Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = sub-threshold slope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 20663 KB  
Article
Reliability of Satellite Data in Capturing Spatiotemporal Changes of Precipitation Extremes in the Middle Reaches of the Yellow River Basin
by Qianxi Yang, Qiuyu Xie and Ximeng Xu
Remote Sens. 2025, 17(19), 3308; https://doi.org/10.3390/rs17193308 - 26 Sep 2025
Viewed by 273
Abstract
Extreme precipitation in the Middle Reaches of the Yellow River Basin (MRYRB) has increased significantly and unevenly, heightening the urgency for rapid and accurate monitoring of such extremes. Satellite precipitation data have proved effective in capturing precipitation extremes but have not been validated [...] Read more.
Extreme precipitation in the Middle Reaches of the Yellow River Basin (MRYRB) has increased significantly and unevenly, heightening the urgency for rapid and accurate monitoring of such extremes. Satellite precipitation data have proved effective in capturing precipitation extremes but have not been validated in the MRYRB. Thus, station-interpolated data were used to validate the reliability of satellite data (GPM IMERG) in characterizing spatiotemporal changes in nine extreme precipitation indices across the entire MRYRB and its ten sub-basins from 2001 to 2022. The results show that all frequency, intensity, and cumulative amount indices exhibit significantly increasing trends. Spatially, extreme precipitation exhibits a clear southeast–northwest gradient. The higher values occur in the southeastern sub-basins. Characterized by high-intensity, short-duration precipitation, the central sub-basins exhibit the lower values of extreme precipitation indices, yet have experienced the most rapid upward trends in those indices. The comparative analysis demonstrates that GPM reliably reproduces indices such as the number of days and amounts with precipitation above a threshold (R10, R20, R95p), maximum precipitation over five days (RX5day), and total precipitation (PRCPTOT) (with regression slopes close to 1, coefficient of determination R2 and Nash-Sutcliffe efficiency (NSE) greater than 0.7, and residual sum of squares ratio (RSR) less than 0.6, with negligible relative bias), particularly in the southern sub-basins. However, it tends to underestimate continuous wet days (CWD) and total precipitation when precipitation is over the 99th percentile (R99p). These findings advance current understanding of GPM applicability at watershed scales and offer actionable insight for water-sediment prediction under the world’s changing climate. Full article
Show Figures

Figure 1

16 pages, 3482 KB  
Article
Reliability of Automated Amyloid PET Quantification: Real-World Validation of Commercial Tools Against Centiloid Project Method
by Yeon-koo Kang, Jae Won Min, Soo Jin Kwon and Seunggyun Ha
Tomography 2025, 11(8), 86; https://doi.org/10.3390/tomography11080086 - 30 Jul 2025
Cited by 1 | Viewed by 1633
Abstract
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study [...] Read more.
Background: Despite the growing demand for amyloid PET quantification, practical challenges remain. As automated software platforms are increasingly adopted to address these limitations, we evaluated the reliability of commercial tools for Centiloid quantification against the original Centiloid Project method. Methods: This retrospective study included 332 amyloid PET scans (165 [18F]Florbetaben; 167 [18F]Flutemetamol) performed for suspected mild cognitive impairments or dementia, paired with T1-weighted MRI within one year. Centiloid values were calculated using three automated software platforms, BTXBrain, MIMneuro, and SCALE PET, and compared with the original Centiloid method. The agreement was assessed using Pearson’s correlation coefficient, the intraclass correlation coefficient (ICC), a Passing–Bablok regression, and Bland–Altman plots. The concordance with the visual interpretation was evaluated using receiver operating characteristic (ROC) curves. Results: BTXBrain (R = 0.993; ICC = 0.986) and SCALE PET (R = 0.992; ICC = 0.991) demonstrated an excellent correlation with the reference, while MIMneuro showed a slightly lower agreement (R = 0.974; ICC = 0.966). BTXBrain exhibited a proportional underestimation (slope = 0.872 [0.860–0.885]), MIMneuro showed a significant overestimation (slope = 1.053 [1.026–1.081]), and SCALE PET demonstrated a minimal bias (slope = 1.014 [0.999–1.029]). The bias pattern was particularly noted for FMM. All platforms maintained their trends for correlations and biases when focusing on subthreshold-to-low-positive ranges (0–50 Centiloid units). However, all platforms showed an excellent agreement with the visual interpretation (areas under ROC curves > 0.996 for all). Conclusions: Three automated platforms demonstrated an acceptable reliability for Centiloid quantification, although software-specific biases were observed. These differences did not impair their feasibility in aiding the image interpretation, as supported by the concordance with visual readings. Nevertheless, users should recognize the platform-specific characteristics when applying diagnostic thresholds or interpreting longitudinal changes. Full article
Show Figures

