; Hartmann, K. Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration. Planta 2005, 220, 520–530. [Google Scholar] [CrossRef]
- Surový, P.; Olbrich, A.; Polle, A.; Ribeiro, N.A.; Sloboda, B.; Langenfeld−Heyser, R. A new method for measurement of annual growth rings in cork by means of autofluorescence. Trees 2009, 23, 1237–1246. [Google Scholar] [CrossRef]
- Meyer, C.J.; Peterson, C.A. Casparian bands occur in the periderm of Pelargonium hortorum stem and root. Ann. Bot. 2011, 107, 591–598. [Google Scholar] [CrossRef]
- Rains, M.K.; Gardiyehewa de Silva, N.D.; Molina, I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. Tree Physiol. 2018, 38, 340–361. [Google Scholar] [CrossRef] [PubMed]
- Słupianek, A.; Kasprowicz-Maluśki, A.; Myśkow, E.; Turzańska, M.; Sokołowska, K. Endocytosis acts as transport pathway in wood. New Phytol. 2019, 222, 1846–1861. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K. . Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J. Ultrastruct. Res. 1984, 86, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963, 17, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Forner, N.; Vieira, J.; Nabais, C.; Carvalho, A.; Martínez-Vilalta, J.; Campelo, F. Climatic and physiological regulation of the bimodal xylem formation pattern in Pinus pinaster saplings. Tree Physiol. 2019, 39, 2008–2018. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Rossi, S.; Deslauriers, A.; Liu, J. Contrasting strategies of xylem formation between black spruce and balsam fir in Quebec, Canada. Tree Physiol. 2019, 39, 747–754. [Google Scholar] [CrossRef]
- Yu, B.; Rossi, S.; Su, H.; Zhao, P.; Zhang, S.; Hu, B.; Li, X.; Chen, L.; Liang, H.; Huang, J.-G. Mismatch between primary and secondary growth and its consequences on wood formation in Qinghai spruce. Tree Physiol. 2023, 43, 1886–1902. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S. Climatic influence on tree wood anatomy: A review. J. Wood Sci. 2021, 67, 24. [Google Scholar] [CrossRef]
- Groover, A. The vascular cambium revisited. IAWA J. 2023, 44, 531–538. [Google Scholar] [CrossRef]
- Golinowski, W.O. The anatomical structure of the common fir (Abies alba Mill.) bark. I. Development of bark tissues. Acta Soc. Bot. Pol. 1971, 40, 149–181. [Google Scholar] [CrossRef]
- Rosner, S.; Morris, H. Breathing life into trees: The physiological and biomechanical functions of lenticels. IAWA J. 2022, 43, 234–262. [Google Scholar] [CrossRef]
- Faustino, A.; Pires, R.C.; Marum, L. Periderm differentiation: A cellular and molecular approach to cork oak. Trees 2023, 37, 627–639. [Google Scholar] [CrossRef]
- Graça, J. Suberin: The biopolyester at the frontier of plants. Front. Chem. 2015, 3, 62. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.T.; Pereira, H. Suberized cell walls of cork from cork oak differ from other species. Microsc. Microanal. 2010, 16, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Evert, R.F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body—Their Structure, Function, and Development, 3rd ed.; John Wiley & Sons. Inc.: Hoboken, NJ, USA, 2005.
- POWO Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. 2025, Published on the Internet. Available online: https://powo.science.kew.org/ (accessed on 11 January 2025).
