Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = subduction earthquake

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9577 KiB  
Entry
Geodynamics of the Mediterranean Region: Primary Role of Extrusion Processes
by Enzo Mantovani, Marcello Viti, Caterina Tamburelli and Daniele Babbucci
Encyclopedia 2025, 5(3), 97; https://doi.org/10.3390/encyclopedia5030097 - 7 Jul 2025
Viewed by 444
Definition
Tectonic activity in the Mediterranean region has been driven by the convergence of the confining plates (Nubia, Arabia and Eurasia). This convergence has been accommodated by the consumption of the oceanic domains that were present in the late Oligocene. It is suggested that [...] Read more.
Tectonic activity in the Mediterranean region has been driven by the convergence of the confining plates (Nubia, Arabia and Eurasia). This convergence has been accommodated by the consumption of the oceanic domains that were present in the late Oligocene. It is suggested that this process has been enabled by the lateral escape of orogenic belts in response to constrictional contexts. Where this condition was not present, subduction did not occur. This interpretation can plausibly and coherently account for the very complex pattern of tectonic processes in the whole area since the early Miocene. It is also suggested, by providing some examples, that the geodynamic context proposed here might help us to recognize the connection between the ongoing tectonic processes and the spatio-temporal distribution of past major earthquakes. A discussion is then reported about the incompatibilities of the main alternative geodynamic interpretation (slab pull) with the observed deformation pattern. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

17 pages, 35407 KiB  
Article
Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity
by Xiao Li, Xuanjie Zhang, Wan Zhang, Ruohan Wu, Yanyun Sun, Guotao Yao and Huaichun Wu
Appl. Sci. 2025, 15(10), 5564; https://doi.org/10.3390/app15105564 - 15 May 2025
Viewed by 556
Abstract
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the [...] Read more.
Hainan Island and its surrounding seabed are located at the intersection of the Eurasian, Indochina, and South China Sea tectonic plates with active Quaternary volcanism and intensive seismicity, such as the 7.6-magnitude earthquake that occurred in northern Hainan in 1605. Based on the newest airborne gravity data of Hainan Island and its adjacent areas, this paper uses wavelet multiscale decomposition followed by power spectral analysis to estimate the average depth of each layer of the source field. We use the Parker–Oldenburg method to invert the Moho structure, incorporating constraints from seismic data to investigate the fine crustal structure and deformation characteristics to elucidate the deep seismogenic mechanism. The regional Moho depth decreases from 30 km in the northwest to 16 km in the southeast. The map of the Moho surface shows three Moho uplift zones, located in the northern Hainan Island, the southern Qiongdongnan Basin, and the southwestern tip of Hainan Island. The following findings are revealed: Firstly, a series of northeastward high-gravity anomaly strips are discovered for the first time in the middle and lower crust of Hainan Island, which may be the remnants within the continental crust of the ancient Pacific northwestward subduction during the Mesozoic era. Secondly, under the Leiqiong volcanic rocks, there is a pronounced northeastward high-value anomaly and shallower Moho depth, which may indicate the deep-seated mantle material that rose and intruded during the activity of the Hainan mantle plume. Thirdly, the seismogenic structure is discussed by combining the wavelet multiscale decomposition results with natural seismic data. The results show that earthquakes occur in the place where the NE-trending gravity anomaly is cut by the NW-trending fault in the upper crust. That place also lies in the gravity anomaly gradient or high-value anomaly in the middle and lower crust. These features reveal that the earthquakes on Hainan Island are controlled by the left strike-slip activity of the Red River Fault and deep mantle upwelling caused by Hainan Plume. Full article
Show Figures