Figure 1

27 pages, 18566 KB  
Article
Geochemical Characteristics and Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in the Erdengsumu Sag, Erlian Basin, NE China
by Juwen Yao, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Guangyuan Xing, Yanzhao Liu and Mingxing Jia
Processes 2025, 13(8), 2412; https://doi.org/10.3390/pr13082412 - 29 Jul 2025
Viewed by 569
Abstract
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, [...] Read more.
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, ultimately developing a sedimentary model for lacustrine hydrocarbon source rocks. The findings suggest the following: (1) The lower Tengger Member (K1bt1) and the Aershan Formation (K1ba) are the primary oil-producing strata, with an effective hydrocarbon source rock exhibiting a lower limit of total organic carbon (TOC) at 0.95%. The Ro value typically remains below 0.8%, indicating that high-maturity oil production has not yet been attained. (2) The oil generation threshold depths for the Dalestai and Sayinhutuge sub-sags are 1500 m and 1214 m, respectively. The thickness of the effective hydrocarbon source rock surpasses 200 m, covering areas of 42.48 km2 and 88.71 km2, respectively. The cumulative hydrocarbon generation intensity of wells Y1 and Y2 is 486 × 104 t/km2 and 26 × 104 t/km2, respectively, suggesting that the Dalestai sub-sag possesses considerable petroleum potential. The Aershan Formation in the Chagantala sub-sag has a maximum burial depth of merely 1800 m, insufficient to attain the oil generation threshold depth. (3) The research area’s productive hydrocarbon source rocks consist of organic matter types I and II1. The Pr/Ph range is extensive (0.33–2.07), signifying a reducing to slightly oxidizing sedimentary environment. This aligns with the attributes of small fault lake basins, characterized by shallow water and robust hydrodynamics. (4) The low ratio of ∑nC21−/∑nC22+ (0.36–0.81), high CPI values (>1.49), and high C29 sterane concentration suggest a substantial terrestrial contribution, with negligible input from aquatic algae–bacterial organic matter. Moreover, as sedimentation duration extends, the contribution from higher plants progressively increases. (5) The ratio of the width of the deep depression zone to the width of the depression in the Erdengsumu sag is less than 0.25. The boundary fault scale is small, its activity is low, and there is not much input from the ground. Most of the source rocks are in the reducing sedimentary environment of the near-lying gently sloping zone. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

