Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = subcooled boiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4259 KiB  
Article
Transient Subcooled Boiling in Minichannels: Experimental Study and Numerical Modelling Using Trefftz Functions and ADINA
by Beata Maciejewska, Magdalena Piasecka and Paweł Łabędzki
Energies 2025, 18(14), 3865; https://doi.org/10.3390/en18143865 - 20 Jul 2025
Viewed by 350
Abstract
This study focuses on the phenomenon of boiling heat transfer during fluid flow (Fluorinert FC-72) in minichannels. The research stand was built around a specially designed test section incorporating sets of aligned minichannels, each 1 mm deep. These channel arrays varied in number, [...] Read more.
This study focuses on the phenomenon of boiling heat transfer during fluid flow (Fluorinert FC-72) in minichannels. The research stand was built around a specially designed test section incorporating sets of aligned minichannels, each 1 mm deep. These channel arrays varied in number, comprising configurations with 7, 15, 17, 19, 21, and 25 parallel channels. The test section was vertically orientated with upward fluid flow. To address the heat transfer problem associated with transient flow boiling, two numerical approaches grounded in the finite element method (FEM) were employed. One used the Trefftz function formulation, while the other relied on simulations performed using the commercial software ADINA (version 9.2). In both approaches, the heat transfer coefficient at the interface between the heated foil and the working fluid was determined by applying a Robin-type boundary condition, which required knowledge of the temperatures in both the foil and the fluid, along with the temperature gradient within the foil. The outcomes of both FEM-based models, as well as those of a simplified 1D method based on Newton’s cooling law, yielded satisfactory results. Full article
Show Figures

Figure 1

34 pages, 3719 KiB  
Article
Experimental and Numerical Study of Film Boiling Around a Small Nickel Sphere
by Charles Brissot, Léa Cailly-Brandstäter, Romain Castellani, Elie Hachem and Rudy Valette
Fluids 2025, 10(7), 162; https://doi.org/10.3390/fluids10070162 - 24 Jun 2025
Viewed by 233
Abstract
This work—mixing an original experimental approach, as well as numerical simulations—proposes to study film boiling modes around a small nickel sphere. While dealing with a simple looking phenomenon that is found in many industrial processes and has been solved for basic quenching regimes, [...] Read more.
This work—mixing an original experimental approach, as well as numerical simulations—proposes to study film boiling modes around a small nickel sphere. While dealing with a simple looking phenomenon that is found in many industrial processes and has been solved for basic quenching regimes, we focus on describing precisely how vapor formation and film thicknesses, as well as vapor bubble evacuation, affect cooling kinetics. As instrumenting small spheres may lead to experimental inaccuracies, we optically captured, using a high-speed camera, the vapor film thickness at mid height, the vapor bubble volume, and the bubble detachment frequency, along with the heat flux. More precisely, an estimation of the instant sphere temperature, in different conditions, was obtained through cooling time measurement before the end of the film boiling mode, subsequently facilitating heat flux evaluation. We encountered a nearly linear decrease in both the vapor film thickness and vapor bubble volume as the sphere temperature decreased. Notably, the detachment frequency remained constant across the whole temperature range. The estimation of the heat fluxes confirmed the prevalence of conduction as the primary heat transfer mode; a major portion of the energy was spent increasing the liquid temperature. The results were then compared to finite element simulations using an in-house multiphysics solver, including thermic phase changes (liquid to vapor) and their hydrodynamics, and we also captured the interfaces. While presenting a challenge due to the contrast in densities and viscosities between phases, the importance of the small circulations along them, which improve the heat removal in the liquid phase, was highlighted; we also assessed the suitability of the model and the numerical code for the simulation of such quenching cases when subcooling in the vicinity of a saturation temperature. Full article
(This article belongs to the Section Heat and Mass Transfer)
Show Figures