Figure 1

26 pages, 3923 KiB  
Article
Loss and Downtime Assessment of RC Dual Wall–Frame Office Buildings Toward Resilient Seismic Performance
by Marco F. Gallegos, Gerardo Araya-Letelier, Diego Lopez-Garcia and Carlos Molina Hutt
Sustainability 2025, 17(3), 1200; https://doi.org/10.3390/su17031200 - 2 Feb 2025
Viewed by 1189
Abstract
This study quantitatively assesses the impact of seismic design strategies on the performance of reinforced concrete (RC) dual wall–frame office buildings by comparing direct and indirect economic losses and downtime in life-cycle terms. A high-rise archetype building located in Santiago, Chile, on stiff [...] Read more.
This study quantitatively assesses the impact of seismic design strategies on the performance of reinforced concrete (RC) dual wall–frame office buildings by comparing direct and indirect economic losses and downtime in life-cycle terms. A high-rise archetype building located in Santiago, Chile, on stiff soil was evaluated as a benchmark case study. Three design strategies to potentially enhance the seismic performance of a building designed conventionally were explored: (i) incorporating fluid viscous dampers (FVDs) in the lateral load-resisting structure; (ii) replacing conventional non-structural components with enhanced ones (ENCs); and (iii) a combination of the previous two strategies. First, probabilistic structural responses were estimated through incremental dynamic analyses using three-dimensional nonlinear models of the archetypes subjected to a set of hazard-consistent Chilean ground motions. Second, FEMA P-58 time-based assessment was conducted to estimate expected annual losses (EALs) for economic loss estimation. Finally, for downtime assessment, a novel probabilistic framework, built on the FEMA P-58 methodology and the REDi guidelines, was employed to estimate the expected annual downtimes (EADs) to achieve specific target recovery states, such as reoccupancy (RO) and functional recovery (FR). Results revealed that seismically enhancing RC dual wall–frame buildings with FVDs significantly improves resilience by reducing loss and downtime. For example, the enhanced building with FVDs achieved an EAL of 0.093% and EAL of 8.6 days for FR, compared to the archetype base building without design improvements, which exhibited an EAL of 0.125% and an EAD of 9.5 days for FR. In contrast, the impact of ENCs alone was minor, compared to the effect of FVDs, with an EAL of 0.106% and an EAD of 9.1 days for FR. With this detailed recovery modeling, probabilistic methods, and a focus on intermediate recovery states, this framework represents a significant advancement in resilience-based seismic design and recovery planning. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

27 pages, 27726 KiB  
Review
Crustal and Upper Mantle Structure of the Assam Valley Region, NE India: A Review of Geophysical Findings
by Ilya Lozovsky, Ivan Varentsov and Devesh Walia
Geosciences 2025, 15(1), 27; https://doi.org/10.3390/geosciences15010027 - 12 Jan 2025
Cited by 1 | Viewed by 1925
Abstract
The northeastern region of India is one of the six most seismically active convergent plate tectonic areas in the world. The north–south convergence along the Indo-Tibetan Himalayan Ranges and the east–west subduction within the Indo-Burma Ranges create a complex stress regime, resulting in [...] Read more.
The northeastern region of India is one of the six most seismically active convergent plate tectonic areas in the world. The north–south convergence along the Indo-Tibetan Himalayan Ranges and the east–west subduction within the Indo-Burma Ranges create a complex stress regime, resulting in significant seismic activity and a history of great/large earthquakes. The region’s intricate strain patterns, active faults, and potential seismic gaps underscore the need for detailed subsurface studies to effectively assess seismic hazards and impending seismicity. Geophysical research is essential for understanding the region’s geodynamic evolution, seismotectonics, and mineral resources. This manuscript reviews the geological and tectonic settings of the region and summarizes recent geophysical studies, including seismic, gravity, magnetic, and magnetotelluric surveys conducted in the Assam Valley and adjacent areas (within latitudes 24.5–28.5° N and longitudes 89–97.5° E). The review highlights key findings on hydrocarbon-bearing sediments, the configuration of the crystalline basement, the heterogeneous structures of the crust and upper mantle, and seismic discontinuities. By synthesizing these results, the review aims to enhance the understanding of seismic hazards in Northeast India, guide mitigation strategies, and identify key knowledge gaps to direct future research efforts. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