- Zagórska-Marek, B.; Turzańska, M. Clonal analysis provides evidence for transient initial cells in shoot apical meristems of seed plants. J. Plant Growth Regul. 2000, 19, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Gola, E.M.; Jernstedt, J.A. Impermanency of initial cells in Huperzia lucidula (Huperziaceae) shoot apices. Int. J. Plant Sci. 2011, 172, 847–855. [Google Scholar] [CrossRef]
- Klekowski, E.J. Plant clonality, mutation, diplontic selection and mutational meltdown. Biol. J. Linn. Soc. 2003, 79, 61–67. [Google Scholar] [CrossRef]
- Burian, A. Does shoot apical meristem function as the germline in safeguarding against excess of mutations? Front. Plant Sci. 2021, 12, 707740. [Google Scholar] [CrossRef]
- Chrabąszcz, M.; Mróz, L. Tree bark, a valuable source of information on air quality. Pol. J. Environ. Stud. 2017, 26, 453–466. [Google Scholar] [CrossRef]
- Klink, A.; Polechońska, L.; Dambiec, M.; Białas, K. A comparative study on macro- and microelement bioaccumulation properties of leaves and bark of Quercus petraea and Pinus sylvestris. Arch. Environ. Contam. Toxicol. 2018, 74, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Caldana, C.R.G.; Hanai-Yoshida, V.M.; Paulino, T.H.; Baldo, D.A.; Freitas, N.P.; Aranha, N.; Vila, M.D.C.; Balcão, V.M.; Oliveira, J.M. Evaluation of urban tree barks as bioindicators of environmental pollution using the X-ray fluorescence technique. Chemosphere 2023, 312, 137257. [Google Scholar] [CrossRef] [PubMed]
- Krzesłowska, M.; Goliński, P.; Szostek, M.; Mocek-Płóciniak, A.; Drzewiecka, A.; Piechalak, A.; Ilek, A.; Neumann, U.; Timmers, A.C.J.; Budzyńska, S.; et al. Morphology and physiology of plants growing on highly polluted mining wastes. In Phytoremediation for Environmental Sustainability; Prasad, R., Ed.; Springer: Singapore, 2021; pp. 151–200. [Google Scholar] [CrossRef]
- Araminienė, V.; Sicard, P.; Černiauskas, V.; Coulibaly, F.; Varnagirytė-Kabašinskienė, I. Estimation of air pollution removal capacity by urban vegetation from very high-resolution satellite images in Lithuania. Urban Clim. 2023, 51, 101594. [Google Scholar] [CrossRef]
- Romberger, J.A.; Hejnowicz, Z.; Hill, J.F. Plant structure: Function and development. In A Treatise on Anatomy and Vegetative Development, with Special Reference to Woody Plants; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1993. [Google Scholar]
- Zagórska-Marek, B. Plant meristems and their patterns. In Pattern Formation in Biology, Vision and Dynamics; Carbone, A., Gromov, M., Prusinkiewicz, P., Eds.; World Scientific Publishing: Hackensack, NJ, USA, 2000; pp. 217–239. [Google Scholar] [CrossRef]
- Zagórska-Marek, B. Pseudotransverse divisions and intrusive elongation of fusiform initials in storeyed cambium of Tilia. Can. J. Bot. 1984, 62, 20–27. [Google Scholar] [CrossRef]
- Kojs, P.; Rusin, A.; Iqbal, M.; Włoch, W.; Jura, J. Readjustments of cambial initials in Wisteria floribunda (Willd.) DC. for development of storeyed structure. New Phytol. 2004, 163, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Myśkow, E.; Zagórska-Marek, B. Ontogenetic development of storied ray pattern in cambium of Hippophaë rhamnoides L. Acta Soc. Bot. Pol. 2004, 73, 93–101. [Google Scholar] [CrossRef]
- Myśkow, E.; Zagórska-Marek, B. Vertical migration of rays leads to the development of a double- storied phenotype in the cambium of Aesculus turbinata. Botany 2008, 86, 36–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzostowska, A.; Gola, E.M.; Myśkow, E. Seasonal Dynamics of Periderm Maintenance and Phellogen Re-Initiation in Aesculus hippocastanum. Forests 2025, 16, 176. https://doi.org/10.3390/f16010176
Brzostowska A, Gola EM, Myśkow E. Seasonal Dynamics of Periderm Maintenance and Phellogen Re-Initiation in Aesculus hippocastanum. Forests. 2025; 16(1):176. https://doi.org/10.3390/f16010176
Chicago/Turabian StyleBrzostowska, Anna, Edyta M. Gola, and Elżbieta Myśkow. 2025. "Seasonal Dynamics of Periderm Maintenance and Phellogen Re-Initiation in Aesculus hippocastanum" Forests 16, no. 1: 176. https://doi.org/10.3390/f16010176
APA StyleBrzostowska, A., Gola, E. M., & Myśkow, E. (2025). Seasonal Dynamics of Periderm Maintenance and Phellogen Re-Initiation in Aesculus hippocastanum. Forests, 16(1), 176. https://doi.org/10.3390/f16010176