Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Data Source
3.2. Methodology
3.2.1. Multiscale Wavelet Analysis
3.2.2. Radial Averaged Logarithmic Power Spectra
3.2.3. Parker–Oldenburg Method
4. Results
4.1. Bouguer Gravity Anomaly Analysis
4.2. Decomposed Gravity Anomalies
4.3. Moho Topography
- (1)
- The first uplift is along the line of Lingshui–Wanning–Qizhou Island in the southeast of Hainan Island. The depth of the first Moho uplift decreases significantly from approximately 28 km to 23 km in the southeast part.
- (2)
- The second Moho uplift region is located 30 km off the west coast of Hainan Island beneath the YGHB, with the shallowest Moho depth ranging from 23 km to 25 km.
- (3)
- Located on the north part of Hainan Island, the third Moho local uplift zone is EW-trending with slow depth variation. The shallow part of this Moho uplift corresponds to the Hainan volcanic rock area.
5. Discussion
5.1. Gravity Moho Compared with Previous Studies
5.2. Geological Implication of High Gravity Anomaly in Central Hainan Island
5.3. Crustal Structure Features and Seismic Activity
6. Conclusions
- The results of the wavelet-based multiscale analysis reveal the crustal structure at depth. The results show that there are NE-trending banded anomalies in the middle and lower crust, interpreted as remnants of the subduction of the Mesozoic paleo-Pacific plate subduction. These findings provide critical evidence for Hainan Island’s tectonic evolution within the Paleo-Pacific tectonic domain system during the Mesozoic era.
- The Moho depth is obtained by gravity data inversion. The average depth of the Moho surface in the study area is about 24.94 km, and the Moho surface fluctuates greatly in the range of 16.2–31.4 km. There are two significant Moho depression areas and three local uplift zones of the Moho surface, among which the Qiongbei Moho uplift exhibits a direct spatial correlation with the Hainan mantle plume. This specific uplift is interpreted as a surface manifestation of the upper mantle material ascent driven by plume-related thermochemical processes.
- The results of the decomposed gravity anomalies and natural earthquake distribution reveal that the regional seismic activity is primarily controlled by the left-lateral strike-slip motion of the YGHF and thermomechanical processes associated with the Hainan Plume. Most of the seismic activities in the north and southeast of Hainan Island may be related to the deep-sourced mantle upwelling of the Hainan Plume along the Mesozoic fault gap.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 2003, 4, 1027. [Google Scholar] [CrossRef]
- Metcalfe, I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. J. Asian Earth Sci. 2013, 66, 1–33. [Google Scholar] [CrossRef]
- Cawood, P.A.; Zhao, G.; Yao, J.; Wang, W.; Xu, Y.; Wang, Y. Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Sci. Rev. 2017, 186, 173–194. [Google Scholar] [CrossRef]
- Xia, B.D.; Yu, J.H.; Fang, Z.; Wand, C.; Cui, X. Geochemical Characteristics and Origin of the Hercynian–Indosinian Granites of Hainan Island, China. Geochimica 1990, 4, 365–373, (In Chinese with English Abstract). [Google Scholar]
- Dilek, Y.; Tang, L. Magmatic record of the Mesozoic geology of Hainan Island and its implications for the Mesozoic tectonomagmatic evolution of SE China: Effects of slab geometry and dynamics in continental tectonics. Geol. Mag. 2021, 158, 118–142. [Google Scholar] [CrossRef]
- Fang, N. A new model on the Mesozoic “South China Sea” (SCS): Reconstructing the Hainan marginal arc and recognizing the Tethyan SCS. Earth Sci. Front. 2016, 23, 107–119. [Google Scholar]
- Lebedev, S.; Nolet, G. Upper mantle beneath Southeast Asia from S velocity tomography. J. Geophys. Res. 2003, 108, 2048. [Google Scholar] [CrossRef]
- Montelli, R.; Nolet, G.; Dahlen, F.A.; Masters, G. A catalogue of deep mantle plumes: New results from finite-frequency tomography. Geochem. Geophys. Geosyst. 2006, 7, 1–69. [Google Scholar] [CrossRef]