33 pages, 21077 KiB  
Article
Deterministic Tsunami Hazard Assessment for the Eastern Coast of the United Arab Emirates: Insights from the Makran Subduction Zone
by Mouloud Hamidatou, Abdulla Almandous, Khalifa Alebri, Badr Alameri and Ali Megahed
Sustainability 2024, 16(23), 10665; https://doi.org/10.3390/su162310665 - 5 Dec 2024
Viewed by 3241
Abstract
Tsunamis are destructive oceanic hazards caused by underwater disturbances, mainly earthquakes. A deterministic tsunami hazard assessment for the United Arab Emirates (UAE), due to the Makran Subduction Zone (MSZ), was conducted based on the history of earthquakes in the region and considering the [...] Read more.
Tsunamis are destructive oceanic hazards caused by underwater disturbances, mainly earthquakes. A deterministic tsunami hazard assessment for the United Arab Emirates (UAE), due to the Makran Subduction Zone (MSZ), was conducted based on the history of earthquakes in the region and considering the rapid development and urbanization of the east coast of the UAE. A variety of earthquake source scenarios was modeled, involving moment magnitudes of 8.2, 8.8, and 9.2. Tsunami travel time (TTT), run-up, flow depth, and inundation maps were generated to pinpoint the areas susceptible to tsunami hazards for the eastern coastal cities of Kalba, Al Fujairah, Khor Fakkan, and Dibba. The results show that the worst-case Mw 9.2 earthquake in a full MSZ rupture scenario resulted in an average TTT of 37 min, a maximum run-up height of 2.55 m, a maximum flow depth of 2.2 m, and a maximum inundation distance of 253 m on the east coast of the UAE. The Mw 8.2 western MSZ earthquake and the Mw 8.8 eastern MSZ earthquake scenarios were of less significant impact. These findings provide new insights into tsunami hazard assessment and are expected to play a vital role in advancing sustainable development in the region by providing key information for stakeholders and authorities as they highlight the need for enhanced tsunami mitigation and preparedness measures to reduce the potential impact of future tsunamis on the UAE. Full article
Show Figures

Figure 1

21 pages, 14807 KiB  
Article
Multimodal Non-Extensive Frequency-Magnitude Distributions and Their Relationship to Multi-Source Seismicity
by Erick de la Barra, Pedro Vega-Jorquera and Sérgio Luiz E. F. da Silva
Entropy 2024, 26(12), 1040; https://doi.org/10.3390/e26121040 - 30 Nov 2024
Cited by 1 | Viewed by 935
Abstract
We investigate multimodal seismicity by analyzing it as the result of multiple seismic sources. We examine three case studies: the Redoubt and Spurr regions in Alaska, where volcanic and subduction-related seismicity occur, and the Kii Peninsula in Japan, where shallow and deep earthquakes [...] Read more.
We investigate multimodal seismicity by analyzing it as the result of multiple seismic sources. We examine three case studies: the Redoubt and Spurr regions in Alaska, where volcanic and subduction-related seismicity occur, and the Kii Peninsula in Japan, where shallow and deep earthquakes are clearly separated. To understand this phenomenon, we perform spatial, temporal, and magnitude analyses. Our application of non-extensive statistical mechanics shows that multimodal models provide a significantly better fit than unimodal ones. We identify patterns in the distributions of time between events and distances between events using multimodal Tsallis q-gamma distributions. In addition, we use the multimodal Sotolongo–Costa model to analyze the magnitude distribution, which effectively captures the complex interactions that may explain the observed lack of fractality in multimodal seismicity. Full article
(This article belongs to the Special Issue Time Series Analysis in Earthquake Complex Networks)
Show Figures

Figure 1

14 pages, 2430 KiB  
Article
Simulated Seismicity as a Tool for Studying the Long-Term Seismogenic Process: An Italy–Japan Comparison
by Rodolfo Console, Roberto Carluccio and Paola Vannoli
Appl. Sci. 2024, 14(17), 7900; https://doi.org/10.3390/app14177900 - 5 Sep 2024
Cited by 1 | Viewed by 986
Abstract
In this study, we aimed to assess the capacity of a physics-based earthquake simulator to improve our understanding of the seismogenic process. In this respect, we applied a previously tested earthquake simulator to two well-known and completely different seismogenic fault systems, namely the [...] Read more.
In this study, we aimed to assess the capacity of a physics-based earthquake simulator to improve our understanding of the seismogenic process. In this respect, we applied a previously tested earthquake simulator to two well-known and completely different seismogenic fault systems, namely the Italian Apennines and the Nankai subduction in Japan, for which long historical records of strong earthquakes are available. They are characterized by different fault mechanisms, fault sizes, and slip rates. Because of the difference in slip rates, the time scale of the seismicity patterns is different for the two systems (several hundreds of years for the Apennines and a few tens of years for the Nankai Fault). The results of simulations that produced synthetic catalogues of 100,000 years show these significant long-term seismicity patterns characterizing the seismic cycles for both seismogenic areas as follows: The average stress and the occurrence rate of earthquakes increase in the long term as the next major earthquake approaches; while the average stress increases uniformly, the occurrence rate stops increasing well in advance of the mainshocks; the b-value exhibits a long-term increase before major earthquakes and a fast decrease shortly before the mainshocks. Even if no specific statistical tool was applied for the quantification of the similarities between the seismicity patterns of the two seismic areas, such similarities are clearly justified by the large number of seismic cycles included in the 100,000-year synthetic catalogues. The paper includes a discussion on the capability of the simulation algorithm to reliably represent the real long-term seismogenic process. This question is difficult to answer because the available historical observations are of too short a duration to provide significant statistical results. In spite of the limitations characterizing the use of earthquake simulators for time-dependent earthquake hazard assessment, and the lack of convincing mechanistic explanations of the specific seismic patterns reproduced by our simulator algorithm, our results encourage further investigations into the application of simulators for the development of seismogenic models, including short-term features. Full article
Show Figures