20 pages, 1712 KB  
Article
APOE Genotype-Stratified Meta-Analysis of Cognitive Decline Reveals Novel Loci for Language and Global Cognitive Function in Older Adults
by Vibha Acharya, Kang-Hsien Fan, Beth E. Snitz, Mary Ganguli, Steven T. DeKosky, Oscar L. Lopez, Eleanor Feingold and M. Ilyas Kamboh
Int. J. Mol. Sci. 2025, 26(14), 6940; https://doi.org/10.3390/ijms26146940 - 19 Jul 2025
Viewed by 1472
Abstract
Apolipoprotein E (APOE) allele 4 (APOE4), one of the robust genetic risk factors for AD, has also been associated with cognitive decline in terms of memory, executive function, language, and global cognitive function. APOE genotype-stratified analysis can help to [...] Read more.
Apolipoprotein E (APOE) allele 4 (APOE4), one of the robust genetic risk factors for AD, has also been associated with cognitive decline in terms of memory, executive function, language, and global cognitive function. APOE genotype-stratified analysis can help to identify additional genetic loci which might be masked due to a strong effect of APOE4. We conducted a genome-wide meta-analysis in APOE2 carriers, APOE4 carriers, and APOE 3/3 homozygote groups among 2969 non-Hispanic Whites aged ≥ 65 years using slopes of decline over time across five cognitive domains (attention, language, executive function, memory, and visuospatial function) and global cognitive function. We identified novel genome-wide significant associations for decline in global cognitive function in the intergenic region between RNU7-66P/RNA5SP208 at rs116379916 (p = 1.44 × 10−9) in the APOE 3/3 group and for decline in language in the intergenic region between LINC0221/DTWD2 at rs13187183 (p = 3.79 × 10−8) in APOE4 carriers. A previously reported locus for decline in attention near RASEF at rs6559700 (p = 9.95 × 10−9) was found to be confined to the APOE 3/3 group. We also found two sub-threshold significant associations in the APOE 2 group for decline in attention (IL1RL2/rs77127114; p = 8.64 × 10−8) and decline in language (YTHDC2/KCNN2, rs116191836; p = 5.66 × 10−8). Our study points to potential biological pathways pertaining to specific domains within each APOE genotype group, and the findings suggest that immune-related pathways, plasma levels of polysaturated fatty acids, and bitter taste receptors may play roles in cognitive decline. Our findings enhance the understanding of cognitive aging and provide a framework for future studies. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 6159 KB  
Article
Coastal Flooding Hazards in Northern Portugal: A Practical Large-Scale Evaluation of Total Water Levels and Swash Regimes
by Jose Eduardo Carneiro-Barros, Ajab Gul Majidi, Theocharis Plomaritis, Tiago Fazeres-Ferradosa, Paulo Rosa-Santos and Francisco Taveira-Pinto
Water 2025, 17(10), 1478; https://doi.org/10.3390/w17101478 - 14 May 2025
Viewed by 1550
Abstract
The northern Portuguese coast has been increasingly subjected to wave-induced coastal flooding, highlighting a critical need for comprehensive overwash assessment in the region. This study systematically evaluates the total water levels (TWLs) and swash regimes over a 120 km stretch of the northern [...] Read more.
The northern Portuguese coast has been increasingly subjected to wave-induced coastal flooding, highlighting a critical need for comprehensive overwash assessment in the region. This study systematically evaluates the total water levels (TWLs) and swash regimes over a 120 km stretch of the northern coast of Portugal. Traditional approaches to overwash assessment often rely on detailed models and location-specific data, which can be resource-intensive. The presented methodology addresses these limitations by offering a pragmatic balance between accuracy and practicality, suitable for extended coastal areas with reduced human and computational resources. A coastal digital terrain model was used to extract essential geomorphological features, including the dune toe, dune crest, and/or crown of defense structures, as well as the sub-aerial beach profile. These features help establish a critical threshold for flooding, alongside assessments of beach slope and other relevant parameters. Additionally, a wave climate derived from a SWAN regional model was integrated, providing a comprehensive time-series hindcast of sea-states from 1979 to 2023. The wave contribution to TWL was considered by using the wave runup, which was calculated using different empirical formulas based on SWAN’s outputs. Astronomical tides and meteorological surge—the latter reconstructed using a long short-term memory (LSTM) neural network—were also integrated to form the TWL. This integration of geomorphological and oceanographic data allows for a straightforward evaluation of swash regimes and consequently overwash potential. The accuracy of various empirical predictors for wave runup, a primary hydrodynamic factor in overwash processes, was assessed. Several reports from hazardous events along this stretch were used as validation for this method. This study further delineates levels of flooding hazard—ranging from swash and collision to overwash at multiple representative profiles along the coast. This regional-scale assessment contributes to a deeper understanding of coastal flooding dynamics and supports the development of targeted, effective coastal management strategies for the northern Portuguese coast. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

29 pages, 5616 KB  
Article
Analysis of Nanoscale Short Channel Effects in Cylindrical Gate-All-Around Junctionless FETs and Performance Enhancement with GaAs and III–V Materials for Low-Power, High Frequency Applications
by Pooja Srivastava, Aditi Upadhyaya, Shekhar Yadav, Chandra Mohan Singh Negi and Arvind Kumar Singh
Electronics 2025, 14(6), 1134; https://doi.org/10.3390/electronics14061134 - 13 Mar 2025
Cited by 1 | Viewed by 1644
Abstract
With the advancement of the semiconductor industry into the sub-10 nm regime, high-performance, low-energy transistors have become important, and gate-all-around junctionless field-effect transistors (GAA-JLFETs) have been developed to meet the demands. Silicon (Si) is still the dominant semiconductor material, but other potential alternatives, [...] Read more.
With the advancement of the semiconductor industry into the sub-10 nm regime, high-performance, low-energy transistors have become important, and gate-all-around junctionless field-effect transistors (GAA-JLFETs) have been developed to meet the demands. Silicon (Si) is still the dominant semiconductor material, but other potential alternatives, such as gallium arsenide (GaAs), provide much higher electron mobility, improving the drive current and switching speed. In this study, our contributions include a comparative analysis of Si and GaAs-based cylindrical GAA-JLFETs, using threshold voltage behavior, electrostatic control, short channel effects, subthreshold slope, drain-induced barrier lowering, and leakage current as the metrics for performance evaluation. A comprehensive analytical modeling approach is employed, solving Poisson’s equation and utilizing numerical simulations to assess device characteristics using the ATLAS SILVACO tool under varying channel lengths and gate biases. Comparisons between Si and GaAs-based devices show what trade-offs exist and what the material engineering strategies are to use the advantages of GaAs while minimizing some disadvantages. The results of the study are a valuable contribution to the design and optimization of next-generation FET architectures, pointing the direction for enabling next-generation beyond CMOS technology. Full article
Show Figures