Figure 1

20 pages, 3913 KiB  
Article
Thermal Management Design for the Be Target of an Accelerator-Based Boron Neutron Capture Therapy System Using Numerical Simulations with Boiling Heat Transfer Models
by Bo-Jun Lu, Yuh-Ming Ferng, Tzung-Yi Lin, Cheng-Ji Lu and Wei-Lin Chen
Processes 2025, 13(6), 1929; https://doi.org/10.3390/pr13061929 - 18 Jun 2025
Viewed by 1271
Abstract
Recently, studies on accelerator-based boron neutron capture therapy (AB-BNCT) systems for cancer treatment have attracted the attention of researchers around the world. A neutron source can be obtained through the impingement of high-intensity proton beams emitted from the accelerator onto the target. This [...] Read more.
Recently, studies on accelerator-based boron neutron capture therapy (AB-BNCT) systems for cancer treatment have attracted the attention of researchers around the world. A neutron source can be obtained through the impingement of high-intensity proton beams emitted from the accelerator onto the target. This process would deposit a large amount of heat within this target. A thermal management system design is needed for AB-BNCT systems to prevent the degradation of the target due to thermal/mechanical loading. However, there are few studies that investigate this topic. In this paper, a cooling channel with a boiling heat transfer mechanism is numerically designed for thermal management in order to remove heat deposited in the Be target of the AB-BNCT system of Heron Neutron Medical Corp. A three-dimensional (3D) CFD methodology with a two-fluid model and an RPI wall boiling model is developed to investigate its availability. Two subcooled boiling experiments from previous works are adopted to validate the present CFD boiling model. This validated model can be confidently applied to assist in thermal management design for the AB-BNCT system. Based on the simulation results under the typical operating conditions of the AB-BNCT system set by Heron Neutron Medical Corp., the present coolant channel employing the boiling heat transfer mechanism can efficiently remove the heat deposited in the Be target, as well as maintain its integrity during long-term operation. In addition, compared with the channel with the single-phase convection traditionally designed for an AB-BNCT system, the boiling heat transfer mechanism can result in a lower peak temperature in the Be target and its corresponding deformation. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

28 pages, 5919 KiB  
Article
Numerical Simulation of Two-Phase Boiling Heat Transfer in a 65 mm Horizontal Tube for Enhanced Heavy Oil Recovery
by Genying Gao, Zicheng Wang, Gaoqiao Li, Chizhong Wang and Lei Deng
Energies 2025, 18(12), 3100; https://doi.org/10.3390/en18123100 - 12 Jun 2025
Viewed by 294
Abstract
To enhance the steam parameters of steam injection boilers during the thermal recovery of heavy oil while ensuring the safe and stable operation of boiler pipelines, this study conducted two-phase flow boiling numerical simulations in a horizontal heated tube with an inner diameter [...] Read more.
To enhance the steam parameters of steam injection boilers during the thermal recovery of heavy oil while ensuring the safe and stable operation of boiler pipelines, this study conducted two-phase flow boiling numerical simulations in a horizontal heated tube with an inner diameter of 65 mm, using water and water vapor as working fluids. The analysis focused on the gas–liquid phase distribution, temperature profiles, near-wall fluid velocity, and pressure drop along both the axial and radial directions of the tube. Furthermore, the effects of heat flux density, mass flow rate, and inlet subcooling on these parameters were systematically investigated. The results reveal that higher heat fluxes intensify the velocity difference between the upper and lower tube walls and enlarge the temperature gradient across the wall surface. A reduction in mass flow rate increases the gas phase fraction within the tube and causes the occurrence of identical flow patterns at earlier axial positions. Additionally, the onset of nucleate boiling shifts upstream, accompanied by an increase and upstream movement of the wall’s maximum temperature. An increase in inlet subcooling prolongs the time required for the working fluid mixture to reach saturation, thereby decreasing the gas phase fraction and delaying the appearance of the same flow patterns. Finally, preventive and control strategies for ensuring the safe operation of steam injection boiler pipelines during heavy oil recovery are proposed from the perspective of flow pattern regulation. Full article
Show Figures