Figure 1

23 pages, 5554 KiB  
Article
Assessing the Impact of Ground Motion Duration on Losses in Typical Modern Steel Moment Frames
by Amir Safiey, Sereen Majdalaweyh and Weichiang Pang
Buildings 2024, 14(5), 1373; https://doi.org/10.3390/buildings14051373 - 11 May 2024
Viewed by 1445
Abstract
This research was undertaken to study the duration effects on the seismic economic risk of steel moment frame (SMF) buildings, a prominent class of buildings in commercial stock. Firstly, a modified version of FEMA P-695 ground motion scaling, tailored for seismic loss estimation [...] Read more.
This research was undertaken to study the duration effects on the seismic economic risk of steel moment frame (SMF) buildings, a prominent class of buildings in commercial stock. Firstly, a modified version of FEMA P-695 ground motion scaling, tailored for seismic loss estimation purposes and incorporating two sets of spectrally matched bi-directional short- and long-duration ground motions, is proposed to study code-compliant plan-symmetrical SMFs with different heights (i.e., two to 20 stories). It is shown that long-duration ground motions increase the collapse risk of SMFs, on average, by 28.0% at the MCE level. Next, a component-based loss estimation methodology was adopted for evaluating the seismic losses under each set of ground motions. These losses are studied separately for building components (i.e., structural and nonstructural) and contents. Moreover, we propose an approach for calculating average annualized loss (AAL) as a prominent risk meter that segregates contributions of short- and long-duration ground motions to attain hazard consistency. Loss analyses showed the minimal impact of building height on the contribution of these two types of earthquakes. The seismic risk analysis of buildings also revealed that collapse risk is influenced mainly by duration effects followed by building and content losses. Full article
(This article belongs to the Special Issue Achieving Resilience and Other Challenges in Earthquake Engineering)
Show Figures

Figure 1

21 pages, 23430 KiB  
Article
Preliminary Derived DInSAR Coseismic Displacements of the 2022 Mw 5.7 Stolac Earthquake
by Antonio Banko, Fran Mihelin, Tedi Banković and Marko Pavasović
Remote Sens. 2024, 16(10), 1658; https://doi.org/10.3390/rs16101658 - 8 May 2024
Cited by 1 | Viewed by 1191
Abstract
On 22 April 2022, a Mw 5.7 earthquake was generated near Stolac (Bosnia and Herzegovina). The mainshock was succeeded by several aftershocks, three of which were significant. Two Mb 4.3 earthquakes occurred on 23 April 2022, and a Mw 4.8 [...] Read more.
On 22 April 2022, a Mw 5.7 earthquake was generated near Stolac (Bosnia and Herzegovina). The mainshock was succeeded by several aftershocks, three of which were significant. Two Mb 4.3 earthquakes occurred on 23 April 2022, and a Mw 4.8 earthquake was generated on 24 April 2022. Available data from fault mechanism solutions revealed that the mainshock activated a reverse fault, while the aftershock generated a normal fault with a right-lateral component. The Balkan Peninsula stands as one of the most active geodynamic areas in Central and Eastern Europe due to its location within the collision zone between Eurasian and African tectonic plates and the Anatolian microplate. Recorded earthquakes in Bosnia and Herzegovina are related to the energy generated by the subduction of the African tectonic plate under Eurasia. Furthermore, the seismicity of Bosnia and Herzegovina, particularly its southern part, is profoundly influenced by the subduction of the Adriatic microplate under the Dinarides. The Dinarides are a mainly fold and thrust belt that extends from the Southern Alps in the northwest to the Hellenides in the southeast and make dominant the tectonic system of Bosnia and Herzegovina. In this study, two pairs of SAR images obtained from the Sentinel-1 satellite mission were utilized to generate satellite LOS surface displacements using the DInSAR method. Moreover, LOS displacements were decomposed into vertical and east–west horizontal components by combining ascending and descending satellite orbits. Ultimately, the InSAR results were analyzed and compared with the data obtained from the CROPOS CORS GNSS station in Metković (MET3). Full article
Show Figures