Figure 1

21 pages, 7139 KB  
Article
Investigation of Short Channel Effects in Al0.30Ga0.60As Channel-Based Junctionless Cylindrical Gate-All-Around FET for Low Power Applications
by Pooja Srivastava, Aditi Upadhyaya, Shekhar Yadav, Chandra Mohan Singh Negi and Arvind Kumar Singh
J. Low Power Electron. Appl. 2025, 15(1), 12; https://doi.org/10.3390/jlpea15010012 - 21 Feb 2025
Cited by 1 | Viewed by 985
Abstract
In this work, a cylindrical gate-all-around junctionless field effect transistor (JLFET) was investigated. Junctions and doping concentration gradients are unavailable in JLFET. According to the results, the suggested device has a novel architecture that significantly enhances transistor performance while exhibiting a decreased vulnerability [...] Read more.
In this work, a cylindrical gate-all-around junctionless field effect transistor (JLFET) was investigated. Junctions and doping concentration gradients are unavailable in JLFET. According to the results, the suggested device has a novel architecture that significantly enhances transistor performance while exhibiting a decreased vulnerability to short-channel effects (SCEs). The Atlas 3D device simulator has been used to analyze the proposed JLFET’s performance, especially for low-power applications for different channel lengths ranging from 10 nm to 60 nm with Al0.30Ga0.60As as III-V materials. The comparative simulated study has been based on various performance parameters, including subthreshold slope (SS), drain-induced barrier lowering (DIBL), transconductance, threshold voltage, and ION to IOFF ratio. The results of the simulations demonstrated that the III-V JLFET exhibited a favorable SS and decreased DIBL compared to other circuit topologies. In the suggested study, gallium arsenide (GaAs) and its compound materials have demonstrated a strong correlation between the SS and DIBL values. The SS is approximately 63 mV/dec, extremely near the ideal 60 mV/dec value. Gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs) exhibit DIBL of approximately 30 mV/V and an SS value of around 64 mV/dec. Full article
Show Figures

Figure 1

12 pages, 4226 KB  
Article
Design Strategies for BCAT Structures: Enhancing DRAM Reliability and Mitigating Row Hammer Effect
by Jisung Im, Hansol Kim, Hyungjin Kim and Sung Yun Woo
Electronics 2025, 14(3), 499; https://doi.org/10.3390/electronics14030499 - 26 Jan 2025
Viewed by 3180
Abstract
This study investigates the impact of four parameters—gate angles, fin height controlled through gate overlaps and the distance from fin to source/drain, and substrate bottom doping concentration—on the row hammer effect (RHE) in DRAM cells. The influence of adjacent and passing gates on [...] Read more.
This study investigates the impact of four parameters—gate angles, fin height controlled through gate overlaps and the distance from fin to source/drain, and substrate bottom doping concentration—on the row hammer effect (RHE) in DRAM cells. The influence of adjacent and passing gates on the DRAM cell body potential was identified as a key factor in D0 and D1 failures. The tolerance for D1 and D0 failures was analyzed, defined as the threshold number of pulses required to induce a 0.6 V change in the storage node voltage (from 1.2 V to 0.6 V for a D1 failure or from 0 V to 0.6 V for a D0 failure). D1 (D0) failure tolerances with the slope from the top of the top gate (θangle) of 3°, the height of the TiN gate covering the fin (Hfin_overlap) of 12.5 nm, and the height of the fin (Hfin) of 12.5 nm are 1.26 × 106 (4.8 × 106), 1.14 × 106 (4 × 107), and 7.5 × 105 (4.8 × 105), respectively. Higher θangles and smaller fin heights generally result in higher RHE tolerances. Although decreasing the fin height reduced the RHE, it also decreased the on-current and resulted in an increase in the threshold voltage (VT) and the subthreshold swing (SS). In addition, by increasing the substrate bottom doping concentration (Pdop_bot), we improve RHE tolerance twice its original level without reducing the on-current. Therefore, designing a buried channel array transistor (BCAT) structure requires careful consideration of these trade-offs, and a thorough understanding of the underlying mechanism is crucial to devising strategies that reduce RHE tolerance. The findings of this study are expected to contribute significantly to the development of next-generation DRAM architectures, enhancing stability and performance. By addressing the reliability challenges posed by advanced scaling, this study paves the way for the ongoing advancement of DRAM technology for high-density and high-performance applications. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

