Preliminary Derived DInSAR Coseismic Displacements of the 2022 Mw 5.7 Stolac Earthquake
Abstract
:1. Introduction
2. Previous Research
3. Study Area and Data
4. Results
4.1. DInSAR Processing
4.2. GNSS Processing
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USGS. United States Geological Survey Earthquake Hazards Program. Available online: https://www.usgs.gov/programs/earthquake-hazards/earthquakes (accessed on 10 January 2024).
- RCMT. European-Mediterranean Regional Centroid-Moment Tensors. Available online: http://rcmt2.bo.ingv.it (accessed on 9 January 2024).
- Ademović, N.; Kalman Šipoš, T.; Hadzima-Nyarko, M. Rapid assessment of earthquake risk for Bosnia and Herzegovina. Bull. Earthq. Eng. 2020, 18, 1835–1863. [Google Scholar] [CrossRef]
- Markušić, S.; Herak, M. Seismic Zoning of Croatia. Nat. Hazards 1998, 18, 269–285. [Google Scholar] [CrossRef]
- Omerbashich, M.; Sijarić, G. Seismotectonics of Bosnia—Overview. Acta Geodyn. Geomater. 2006, 3, 17–29. [Google Scholar]
- Milev, G.; Vassileva, K. Geodynamics of the Balkan Peninsula and Bulgaria. In Proceedings of the International Symposium on Strong Vrancea Earthquakes and Risk Mitigation, Bucharest, Romania, 4–6 October 2007. [Google Scholar]
- Oldow, J.S.; Ferranti, L.; Lewis, D.S.; Campbell, J.K.; D’Argenio, B.; Catalano, R.; Pappone, G.; Carmignani, L.; Conti, P.; Aiken, C.L.V. Active fragmentation of Adria, the north African promontory, central Mediterranean orogen. Geology 2002, 30, 779–782. [Google Scholar] [CrossRef]
- Tari, V. Evolution of the northern and western Dinarides: A tectonostratigraphic approach. Stephan Mueller Spec. Publ. Ser. 2002, 1, 223–236. [Google Scholar] [CrossRef]
- Balling, P.; Tomljenović, B.; Schmid, S.M.; Ustaszewski, K. Contrasting along-strike deformation styles in the central external Dinarides assessed by balanced cross-sections: Implications for the tectonic evolution of its Paleogene flexural foreland basin system. Glob. Planet. Change 2021, 205, 103587. [Google Scholar] [CrossRef]
- Ademović, N.; Demir, V.; Cvijić-Amulić, S.; Málek, J.; Prachař, I.; Vackář, J. Compilation of the seismic hazard maps in Bosnia and Herzegovina. Soil Dyn. Earthq. Eng. 2021, 141, 106500. [Google Scholar] [CrossRef]
- Hrvatović, H. Identifikacija i Procjena Geoloških Hazarda-Zemljotresa; Ministry of Security of Bosnia and Herzegovina: Sarajevo, Bosnia and Herzegovina, 2010. [Google Scholar]
- Hrvatović, H. Geological Guidebook through Bosnia and Herzegovina; Geological Survey: Sarajevo, Bosnia and Herzegovina, 2005; pp. 1–163. [Google Scholar]
- Hrvatović, H. Geological Map of Bosnia and Herzegovina; Geological Survey: Sarajevo, Bosnia and Herzegovina, 2009. [Google Scholar]
- Grünthal, G.; Wahlström, R. The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. J. Seismol. 2012, 16, 535–570. [Google Scholar] [CrossRef]
- Rovida, A.; Antonucci, A. EPICA—European PreInstrumental Earthquake Catalogue; Version 1.1, Dataset; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Danciu, L.; Nandan, S.; Reyes, C.; Basili, R.; Weatherill, G.; Beauval, C.; Rovida, A.; Vilanova, S.; Sesetyan, K.; Bard, P.-Y.; et al. The 2020 Update of the European Seismic Hazard Model: Model Overview; EFEHR Technical Report 001, v1.0.0; 2021; Available online: https://gitlab.seismo.ethz.ch/efehr/eshm20/-/blob/master/documentation/EFEHR_TR001_ESHM20.pdf (accessed on 15 January 2024). [CrossRef]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Wang, G.; Xie, M.; Chai, X.; Wang, L.; Dong, C. D-InSAR-based landslide location and monitoring at Wudongde hydropower reservoir in China. Environ. Earth. Sci. 2013, 69, 2763–2777. [Google Scholar] [CrossRef]