Figure 1

25 pages, 8681 KiB  
Article
Numerical Investigation of Subcooled Boiling Flow and Patterns’ Transitions in a High-Heat-Flux Rectangular Small Channel
by Xianyang Wu, Xiao Wang, Yang Liu and Linmin Li
Water 2025, 17(11), 1580; https://doi.org/10.3390/w17111580 - 23 May 2025
Viewed by 641
Abstract
The escalating thermal demands of high-power electronic devices and energy systems necessitate advanced thermal management solutions. Flow boiling in small/micro channels has emerged as a promising approach, yet its practical implementation is hindered by flow instabilities and heat transfer deterioration under high-heat fluxes. [...] Read more.
The escalating thermal demands of high-power electronic devices and energy systems necessitate advanced thermal management solutions. Flow boiling in small/micro channels has emerged as a promising approach, yet its practical implementation is hindered by flow instabilities and heat transfer deterioration under high-heat fluxes. This study presents a systematic numerical investigation of subcooled boiling flow and heat transfer in a rectangular small channel under high-heat-flux conditions, employing the VOF method coupled with the Lee phase change model. The increasing heat flux accelerates bubble nucleation and coalescence while reduced mass flux promotes early local slug formation, shifting flow transitions upstream and degrading thermal performance. A local vapor volume fraction threshold of αν = 0.2 is identified for the bubbly-to-sweeping flow transition and αν = 0.4 for the sweeping-to-churn transition. Furthermore, a novel dimensionless parameter β is proposed to classify dominant flow regimes, with critical β ranges of 12–16 and 24–32 corresponding to the two transitions, respectively. These findings provide new quantitative tools for identifying flow regimes and improve the understanding and design of compact boiling-based thermal management systems under extreme heat- flux conditions. Full article
(This article belongs to the Special Issue Hydrodynamics Science Experiments and Simulations, 2nd Edition)
Show Figures

Figure 1

26 pages, 10603 KiB  
Article
Laser Surface Texturing for the Intensification of Boiling Heat Transfer in a Minichannel
by Kinga Strąk and Magdalena Piasecka
Energies 2024, 17(24), 6481; https://doi.org/10.3390/en17246481 - 23 Dec 2024
Viewed by 868
Abstract
This study investigates the effects of using laser-textured surfaces in boiling heat transfer during cooling fluid flow in a minichannel. Several laser-textured surfaces, varied in roughness, were created on the heated plate surface that contacted FC-72 during flow in a single minichannel. Infrared [...] Read more.
This study investigates the effects of using laser-textured surfaces in boiling heat transfer during cooling fluid flow in a minichannel. Several laser-textured surfaces, varied in roughness, were created on the heated plate surface that contacted FC-72 during flow in a single minichannel. Infrared thermography was used to measure temperature changes on the untextured side of the plate, while two-phase flow patterns were observed through a glass pane. Three vibration-assisted laser surface textures, previously investigated by the authors, and five novel laser surface textures were tested experimentally. The results were presented as relationships between heated wall temperature, heat transfer coefficient and distance along the minichannel, boiling curves, and flow patterns. The main interest of the authors was to provide a comparative analysis of the heat transfer results at the same value of heat flux supplied to the minichannel heated wall when either a laser-textured surface or a smooth base one was applied. It was noticed that the use of the 90-degree dense grid pattern type 2 (shallow) surface in the research helped achieve the highest local heat transfer coefficient in the subcooled boiling region compared to other surfaces tested. Furthermore, the 90-degree dense grid pattern type 1, characterised by larger maximum depth and height surfaces, performed best in the saturated boiling region. The results obtained for the laser-textured heated plate surface were compared to those collected for the smooth base heated plate surface, generally indicating an intensification of heat transfer processes in boiling heat transfer during FC-72 flow in a minichannel. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