17 pages, 3556 KB  
Article
Quantification of Soil–Water Erosion Using the RUSLE Method in the Mékrou Watershed (Middle Niger River)
by Rachid Abdourahamane Attoubounou, Hamidou Diawara, Ralf Ludwig and Julien Adounkpe
ISPRS Int. J. Geo-Inf. 2025, 14(1), 28; https://doi.org/10.3390/ijgi14010028 - 14 Jan 2025
Cited by 1 | Viewed by 1821
Abstract
Despite nearly a century of research on water-related issues, water erosion remains one of the greatest threats to soil health and soil ecosystem services around the world. Yet, to date, data on water erosion needed to develop mitigation strategies are scarce, especially in [...] Read more.
Despite nearly a century of research on water-related issues, water erosion remains one of the greatest threats to soil health and soil ecosystem services around the world. Yet, to date, data on water erosion needed to develop mitigation strategies are scarce, especially in the Sahelian regions. The current study therefore sets out to estimate annual soil losses caused by water erosion and to analyze trends over the period of 1981–2020 in the Mékrou watershed, located in the Middle Niger river sub-basin in West Africa. The Revised Universal Soil Loss Equation, remote sensing, and the Geographic Information System (GIS) were deployed in this study. Several types of data were used, including rainfall data, sourced from meteorological stations and reanalysis datasets, which capture the temporal variability of erosive forces. Soil properties, including texture and organic matter content, were derived from FAO global soil databases to assess soil erodibility. High-resolution digital elevation models (30 m) provided detailed topographic information, crucial for calculating slope length and steepness factors. Land use and land cover data were extracted from satellite imagery, enabling the analysis of vegetation cover and anthropogenic impacts over four decades. By integrating and treating these data, this study reveals that the estimated average annual amount of water erosion in the Mékrou watershed is 6.49 t/ha/yr over 1981–2020. The dynamics of the ten-year average are highly variable, with a minimum of 3.45 t/ha/yr between 1981 and 1990, and a maximum of 8.50 t/ha/yr between 1991 and 2000. Even though these average soil losses in the Mékrou basin are below the tolerable threshold of 10 t/ha/yr, mitigation actions are needed for prevention. In addition, the spatial dynamics of water erosion are noticeably heterogeneous. The study reveals that 72.7% of the surface area of the Mékrou watershed is subject to slight water erosion below the threshold, compared with 27.3%, particularly in the mountainous south-western part, which is subject to intense erosion above the threshold. This research is the first study of soil erosion quantification with the RUSLE method and GIS in the Mékrou watershed, and fills a critical knowledge gap of the water erosion in this watershed, providing insights into erosion dynamics and supporting future sustainable land management strategies in vulnerable Sahelian landscapes. Full article
Show Figures