- Manzo, M.; Ricciardi, G.P.; Casu, F.; Ventura, G.; Zeni, G.; Borgström, S.; Lanari, R. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Tzouvaras, M.; Danezis, C.; Hadjimitsis, D.G. Differential SAR Interferometry Using Sentinel-1 Imagery-Limitations in Monitoring Fast Moving Landslides: The Case Study of Cyprus. Geosciences 2020, 10, 236. [Google Scholar] [CrossRef]
- Mulić, M.; Bašagić, M.; Čičić, S. Geodynamic Investigation in Bosnia and Herzegovina. In The Adria Microplate: GPS Geodesy, Tectonics and Hazards; Nato Science Series: IV: Earth and Environmental Sciences; Pinter, N., Gyula, G., Weber, J., Stein, S., Medak, D., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; Volume 61, pp. 195–207. [Google Scholar] [CrossRef]
- Čičić, S.; Bašagić, M. Geological map of Bosnia and Herzegovina 1: 300.000: Content and application. Rep. Geod. 2006, 5, 93–110. [Google Scholar]
- Schmid, S.M.; Fügenschuh, B.; Kounov, A.; Maţenco, L.; Nievergelt, P.; Oberhänsli, R.; Pleuger, J.; Schefer, S.; Schuster, R.; Tomljenović, B.; et al. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Res. 2019, 78, 308–374. [Google Scholar] [CrossRef]
- Smailbegović, A.; Korajlić, N.; Toth, I. Overall Seismic Risk in Bosnia-Herzegovina/Dalmatia Region of Croatia and Elements of Perfect Crisis in an Earthquake Aftermath. Ann. Disaster Risk Sci. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Balling, P.; Tomljenović, B.; Herak, M.; Ustaszewski, K. Impact of mechanical stratigraphy on deformation style and distribution of seismicity in the central External Dinarides: A 2D forward kinematic modelling study. Swiss J. Geosci. 2023, 116, 7. [Google Scholar] [CrossRef]
- Anderson, H.; Jackson, J. Active Tectonics of the Adriatic Region. Geophys. J. Int. 1987, 91, 937–983. [Google Scholar] [CrossRef]
- Marjanović, M. Application of GPS Measurements for Determining Horizontal and Vertical Movements of the Adriatic Microplate; Faculty of Geodesy, University of Zagreb: Zagreb, Croatia, 2008. [Google Scholar]
- Pavasović, M. CROPOS kao Hrvatski Terestrički Referentni Okvir i Njegova Primjena u Geodinamičkim Istraživanjima (CROPOS as Croatian Terrestrial Reference Frame and Its Application in Geodynamic Researches); Faculty of Geodesy, University of Zagreb: Zagreb, Croatia, 2014. [Google Scholar]
- Pavasović, M.; Đapo, A.; Marjanović, M.; Pribičević, B. Present Tectonic Dynamics of the Geological Structural Setting of the Eastern Part of the Adriatic Region Obtained from Geodetic and Geological Data. Appl. Sci. 2021, 11, 5735. [Google Scholar] [CrossRef]
- Heidbach, O.; Rajabi, M.; Reiter, K.; Ziegler, M. World Stress Map Database Release 2016; Services, G.D., Ed.; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2016. [Google Scholar]
- Šumanovac, F.; Orešković, J.; Grad, M.; ALP 2002 Working Group. Crustal structure at the contact of the Dinarides and Pannonian basin based on 2-D seismic and gravity interpretation of the Alp07 profile in the ALP 2002 experiment. Geophys. J. Int. 2009, 179, 615–633. [Google Scholar] [CrossRef]
- Korbar, T. Orogenic evolution of the External Dinarides in the NE Adriatic region: A model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth-Sci. Rev. 2009, 96, 296–312. [Google Scholar] [CrossRef]
- Lombardi, D.; Braunmiller, J.; Kissling, E.; Giardini, D. Moho depth and Poisson’s ratio in the Western-Central Alps from receiver functions. Geophys. J. Int. 2008, 173, 249–264. [Google Scholar] [CrossRef]
- Caporali, A.; Aichhornm, C.; Barlik, M.; Becker, M.; Fejes, I.; Gerhatova, L.; Ghitau, D.; Grenerczy, G.; Hefty, J.; Krauss, S.; et al. Surface kinematics in the Alpine–Carpathian–Dinaric and Balkan region inferred from a new multi-network GPS combination solution. Tectonophysics 2009, 474, 295–321. [Google Scholar] [CrossRef]
- Stipčević, J.; Herak, M.; Molinari, I.; Dasović, I.; Tkalčić, H.; Gosar, A. Crustal thickness beneath the Dinarides and surrounding areas from receiver functions. Tectonics 2020, 39, e2019TC005872. [Google Scholar] [CrossRef]