16 pages, 6897 KiB  
Article
An Experimental Study of Boiling Heat Transfer and Quench Front Propagation Velocity During Quenching of a Cylinder Rod in Subcooled Water
by Yuanyang Sun, Huanyan Jian, Ping Xiong and Linglan Zhou
Energies 2024, 17(20), 5236; https://doi.org/10.3390/en17205236 - 21 Oct 2024
Cited by 1 | Viewed by 1260
Abstract
In this study, a quenching experiment was conducted at atmospheric pressure to investigate the flow and heat-transfer characteristics of cylindrical rods made from SS, FeCrAl, and Zr-4 under various subcooling degrees (ΔTsub). The inverse heat-conduction problem (IHCP) method and image-processing [...] Read more.
In this study, a quenching experiment was conducted at atmospheric pressure to investigate the flow and heat-transfer characteristics of cylindrical rods made from SS, FeCrAl, and Zr-4 under various subcooling degrees (ΔTsub). The inverse heat-conduction problem (IHCP) method and image-processing technique were utilized to determine the surface temperature and heat flux, vapor film thickness, and quench front propagation. The results show that smaller solid kρcp and larger ΔTsub result in relatively more efficient quenching boiling heat transfer, thinner vapor film thickness, and greater quench front propagation velocity. The quench front originates at the bottom of the test specimen and becomes progressively larger in velocity with time. It eventually converges with the downward-propagating quench front in the upper middle of the test specimen. Moreover, at the beginning of quench front propagation, the SS and FeCrAl test specimens have a constant velocity region. However, because the Zr-4 test specimen has a small kρcp, the velocities gradually increase from the onset of quench front generation. Furthermore, the measured average quench front velocities are consistent with the experimental datum from the literature. However, the predicted model proposed by Duffey underestimates the propagation velocity due to ignoring the cooling effect of film boiling. Full article
(This article belongs to the Special Issue Heat Transfer and Multiphase Flow)
Show Figures

Figure 1

15 pages, 3871 KiB  
Article
Development and Optimization of a Micro-Baffle for the Enhancement of Heat Transfer in Film Boiling
by Onur Muhammed Sarikaya, Mustafa Kuzay, Sibel Yilmaz and Ender Demirel
Energies 2024, 17(20), 5224; https://doi.org/10.3390/en17205224 - 21 Oct 2024
Viewed by 1655
Abstract
This study represents the development and optimization of a micro-baffle design to enhance heat transfer in film boiling. Numerical simulations are performed using an open-source computational fluid dynamics (CFD) model, which incorporates the Lee model for momentum source associated with the phase change, [...] Read more.
This study represents the development and optimization of a micro-baffle design to enhance heat transfer in film boiling. Numerical simulations are performed using an open-source computational fluid dynamics (CFD) model, which incorporates the Lee model for momentum source associated with the phase change, and the Volume of Fluid (VOF) method to capture bubble dynamics. A comparison of the numerical results with the previous numerical and experimental data confirmed the validity of the numerical model. The influence of key design parameters was systematically investigated. The results revealed that a vertical baffle provided the maximum performance. The optimal baffle design achieved a 57.4% improvement in the Nusselt number and a 66.4% increase in critical heat flux (CHF). Furthermore, the proposed design facilitated continuous bubble formation, even with a reduced temperature difference between the heated surface and the subcooled liquid, which is crucial for energy-efficient thermal management in engineering systems. Ultimately, this study demonstrates the potential of micro-baffle designs in controlling bubble dynamics and improving heat transfer in film boiling, thereby aiding the design of efficient thermal systems. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

35 pages, 8333 KiB  
Article
Investigation of Wall Boiling Closure, Momentum Closure and Population Balance Models for Refrigerant Gas–Liquid Subcooled Boiling Flow in a Vertical Pipe Using a Two-Fluid Eulerian CFD Model
by Nishit Shaparia, Ugo Pelay, Daniel Bougeard, Aurélien Levasseur, Nicolas François and Serge Russeil
Energies 2024, 17(17), 4225; https://doi.org/10.3390/en17174225 - 23 Aug 2024
Cited by 2 | Viewed by 1529
Abstract
The precise design of heat exchangers in automobile air conditioning systems for more sustainable electric vehicles requires an enhanced assessment of CFD mechanistic models for the subcooled boiling flow of pure eco-friendly refrigerant. Computational Multiphase Flow Dynamics (CMFDs) relies on two-phase closure models [...] Read more.
The precise design of heat exchangers in automobile air conditioning systems for more sustainable electric vehicles requires an enhanced assessment of CFD mechanistic models for the subcooled boiling flow of pure eco-friendly refrigerant. Computational Multiphase Flow Dynamics (CMFDs) relies on two-phase closure models to accurately depict the complex physical phenomena involved in flow boiling. This paper thoroughly examines two-phase CMFD flow boiling, incorporating sensitivity analyses of critical parameters such as boiling closures, momentum closures, and population balance models. Three datasets from the DEBORA experiment, involving vertical pipes with subcooled boiling flow of refrigerant at three different pressures and varying levels of inlet liquid subcooling, are used for comparison with CFD simulations. This study integrates nucleate site density and bubble departure diameter models to enhance wall boiling model accuracy. It aims to investigate various interfacial forces and examines the S-Gamma and Adaptive Multiple Size-Group (A-MuSiG) size distribution methods for their roles in bubble break up and coalescence. These proposed approaches demonstrate their efficacy, contributing to a deeper understanding of flow boiling phenomena and the development of more accurate models. This investigation offers valuable insights into selecting the most appropriate sub-closure models for both boiling closure and momentum closure in simulating boiling flows. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