Figure 1

22 pages, 9762 KiB  
Article
Influence of the Plan Structural Symmetry on the Non-Linear Seismic Response of Framed Reinforced Concrete Buildings
by Juan Carlos Vielma-Quintero, Edgar Giovanny Diaz-Segura and Juan Carlos Vielma
Symmetry 2024, 16(3), 370; https://doi.org/10.3390/sym16030370 - 19 Mar 2024
Cited by 6 | Viewed by 2196
Abstract
Seismic-resistant design incorporates measures to ensure that structures perform adequately under specific limit states, focusing on seismic forces derived from both the equivalent static and spectral modal methods. This study examined buildings on slopes in densely built urban areas, a common scenario in [...] Read more.
Seismic-resistant design incorporates measures to ensure that structures perform adequately under specific limit states, focusing on seismic forces derived from both the equivalent static and spectral modal methods. This study examined buildings on slopes in densely built urban areas, a common scenario in Latin American cities with high seismic risks. The adjustment of high-rise buildings to sloping terrains induces structural asymmetry, leading to plan and elevation irregularities that significantly impact their seismic response. This paper explores the asymmetry in medium-height reinforced concrete frame buildings on variable inclines (0°, 15°, 30°, and 45°) and its effect on their nonlinear response, assessed via displacements, rotations, and damage. Synthetic accelerograms matched with Chile’s high seismic hazard design spectrum, scaled for different performance states and seismic records from the Chilean subduction zone, were applied. The findings highlight structural asymmetry’s role in influencing nonlinear response parameters such as ductility, transient interstory drifts, and roof rotations, and uncover element demand distributions surpassing conventional analysis and in earthquake-resistant design expectations. Full article
(This article belongs to the Special Issue Symmetry in Nonlinear Dynamics and Chaos II)
Show Figures

Figure 1

4 pages, 1164 KiB  
Proceeding Paper
Analysis of the Current Dynamic of the Jalisco Block, Mexico through GNSS Observations
by Juan L. Cabanillas Zavala, Manuel E. Trejo Soto and Xóchitl G. Torres Carrillo
Environ. Sci. Proc. 2023, 28(1), 3; https://doi.org/10.3390/environsciproc2023028003 - 18 Dec 2023
Viewed by 1379
Abstract
Mexico is surrounded by a highly dynamic tectonic environment, where the area of greatest influence is in the west, since it is where large earthquakes occur and tectonic blocks are generated due to the subduction of two oceanic plates in the North American [...] Read more.
Mexico is surrounded by a highly dynamic tectonic environment, where the area of greatest influence is in the west, since it is where large earthquakes occur and tectonic blocks are generated due to the subduction of two oceanic plates in the North American plate. In the present study, the horizontal velocities of 15 GNSS stations of continuous operation are calculated, over a period of 11 years, which are located within the Jalisco Block, Mexico with the objective of analyzing the current dynamics of this tectonic block, which is mainly influenced by the oblique subduction of the Rivera plate. Full article
(This article belongs to the Proceedings of IV Conference on Geomatics Engineering)
Show Figures