- Zailac, K.; Matoš, B.; Vlahović, I.; Stipčević, J. Reference seismic crustal model of the Dinarides. Solid Earth 2023, 14, 1197–1220. [Google Scholar] [CrossRef]
- Cavazza, W.; Roure, F.; Ziegler, P.A. The Mediterranean Area and the Surrounding Regions: Active Processes, Remnants of Former Tethyan Oceans and Related Thrust Belts. In The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle, 1st ed.; Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M., Ziegler, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–29. [Google Scholar] [CrossRef]
- Lee, V.; Herak, M.; Herak, D.; Trifunac, M. Uniform hazard spectra in western Balkan Peninsula. Soil Dyn. Earthq. Eng. 2013, 55, 1–20. [Google Scholar] [CrossRef]
- Giardini, D.; Basham, P. The Global Seismic Hazard Assessment Program (GSHAP). Ann. Geophys. 1993, 36, 3–13. [Google Scholar] [CrossRef]
- Giardini, D.; Grünthal, G.; Shedlock, K.M.; Zhang, P. The GSHAP Global Seismic Hazard Model. Ann. Geophys. 1999, 42, 1225–1230. [Google Scholar] [CrossRef]
- Slejko, D.; Camassi, R.; Cecić, I.; Herak, D.; Herak, M.; Kociu, S.; Kouskouna, V.; Lapajne, J.; Makropoulos, K.; Meletti, C. Seismic hazard assessment for Adria. Ann. Geophys. 1999, 42, 1085–1107. [Google Scholar] [CrossRef]
- Markušić, S.; Gülerce, Z.; Kuka, N.; Duni, L.; Ivančić, I.; Radovanović, S.; Glavatović, B.; Milutinović, Z.; Akkar, S.; Kovačević, S.; et al. An updated and unified earthquake catalogue for the Western Balkan Region. Bull. Earthq. Eng. 2016, 14, 321–343. [Google Scholar] [CrossRef]
- Mihaljević, J.; Zupančič, P.; Kuka, N.; Kaluđerović, N.; Koçi, R.; Markušić, S.; Šalić, R.; Dushi, E.; Begu, E.; Duni, L.; et al. BSHAP seismic source characterization models for the Western Balkan region. Bull. Earthq. Eng. 2017, 15, 3963–3985. [Google Scholar] [CrossRef]
- ISC-GEM. International Seismological Centre Global Instrumental Earthquake Catalogue. 2023. Available online: http://www.isc.ac.uk/iscgem/download.php (accessed on 10 January 2024). [CrossRef]
- Bijedić, A. Pregled Zemljotresa na Području Bosne i Hercegovine; Federal Hydrometeorological Institute: Sarajevo, Bosnia and Herzegovina, 2014. [Google Scholar]
- European Space Agency (ESA). Available online: https://sentiwiki.copernicus.eu/ (accessed on 2 February 2024).
- Rosen, P.A.; Gurrola, E.M.; Agram, P.; Cohen, J.; Lavalle, M.; Riel, B.V.; Fattahi, H.; Aivazis, M.A.; Simons, M.; Buckley, S.M. The InSAR scientific computing environment 3.0: A flexible framework for NISAR operational and user-led science processing. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 4897–4900. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J. Opt. Soc. Am. 2001, 18, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Penna, N.T.; Li, Z. Generation of real-time mode high-resolution water vapor fields from GPS observations. J. Geophys. Res. Atmos. 2017, 122, 2008–2025. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T. Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model. Remote Sens. Environ. 2018, 204, 109–121. [Google Scholar] [CrossRef]
- Yu, C.; Li, Z.; Penna, N.T.; Crippa, P. Generic atmospheric correction model for interferometric synthetic aperture radar observations. J. Geophys. Res. Solid Earth 2018, 123, 9202–9222. [Google Scholar] [CrossRef]
- Mora, O.; Ordoqui, P.; Iglesias, R.; Blanco, P. Earthquake Rapid Mapping Using Ascending and Descending Sentinel-1 TOPSAR Interferograms. Procedia Comput. Sci. 2016, 100, 1135–1140. [Google Scholar] [CrossRef]
- CSRS-PPP. Canadian Spatial Reference System Precise Point Positioning Service. Available online: https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-outils/ppp.php (accessed on 21 October 2022).