16 pages, 9639 KiB  
Article
Hierarchical Hypervapotron Structure Integrated with Microchannels for Advancement of Thermohydraulic Performance
by Xin Meng, Kai Cheng, Qi Zhao and Xuemei Chen
Symmetry 2024, 16(8), 1089; https://doi.org/10.3390/sym16081089 - 22 Aug 2024
Cited by 2 | Viewed by 1335
Abstract
The hypervapotron structure was considered to be a feasible configuration to meet the high heat-dissipating requirement of divertors in nuclear fusion devices. In this work, symmetric CuCrZr-based transverse microchannels (TMHC) and longitudinal microchannels (LMHC) with an integrated hypervapotron channel were proposed and manufactured, [...] Read more.
The hypervapotron structure was considered to be a feasible configuration to meet the high heat-dissipating requirement of divertors in nuclear fusion devices. In this work, symmetric CuCrZr-based transverse microchannels (TMHC) and longitudinal microchannels (LMHC) with an integrated hypervapotron channel were proposed and manufactured, and subcooled flow boiling experiments were conducted using deionized water at an inlet temperature of 20 °C with a traditional flat-type hypervapotron channel (FHC) for comparison. The LMHC and TMHC obtained lower wall temperatures than the FHC for all conditions, and the TMHC yielded the lowest temperatures. The heat transfer coefficients of the LMHC and TMHC outperformed the FHC due to the enlarged heat transfer area, and the TMHC had the greatest heat transfer coefficient (maximumly increased by 132% compared to the FHC) because the transverse-arranged microchannels were conductive, promoting the convection and liquid replenishment ability by introducing branch flow between fins; however, the microchannels of the LMHC were insensible to flow velocities due to the block effect of longitudinal microchannels. The LMHC obtained the largest pressure drop, and the pressure drop for the FHC and TMHC were comparable since the transverse-placed microchannels had little effect on frictional pressure loss. The TMHC attained the greatest comprehensive thermohydraulic performance which might bring significant insight to the structural design of hypervapotron devices. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2024)
Show Figures

Figure 1

19 pages, 3700 KiB  
Article
The Identification of Leidenfrost Phenomenon Formation on TiO2-Coated Surfaces and the Modelling of Heat Transfer Processes
by Monika Maziukienė, Nerijus Striūgas, Lina Vorotinskienė, Raminta Skvorčinskienė and Marius Urbonavičius
Materials 2024, 17(15), 3687; https://doi.org/10.3390/ma17153687 - 25 Jul 2024
Viewed by 1108
Abstract
Experiments on specimen cooling dynamics and possible film boiling around a body are very important in various industrial applications, such as nucleate boiling, to decrease drag reduction or achieve better surface properties in coating technologies. The objective of this study was to investigate [...] Read more.
Experiments on specimen cooling dynamics and possible film boiling around a body are very important in various industrial applications, such as nucleate boiling, to decrease drag reduction or achieve better surface properties in coating technologies. The objective of this study was to investigate the interaction between the heat transfer processes and cooling dynamics of a sample in different boundary conditions. This article presents new experimental data on specimens coated with Al–TiO2 film and Leidenfrost phenomenon (LP) formation on the film’s surface. Furthermore, this manuscript presents numerical heat and mass transfer parameter results. The comparative analysis of new experiments on Al–TiO2 film specimens and other coatings such as polished aluminium, Al–MgO, Al–MgH2 and Al–TiH2 provides further detail on oxide and hydride materials. In the experimental cooling dynamics experiments, specimens were heated up to 450 °C, while the sub-cooling water temperatures were 14*‒20 °C (room temperature), 40 °C and 60 °C. The specimens’ cooling dynamics were calculated by applying Newton’s cooling law, and heat transfer was estimated by calculating the heat flux q transferred from the specimens’ surface and the Bi parameter. The metadata results from the performed experiments were used to numerically model the cooling dynamics curves for different material specimens. Approximated polynomial equations are proposed for the polished aluminium, Al–TiO2, Al–MgO, Al–MgH2 and Al–TiH2 materials. The provided comparative analysis makes it possible to see the differences between oxides and hydrides and to choose materials for practical application in the industrial sector. The presented results could also be used in software packages to model heat transfer processes. Full article
Show Figures