Figure 1

16 pages, 8786 KiB  
Article
InSAR Monitoring Using Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) Techniques for Ground Deformation Measurement in Metropolitan Area of Concepción, Chile
by Eugenia Giorgini, Felipe Orellana, Camila Arratia, Luca Tavasci, Gonzalo Montalva, Marcos Moreno and Stefano Gandolfi
Remote Sens. 2023, 15(24), 5700; https://doi.org/10.3390/rs15245700 - 12 Dec 2023
Cited by 8 | Viewed by 4003
Abstract
InSAR capabilities allow us to understand ground deformations in large metropolitan areas, this is key to assessing site conditions in areas in an inherently expanding context. The multi-temporal interferometry of SAR data records ground surface displacement velocities over large metropolitan areas, identifying anomalous [...] Read more.
InSAR capabilities allow us to understand ground deformations in large metropolitan areas, this is key to assessing site conditions in areas in an inherently expanding context. The multi-temporal interferometry of SAR data records ground surface displacement velocities over large metropolitan areas, identifying anomalous and potential geological hazards. The metropolitan city of Concepción, Chile, is an alluvial basin in one of the world’s most seismically active subduction zones, where many subduction earthquakes have occurred throughout history. In this study, we monitored the deformations of the ground surface in the metropolitan area of Concepción using two interferometric techniques, the first being Persistent Scatterer Interferometry (PSI) and the second, the Small Baseline Subset (SBAS) technique. To do this, we have used the same Sentinel-1 dataset, obtaining ground movement rates between 2019 and 2021. The velocities were aligned with the GNSS station available in the area. Ground deformation patterns show local deformations depending on factors such as soil type and heterogeneity, and regional deformations due to geographical location in the subduction area. Our results highlight the similarity of the deformation rates obtained with different processing techniques and have also allowed us to identify areas of deformation and compare them to site conditions. These results are essential to evaluate ground conditions and contribute to urban planning and risk management in highly seismic areas. Full article
Show Figures

Figure 1

37 pages, 6476 KiB  
Article
The Correlation between Ionospheric Electron Density Variations Derived from Swarm Satellite Observations and Seismic Activity at the Australian–Pacific Tectonic Plate Boundary
by Wojciech Jarmołowski, Paweł Wielgosz, Manuel Hernández-Pajares, Heng Yang, Beata Milanowska, Anna Krypiak-Gregorczyk, Enric Monte-Moreno, Alberto García-Rigo, Victoria Graffigna and Roger Haagmans
Remote Sens. 2023, 15(23), 5557; https://doi.org/10.3390/rs15235557 - 29 Nov 2023
Cited by 4 | Viewed by 1723
Abstract
Swarm electron density (Ne) observations from the Langmuir probe (LP) can detect ionospheric disturbances at the altitude of a satellite. Along-track satellite observations provide a large number of very short observations of different places in the ionosphere, where Ne is disturbed. Moreover, different [...] Read more.
Swarm electron density (Ne) observations from the Langmuir probe (LP) can detect ionospheric disturbances at the altitude of a satellite. Along-track satellite observations provide a large number of very short observations of different places in the ionosphere, where Ne is disturbed. Moreover, different perturbations occupy various Ne signal frequencies. Therefore, such short signals are more recognizable in two dimensions, where aside from their change in time, we can observe their diversity in the frequency domain. Spectral analysis is an essential tool applied here, as it enables signal decomposition and the recognition of composite patterns of Ne disturbances that occupy different frequencies. This study shows a high-resolution application of short-term Fourier transform (STFT) to Swarm Ne observations in the Papua New Guinea region in the vicinity of earthquakes, tsunamis, and related general seismic activity. The system of tectonic plate junctions, including the Pacific–Australian boundary, is located orthogonally to Swarm track footprints. The selected wavelengths of seismically induced ionospheric disturbances detected via Swarm are compared with the three sets of three-month records of seismic activity: in the winter solstice of 2016/2017, when seismic activity was highest, and in the summer solstice and vernal equinox of 2016, which were calmer. Moreover, more Swarm data records are analyzed at the same latitudes for validation purposes, in a place where there are no tectonic plate boundaries that are orthogonal to the Swarm orbital footprint. Additional validation is supplied through Swarm Ne observations from completely different latitudes, where the Swarm orbital footprint orthogonally crosses a different subducting plate boundary. Aside from the seismic energy, the solar radio flux (F10.7), equatorial plasma bubbles (EPBs), and geomagnetic ap and Dst indices are also reviewed here. Their influence on the ionospheric Ne is also found in Swarm observations. Finally, the Pearson correlation coefficient (PCC), applied to the pairs of 3-month time series created from Swarm Ne variations, seismic energy, ap, Dst, and F10.7, summarizes the graphical inspection of mutual correlations. It points to the predominant correlation of Swarm Ne disturbances with seismicity, especially during nighttime. We show that most of the Ne disturbances at a selected wavelength of 300 km correlate more with seismicity than with geomagnetic and solar indices. Therefore, Swarm LP can be assessed as being capable of observing the lithosphere–atmosphere–ionosphere coupling (LAIC) from the orbit. Full article
Show Figures