- Lei, J.; Zhao, D.; Steinberger, B.; Wu, B.; Shen, F.; Li, Z. New seismic constraints on the upper mantle structure of the Hainan plume. Phys. Earth Planet. Inter. 2009, 173, 33–50. [Google Scholar] [CrossRef]
- Xia, S.; Zhao, D.; Sun, J.; Huang, H. Teleseismic imaging of the mantle beneath southernmost China: New insights into the Hainan plume. Gondwana Res. 2016, 36, 46–56. [Google Scholar] [CrossRef]
- Lu, H.; Lei, J.; Zhao, D.; Xu, Y.G.; Sun, C.; Hu, X. Pn anisotropic tomography of Hainan Island and surrounding seabeds: New insights into the Hainan mantle plume. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023609. [Google Scholar] [CrossRef]
- Wang, P.; Li, Q.; Li, C.F. Geology of the China Seas; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Sun, W.; Lin, C.; Zhang, L.; Liao, R.; Li, C. The formation of the South China Sea resulted from the closure of the Neo-Tethys: A perspective from regional geology. Acta Petrol. Sin. 2018, 34, 3467–3478. [Google Scholar]
- Lin, J.; Li, J.; Xu, Y.; Sun, Z.; Xia, S.; Huang, X.; Xie, X. Ocean drilling and major advances in marine geological and geophysical research of the South China Sea. Haiyang Xuebao 2019, 41, 125–140. [Google Scholar] [CrossRef]
- Chen, E.; Huang, Y. Preliminary discussion on the 1605 Qiong Zhou earthquake and its Seismogenetic Structure. Seismol. Geol. 1979, 1, 37–44, (In Chinese with English Abstract). [Google Scholar]
- Wei, S.S.; Chen, Y.J. Seismic evidence of the Hainan mantle plume by receiver function analysis in southern China. Geophys. Res. Lett. 2016, 43, 8978–8985. [Google Scholar] [CrossRef]
- Huang, H.; Tosi, N.; Chang, S.J.; Xia, S.; Qiu, X. Receiver function imaging of the mantle transition zone beneath the South China block. Geochem. Geophys. Geosyst. 2016, 16, 3666–3678. [Google Scholar] [CrossRef]
- Jia, S.X.; Li, Z.; Xu, C.; Shen, F.; Zhao, W.; Yang, Z.; Yang, J.; Lei, Y. Crustal structure features of the Leiqiong depression in Hainan Province. Chin. J. Geophys. 2006, 49, 1385–1394. (In Chinese) [Google Scholar]
- Xia, S.; Fan, C.; Wang, D.; Cao, J.; Zhao, F. Hyperextended crustal structure of the Qiongdongnan Basin and subsequent magmatic influence from the Hainan mantle plume. Sci. China Earth Sci. 2022, 65, 845–862. [Google Scholar] [CrossRef]
- Li, Z.X.; Lei, J.S.; Zhao, D.; Bateer, W.; Fanluan, S.; Qiu, X. 3D P-wave velocity structure of the crust beneath Hainan Island and adjacent regions. Acta Seismol. Sin. 2008, 30, 441–448. [Google Scholar] [CrossRef]
- Liu, H.; Chen, F.; Leng, W.; Zhang, H.; Xu, Y. Crustal Footprint of the Hainan Plume Beneath Southeast China. J. Geophys. Res. Solid Earth 2017, 123, 3065–3079. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, D.; Xu, Y.; Chen, C. 3d magnetotelluric imaging of the middle-upper crustal conduit system beneath the lei-hu-ling volcanic area of northern Hainan island, China. J. Volcanol. Geotherm. Res. 2019, 371, 220–228. [Google Scholar] [CrossRef]
- Lin, J.N.; Xia, S.; Wang, X.; Wang, D. Seismogenic crustal structure affected by the Hainan mantle plume. Gondwana Res. 2022, 103, 23–36. [Google Scholar] [CrossRef]
- Huang, H.; Qiu, X.; Xia, S. Crustal structure and Poisson’s ratio beneath Hainan Island. J. Trop. Oceanogr. 2012, 31, 65–70. [Google Scholar]
- Hu, Y.; Hao, M.; Qin, S.; Ji, L.; Song, S. Present-day 3D crustal motion and fault activity in the Hainan island. Chin. J. Geophys. 2018, 61, 2310–2321. (In Chinese) [Google Scholar] [CrossRef]
- Wu, S.; Lu, X.; Li, G.; Long, G. Tectonics and discrepant evolution of Cenozoic sedimentary basins adjacent Hainan Island. Acta Geol. Sin. 2024, 98, 16–30. [Google Scholar]