Figure 1

18 pages, 4321 KiB  
Article
Weakening of Ledinegg Instability and Maldistribution of Boiling Flow in Parallel Microchannels by Entry Effects
by Jieyan Jiang, Changxu Chen, Haoxiang Huang and Zhenhai Pan
Energies 2024, 17(8), 1901; https://doi.org/10.3390/en17081901 - 16 Apr 2024
Viewed by 1838
Abstract
In the pursuit of enhancing thermal management for miniaturized electronic devices, our study delves into the impact of entry effects on Ledinegg instability and flow maldistribution within parallel microchannels. Utilizing a coupled model that incorporates phase change and pressure drop dynamics in boiling [...] Read more.
In the pursuit of enhancing thermal management for miniaturized electronic devices, our study delves into the impact of entry effects on Ledinegg instability and flow maldistribution within parallel microchannels. Utilizing a coupled model that incorporates phase change and pressure drop dynamics in boiling flow, we examine microchannels characterized by a 50 length-to-diameter ratio and a 200 μm hydraulic diameter. Our findings unveil a significant influence of entry effects, which narrow the total flow excursion interval, thereby bolstering system stability. Specifically, as the heat flux escalates from 5 W/cm2 to 120 W/cm2, the entry effects increasingly mitigate flow instability and maldistribution in parallel channels, diminishing the total flow rate range susceptible to flow instability by 4.73% and 47.52%, while narrowing the total flow rate range corresponding to uneven flow distribution by 4.70% and 46.75%, respectively. Furthermore, entry effects expand the inlet subcooling range necessary for stabilizing the parallel channel system by 38.89% and 1000%. This research not only underscores the importance of considering entry effects in microchannel design but also opens avenues for further exploration into enhancing thermal management solutions. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

19 pages, 6928 KiB  
Article
Experimental Investigations on Pressure Drop for Subcooled Water in a Circular Channel with a Twisted Tape Insert under One-Side Heating Conditions
by Ge Zhu, Ge Mei, Qincheng Bi and Shujian Tian
Energies 2024, 17(1), 193; https://doi.org/10.3390/en17010193 - 29 Dec 2023
Viewed by 1052
Abstract
The pressure drop characteristics of subcooled water were experimentally investigated in a circular cooling channel with and without a twisted tape (TT) under high heat fluxes, which was designed for the water-cooling structure of the divertor target in a tokamak device. The working [...] Read more.
The pressure drop characteristics of subcooled water were experimentally investigated in a circular cooling channel with and without a twisted tape (TT) under high heat fluxes, which was designed for the water-cooling structure of the divertor target in a tokamak device. The working medium was deionized water, and the main parameters were mass flux G = 3000–8000 kg·m−2·s−1, inlet pressure of the test section p = 3, 4.2, 5 MPa, equivalent one-side heating flux qe = 5~10 MW·m−2. The off-center circular channel is electrically heated to simulate the unilateral radiation heating on the divertor target by high-temperature plasma. The pressure drop experiment of vertical upward circular cooling channels under high and unilateral heat flux is carried out. The influences of the TT and system parameters such as qe, G, and p on the pressure drop of the test section (Δp) were discussed in detail. In the single-phase (SP) flow region, Δp is mainly affected by the TT, G, and qe. The pressure drop with a TT is significantly higher than that without a TT, a higher G and a lower qe lead to a greater Δp. In the subcooled boiling (SB) flow region, Δp is correlated with the TT, qe, G, and p: the influence of the TT and G decreases, while the influence of p increases. The higher the qe, the higher the G, and the lower the p, the larger the Δp. The results show that almost all of the SP pressure drop correlations for heated circular channels overestimate the experimental pressure drop coefficient ratio for a given viscosity ratio. According to the test results, a new correlation of SP pressure drop under high and unilateral heat fluxes has been proposed, the average error (AE) and root mean square error (RMSE) of which are 0.26% and 3.17%, respectively. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