Graphical abstract

21 pages, 5865 KiB  
Article
Fractal Derivatives and Singularity Analysis of Frequency—Depth Clusters of Earthquakes along Converging Plate Boundaries
by Qiuming Cheng
Fractal Fract. 2023, 7(10), 721; https://doi.org/10.3390/fractalfract7100721 - 30 Sep 2023
Cited by 8 | Viewed by 2177
Abstract
Fractional calculus (FC) has recently received increasing attention due to its applications in many fields involving complex and nonlinear systems. However, one of the key challenges in using FC to deal with fractal or multifractal phenomena is how to relate functions to geometries [...] Read more.
Fractional calculus (FC) has recently received increasing attention due to its applications in many fields involving complex and nonlinear systems. However, one of the key challenges in using FC to deal with fractal or multifractal phenomena is how to relate functions to geometries with fractal dimensions. The current paper demonstrates how fractal calculus can be used to represent physical properties such as density defined on fractal geometries that no longer have the Lebesgue additive properties required for ordinary calculus. First, it introduces the recently proposed concept of fractal density, that is, densities defined on fractals and multifractals, and then shows how fractal calculus can be used to describe fractal densities. Finally, the singularity analysis based on fractal density calculation is used to analyze the depth clustering distribution of seismic frequencies around the Moho transition zone in the subduction zone of the Pacific plates and the Tethys collision zones. The results show that three solutions (linear, log-linear, and double log-linear) of a unified differential equation can describe the decay rate of the fractal density of depth clusters at the number (frequencies) of earthquakes. The spatial distribution of the three groups of earthquakes is further divided according to the three attenuation relationships. From north latitude to south latitude, from the North Pacific subduction zone to the Tethys collision zone, and then to the South Pacific subduction zone, the attenuation relationships of the earthquake depth distribution are generally from a linear, to log-linear, to double log-linear pattern. This provides insight into the nonlinearity of the depth distribution of earthquake swarms. Full article
Show Figures

Figure 1

33 pages, 35035 KiB  
Article
Analysis of Ocean–Lithosphere–Atmosphere–Ionosphere Coupling Related to Two Strong Earthquakes Occurring in June–September 2022 on the Sea Coast of Philippines and Papua New Guinea
by Xitong Xu, Lei Wang and Shengbo Chen
Remote Sens. 2023, 15(18), 4392; https://doi.org/10.3390/rs15184392 - 6 Sep 2023
Cited by 2 | Viewed by 1650
Abstract
Scientific progress in the context of seismic precursors reveals a systematic mechanism, namely lithosphere–atmosphere–ionosphere coupling (LAIC), to elaborate the underlying physical processes related to earthquake preparation phases. In this study, a comprehensive analysis was conducted for two earthquakes that occurred on the sea [...] Read more.
Scientific progress in the context of seismic precursors reveals a systematic mechanism, namely lithosphere–atmosphere–ionosphere coupling (LAIC), to elaborate the underlying physical processes related to earthquake preparation phases. In this study, a comprehensive analysis was conducted for two earthquakes that occurred on the sea coast through tidal force fluctuation to investigate ocean–lithosphere–atmosphere–ionosphere coupling (OLAIC), based on oceanic parameters (i.e., sea potential temperature and seawater salinity), air temperature and electron density profiles. The interrupted enhancement and diffusion process of thermal anomalies indicate that the intensity of seismic anomalies in the atmosphere is affected by the extent of land near the epicenter. By observing the evolution of the ocean interior, we found that the deep water was lifted and formed upwelling, which then diffused along the direction of plate boundaries with an “intensification-peak-weakening” trend under the action of the accelerated subduction of tectonic plates. Furthermore, the analysis shows that the seismic anomalies have two propagation paths: (i) along active faults, with the surface temperature rising as the initial performance, then the air pressure gradient being generated, and finally the ionosphere being disturbed; (ii) along plate boundaries, upwelling, which is the initial manifestation, leading to changes in the parameters of the upper ocean. The results presented in this study can contribute to understanding the intrinsic characteristics of OLAIC. Full article
Show Figures

Figure 1

Back to TopTop