- Li, Z.X.; Li, X.H.; Zhou, H.; Kinny, P.D. Grenvillian continental collision in south China: New shrimp u-pb zircon results and implications for the configuration of Rodinia. Geology 2002, 30, 163–166. [Google Scholar] [CrossRef]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; Waele, B.D.; Ernst, R.E.; Fitzsimos, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambr. Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Xu, D.; Kusiak, M.A.; Wang, Z.; Chen, H.; Bakun-Czubarow, N.; Wu, C.; Konečný, P.; Hollings, P. Microstructural observation and chemical dating on monazite from the Shilu group, Hainan province of south China: Implications for origin and evolution of the Shilu Fe–Co–Cu ore district. Lithos 2015, 216–217, 158–177. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, D.; Hu, G.; Yu, L.; Wu, C.; Zhang, Z.; Cai, J.; Shan, Q.; Hou, M.; Chen, H. Detrital zircon u-pb ages of the proterozoic metaclastic-sedimentary rocks in Hainan province of south China: New constraints on the depositional time, source area, and tectonic setting of the Shilu Fe-Co-Cu ore district. J. Asian Earth Sci. 2015, 113, 1143–1161. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Li, X.H. In situ zircon u-pb and hf-o isotopic results for ca. 73 ma granite in Hainan island: Implications for the termination of an andean-type active continental margin in southeast China. J. Asian Earth Sci. 2014, 82, 32–46. [Google Scholar] [CrossRef]
- Tang, L.; Chen, H.; Dong, C.; Yang, S.; Shen, Z.; Cheng, X.; Fu, L. Middle triassic post-orogenic extension on Hainan island: Chronology and geochemistry constraints of bimodal intrusive rocks. Sci. China Earth Sci. 2013, 56, 783–793. [Google Scholar] [CrossRef]
- Zou, H.; Fan, Q. U–th isotopes in hainan basalts: Implications for sub-asthenospheric origin of em2 mantle endmember and the dynamics of melting beneath Hainan island. Lithos 2010, 116, 145–152. [Google Scholar] [CrossRef]
- Fan, Q.; Sun, Q.; Li, N.; Sui, J. Periods of volcanic activity and magma evolution of Holocene in North Hainan Island. Acta Petrol. Sin. 2004, 20, 533–544. [Google Scholar]
- Sun, X.; Zhang, X.; Zhang, G.; Lu, B.; Yue, J.; Zhang, B. Texture and tectonic attribute of Cenozoic basin basement in the northern South China Sea. Sci. China Earth Sci. 2014, 57, 1199–1211. [Google Scholar] [CrossRef]
- Zhu, M.; Graham, S.; McHargue, T. The red river fault zone in the Yinggehai Basin, South China Sea. Tectonophysics 2009, 476, 397–417. [Google Scholar] [CrossRef]
- Yang, G.; Yin, H.; Jia, D.; Wang, H.; Wang, W.; Xu, W. New insights into the structure of the Yinggehai Basin and its tectonic implications, South China Sea: Evidence from scaled physical models. Basin Res. 2024, 36, e12888. [Google Scholar] [CrossRef]
- Xia, S.; Lin, J.; Cao, J. Seismicity and Seismogenic Structure in the Northern Coastal Area of the South China Sea. Geotecton. Metallog. 2022, 46, 455–470. [Google Scholar] [CrossRef]
- Xiong, S. Innovation and application of airborne geophysical exploration technology. J. Geomech. 2020, 26, 791–818. [Google Scholar] [CrossRef]
- Tong, J.; Zhang, X.; Zhang, W.; Xiong, S. Marine strata morphology of the south yellow sea based on high-resolution aeromagnetic and airborne gravity data. Mar. Pet. Geol. 2018, 96, 429–440. [Google Scholar] [CrossRef]
- Yang, W.; Shi, Z.; Hou, Z.; Cheng, Z. Discrete Wavelet Transform for Multiple Decomposition of Gravity Anomalies. Chin. J. Geophys. 2001, 44, 534–541. (In Chinese) [Google Scholar]
- Yang, W.-C.; Hou, Z.-Z.; Yu, C.-Q. 3D crustal density structure of West Yunnan and its tectonic implications. Chin. J. Geophys. 2015, 58, 3902–3916. (In Chinese) [Google Scholar] [CrossRef]
- Yang, W.C.; Sun, Y.Y.; Hou, Z.Z.; Yang, C.Q. A multi-scale scratch analysis method for quantitative interpretation of regional gravity fields. Chin. J. Geophys. 2015, 58, 41–53. [Google Scholar]
- Xu, C.; Liu, Z.; Luo, Z.; Wu, Y.; Wang, H. Moho topography of the Tibetan plateau using multi-scale gravity analysis and its tectonic implications. J. Asian Earth Sci. 2017, 138, 378–386. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, W.; Zhang, J.; Shen, W.; Fu, Z. Gravity anomaly and fine crustal structure in the middle segment of the Tan-Lu fault, eastern Chinese mainland. Asian Earth Sci. 2022, 224, 105027. [Google Scholar] [CrossRef]
- Bhimasankaram, V.L.S.; Nagendra, R.; Rao, S.V.S. Interpretation of gravity anomalies due to finite inclined dikes using fourier transformation. Geophysics 1977, 42, 51–59. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, W. Wavelet Transform and Multi-Scale Analysis on Gravity Anomalies of China. Chin. J. Geophys. 1997, 40, 85–95. (In Chinese) [Google Scholar]