- ECTT. ETRF/ITRF Coordinate Transformation Tool. Available online: https://www.epncb.oma.be/_productsservices/coord_trans/ (accessed on 22 October 2022).
No. | Date | Time [UTC] | Lat. Origin [°N] | Lon. Origin [°E] | Magnitude [Mw, ML, Mb] | Depth [km] | Strike [°] | Dip [°] | Rake [°] | Source 1 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 22 April 2022 | 21:07:48 21:07:49 | 43.074 43.07 | 18.180 18.16 | 5.71 Mw 5.71 Mw | 10 10 | 298 295 | 18 25 | 94 87 | USGS RCMT |
2 | 23 April 2022 | 02:20:27 02:20:28 | 43.087 43.08 | 18.018 18 | 4.30 Mb 4.38 Mw | 10 10 | - 25 | - 28 | - -116 | USGS RCMT |
3 | 23 April 2022 | 02:34:22 - | 42.976 - | 18.119 - | 4.30 Mb - | 10 - | - - | - - | - - | USGS RCMT |
4 | 24 April 2022 | 04:27:53 04:27:54 | 43.051 43.05 | 18.142 18.15 | 4.80 Mw 4.76 Mw | 10 19 | 276 296 | 16 21 | -146 -124 | USGS RCMT |
Satellite | Orbit | Track/Frame | Master Image | Slave Image | Bperp [m] | Btemp [Day] |
---|---|---|---|---|---|---|
Sentinel-1A | Ascending | 73/135 | 19 April 2022 | 1 May 2022 | 44.30 | 12 |
Sentinel-1A | Descending | 51/447 | 18 April 2022 | 30 April 2022 | 2.92 | 12 |
Date | E [m] | N [m] | h [m] | Epoch |
---|---|---|---|---|
1 July 2021 | 593,674.5002 | 4,769,130.4565 | 60.186 | 2021.50 |
21 April 2022 | 593,674.4995 | 4,769,130.4636 | 60.180 | 2022.30 |
22 April 2022 | 593,674.5025 | 4,769,130.4635 | 60.181 | 2022.31 |
23 April 2022 | 593,674.5000 | 4,769,130.4628 | 60.185 | 2022.31 |
24 April 2022 | 593,674.4997 | 4,769,130.4666 | 60.178 | 2022.31 |
25 April 2022 | 593,674.5006 | 4,769,130.4636 | 60.181 | 2022.32 |
Date | σE [mm] | σN [mm] | σh [mm] | Epoch |
---|---|---|---|---|
21 April 2022 | 2 | 2 | 8 | 2022.30 |
22 April 2022 | 2 | 2 | 7 | 2022.31 |
23 April 2022 | 2 | 2 | 8 | 2022.31 |
24 April 2022 | 2 | 2 | 8 | 2022.31 |
25 April 2022 | 2 | 2 | 7 | 2022.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banko, A.; Mihelin, F.; Banković, T.; Pavasović, M. Preliminary Derived DInSAR Coseismic Displacements of the 2022 Mw 5.7 Stolac Earthquake. Remote Sens. 2024, 16, 1658. https://doi.org/10.3390/rs16101658
Banko A, Mihelin F, Banković T, Pavasović M. Preliminary Derived DInSAR Coseismic Displacements of the 2022 Mw 5.7 Stolac Earthquake. Remote Sensing. 2024; 16(10):1658. https://doi.org/10.3390/rs16101658
Chicago/Turabian StyleBanko, Antonio, Fran Mihelin, Tedi Banković, and Marko Pavasović. 2024. "Preliminary Derived DInSAR Coseismic Displacements of the 2022 Mw 5.7 Stolac Earthquake" Remote Sensing 16, no. 10: 1658. https://doi.org/10.3390/rs16101658
APA StyleBanko, A., Mihelin, F., Banković, T., & Pavasović, M. (2024). Preliminary Derived DInSAR Coseismic Displacements of the 2022 Mw 5.7 Stolac Earthquake. Remote Sensing, 16(10), 1658. https://doi.org/10.3390/rs16101658