17 pages, 5171 KiB  
Article
Pressure Drop Characteristics of Subcooled Water in a Hypervapotron under High and Non-Uniform Heat Fluxes
by Ge Zhu, Ge Mei, Jianguo Yan and Shujian Tian
Energies 2023, 16(24), 8121; https://doi.org/10.3390/en16248121 - 18 Dec 2023
Cited by 1 | Viewed by 1504
Abstract
To study the pressure drop characteristics of hypervapotron, which was designed as a water-cooling structure in the divertor dome of the fusion reactor, the pressure drop tests of subcooled water were carried out in a vertically upward hypervapotron. To simulate the one-side radiant [...] Read more.
To study the pressure drop characteristics of hypervapotron, which was designed as a water-cooling structure in the divertor dome of the fusion reactor, the pressure drop tests of subcooled water were carried out in a vertically upward hypervapotron. To simulate the one-side radiant heating condition in the engineering application, the non-uniform heat fluxes were obtained by using the off-center electrically heating method. The system parameters were as follows: mass flux G = 2000–5000 kg·m−2·s−1, inlet pressure p = 2–4 MPa, and equivalent one-side radiating heat flux qe = 0–5 MW·m−2. The effects of the parameters on the pressure drop were discussed in detail. It was observed that in the single-phase (SP) region, the pressure drop was little influenced by the inlet fluid temperature (Tb,in). However, in the subcooled boiling region, the pressure drop increased rapidly with the increasing Tb,in. A higher G leads to a high pressure drop. In the SP region, the influence of p on the pressure drop is not obvious, and the pressure drop decreased with the increasing qe. The test data are used to evaluate the typical pressure drop correlation, and the results show that none of these correlations can predict the pressure drop well under the test conditions. Therefore, a new pressure drop correlation is proposed for subcooled water in a hypervapotron under high and non-uniform heat fluxes. The new correlation has a high prediction accuracy for the test data, and the mean relative error (MRE) and root mean square error (RMSE) are 0.72% and 4.33%, respectively. The test results have a reference value for the design of the water-cooling structure of the diverter. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

31 pages, 1992 KiB  
Article
Further Study and Development of Correlations for Heat Transfer during Subcooled Boiling in Plain Channels
by Mirza M. Shah
Fluids 2023, 8(9), 245; https://doi.org/10.3390/fluids8090245 - 31 Aug 2023
Cited by 1 | Viewed by 1932
Abstract
The author’s published correlations for subcooled boiling in channels are further studied and developed in this work. The areas explored include choice of equivalent diameters for annuli and partially heated channels, effects of flow direction, micro-gravity, and orientation of heated surface. A new [...] Read more.
The author’s published correlations for subcooled boiling in channels are further studied and developed in this work. The areas explored include choice of equivalent diameters for annuli and partially heated channels, effects of flow direction, micro-gravity, and orientation of heated surface. A new correlation is developed, which is a modification of the author’s earlier correlation. The author’s previous correlations and the new correlation are compared with a very wide range of test data for round tubes, rectangular channels, and annuli. Several other correlations are also compared with the same data. The authors’ correlations provide good agreement with data, the new correlation giving the least deviation. The data included hydraulic diameters from 0.176 to 22.8 mm, reduced pressure from 0.0046 to 0.922, subcooling from 0 to 165 K, mass flux from 59 to 31,500 kgm−2s−1, all flow directions, and terrestial to micro gravity. The new correlation has mean absolute deviation (MAD) of 13.3% with 2270 data points from 49 sources. Correlations by others had MAD of 18% to 116%. The results are presented and discussed. Full article
(This article belongs to the Section Heat and Mass Transfer)
Show Figures

Figure 1

Back to TopTop