- Parker, R.L. The rapid calculation of potential anomalies. Geophys. J. R. Astron. Soc. 1973, 31, 447–455. [Google Scholar] [CrossRef]
- Oldenburg, D.W. The inversion and interpretation of gravity anomalies. Geophysics 1974, 39, 526–536. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, H.; Qiu, X.; Ye, C.; Li, S. Crustal structure and rifting of the northern South China Sea margin: Evidence from shoreline-crossing seismic investigations. Geol. J. 2017, 53, 2065–2083. [Google Scholar] [CrossRef]
- Hou, Z.; Yang, W.; Liu, J. Multiscale Inversion of the Density Contrast Within the Crust of China. Chin. J. Geophys. 1998, 41, 642–651. (In Chinese) [Google Scholar]
- Li, F.; Sun, Z.; Yang, H. Possible spatial distribution of the Mesozoic volcanic arc in the present-day South China Sea continental margin and its tectonic implications. J. Geophys. Res. Solid Earth 2018, 123, 6215–6235. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, L.; Shi, H.; Brix, M.R.; Huhma, H.; Chen, L.; Zhang, M.; Zhou, Z. Tracing an Early Jurassic magmatic arc from South to East China Seas. Tectonics 2017, 36, 466–492. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Wang, Z.; Sun, Z. The mechanics of continental extension in Qiongdongnan basin, northern south China sea. Mar. Geophys. Res. 2015, 36, 197–210. [Google Scholar] [CrossRef]
- Xie, C.F.; Zhu, J.C.; Ding, S.J.; Zhang, Y.M.; Li, Z.H. Age and petrogenesis of the jianfengling granite and its relationship to metallogenesis of the Baolun gold deposit, Hainan island. Acta Petrol. Sin. 2006, 22, 2493–2508. [Google Scholar]
- Yan, Q.; Metcalfe, I.; Shi, X. U-pb isotope geochronology and geochemistry of granites from Hainan island (northern south China sea margin): Constraints on late paleozoic-mesozoic tectonic evolution. Gondwana Res. 2017, 49, 333–349. [Google Scholar] [CrossRef]
- Wei, F.; Wei, W.; Yu, H. The Cenozoic volcanic fields in northern Hainan Island and Leizhou Peninsula, South China: Eruption history, magma source and dynamic background. Geol. Soc. Lond. Spec. Publ. 2020, 510, 179–196. [Google Scholar] [CrossRef]
- Robert, H.; Spakman, W. Subducted slabs beneath the eastern Indonesia–Tonga region: Insights from tomography. Earth Planet. Sci. Lett. 2002, 201, 321–336. [Google Scholar]
- Pan, M.; Yang, T.; Le, B.M.; Dai, Y.; Xiao, H. The Magmatic Patterns Formed by the Interaction of the Hainan Mantle Plume and Lei–Qiong Crust Revealed through Seismic Ambient Noise Imaging. Geosciences 2024, 14, 63. [Google Scholar] [CrossRef]
- Yang, X.; Shen, C.Y.; Zhu, Y.Q.; Yang, G.; Sun, K.; Tan, H. Study on gravity invertion of three-dimensional density structure of the crust in Tangshan Ms7.8 earthquake area. Chinese J. Geophys. 2023, 66, 183–196. (In Chinese) [Google Scholar] [CrossRef]
Order | Average Source Depth (km) |
---|---|
D1–D3 | 3 |
D4 | 5 |
D5 | 11 |
D6 | 19 |
D7 | 27 |
Mean Value (km) | SD (km) | Min Value | Max Value | |
---|---|---|---|---|
Gravity-derived depth from this paper | 1.76 | 3.96 | −6.71 | 4.38 |
Gravity-derived depth-crust1.0 | 4.29 | 2.91 | −1.83 | 8.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhang, X.; Zhang, W.; Wu, R.; Sun, Y.; Yao, G.; Wu, H. Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity. Appl. Sci. 2025, 15, 5564. https://doi.org/10.3390/app15105564
Li X, Zhang X, Zhang W, Wu R, Sun Y, Yao G, Wu H. Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity. Applied Sciences. 2025; 15(10):5564. https://doi.org/10.3390/app15105564
Chicago/Turabian StyleLi, Xiao, Xuanjie Zhang, Wan Zhang, Ruohan Wu, Yanyun Sun, Guotao Yao, and Huaichun Wu. 2025. "Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity" Applied Sciences 15, no. 10: 5564. https://doi.org/10.3390/app15105564
APA StyleLi, X., Zhang, X., Zhang, W., Wu, R., Sun, Y., Yao, G., & Wu, H. (2025). Crustal Structure of Hainan Island and Surrounding Seabed Based on High-Resolution Airborne Gravity. Applied Sciences, 15(10), 5564. https://doi.org/10.3390/app15105564