Figure 1

25 pages, 6720 KB  
Article
Forest Fire Discrimination Based on Angle Slope Index and Himawari-8
by Pingbo Liu and Gui Zhang
Remote Sens. 2025, 17(1), 142; https://doi.org/10.3390/rs17010142 - 3 Jan 2025
Viewed by 1379
Abstract
In the background of high frequency and intensity forest fires driven by future warming and a drying climate, early detection and effective control of fires are extremely important to reduce losses. Meteorological satellite imagery is commonly used for near-real-time forest fire monitoring, thanks [...] Read more.
In the background of high frequency and intensity forest fires driven by future warming and a drying climate, early detection and effective control of fires are extremely important to reduce losses. Meteorological satellite imagery is commonly used for near-real-time forest fire monitoring, thanks to its high temporal resolution. To address the misjudgments and omissions caused by solely relying on changes in infrared band brightness values and a single image in forest fire early discrimination, this paper constructs the angle slope indexes ANIR, AMIR, AMNIR, ∆ANIR, and ∆AMIR based on the reflectance of the red band and near-infrared band, the brightness temperature of the mid-infrared and far-infrared band, the difference between the AMIR and ANIR, and the index difference between time-series images. These indexes integrate the strong inter-band correlations and the reflectance characteristics of visible and short-wave infrared bands to simultaneously monitor smoke and fuel biomass changes in forest fires. We also used the decomposed three-dimensional OTSU (maximum inter-class variance method) algorithm to calculate the segmentation threshold of the sub-regions constructed from the AMNIR data to address the different discrimination thresholds caused by different time and space backgrounds. In this paper, the Himawari-8 satellite imagery was used to detect forest fires based on the angle slope indices thresholds algorithm (ASITR), and the fusion of the decomposed three-dimensional OTSU and ASITR algorithm (FDOA). Results show that, compared with ASITR, the accuracy of FDOA decreased by 3.41% (0.88 vs. 0.85), the omission error decreased by 52.94% (0.17 vs. 0.08), and the overall evaluation increased by 3.53% (0.85 vs. 0.88). The ASITR has higher accuracy, and the fusion of decomposed three-dimensional OTSU and angle slope indexes can reduce forest fire omission error and improve the overall evaluation. Full article
Show Figures

Figure 1

14 pages, 2803 KB  
Article
Enhanced Drive Current in 10 nm Channel Length Gate-All-Around Field-Effect Transistor Using Ultrathin Strained Si/SiGe Channel
by Potaraju Yugender, Rudra Sankar Dhar, Swagat Nanda, Kuleen Kumar, Pandurengan Sakthivel and Arun Thirumurugan
Micromachines 2024, 15(12), 1455; https://doi.org/10.3390/mi15121455 - 29 Nov 2024
Cited by 1 | Viewed by 2941
Abstract
The continuous scaling down of MOSFETs is one of the present trends in semiconductor devices to increase device performance. Nevertheless, with scaling down beyond 22 nm technology, the performance of even the newer nanodevices with multi-gate architecture declines with an increase in short [...] Read more.
The continuous scaling down of MOSFETs is one of the present trends in semiconductor devices to increase device performance. Nevertheless, with scaling down beyond 22 nm technology, the performance of even the newer nanodevices with multi-gate architecture declines with an increase in short channel effects (SCEs). Consequently, to facilitate further increases in the drain current, the use of strained silicon technology provides a better solution. Thus, the development of a novel Gate-All-Around Field-Effect Transistor (GAAFET) incorporating a strained silicon channel with a 10 nm gate length is initiated and discussed. In this device, strain is incorporated in the channel, where a strained silicon germanium layer is wedged between two strained silicon layers. The GAAFET device has four gates that surround the channel to provide improved control of the gate over the strained channel region and also reduce the short channel effects in the devices. The electrical properties, such as the on current, off current, threshold voltage (VTH), subthreshold slope, drain-induced barrier lowering (DIBL), and Ion/Ioff current ratio, of the 10 nm channel length GAAFET are compared with the 22 nm strained silicon channel GAAFET, the existing SOI FinFET device on 10 nm gate length, and IRDS 2022 specifications device. The developed 10 nm channel length GAAFET, having an ultrathin strained silicon channel, delivers enriched device performance, being augmented in contrast to the IRDS 2022 specifications device, showing improved characteristics along with amended SCEs. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

9 pages, 3014 KB  
Article
Effects of a Spike-Annealed HfO2 Gate Dielectric Layer on the On-Resistance and Interface Quality of AlGaN/GaN High-Electron-Mobility Transistors
by Gyuhyung Lee, Jeongyong Yang, Min Jae Yeom, Sisung Yoon and Geonwook Yoo
Electronics 2024, 13(14), 2783; https://doi.org/10.3390/electronics13142783 - 15 Jul 2024
Cited by 1 | Viewed by 3662
Abstract
Various high-k dielectrics have been proposed for AlGaN/GaN MOSHEMTs for gate leakage and drain-current collapse suppression. Hafnium oxide (HfO2) is particularly interesting because of its large bandgap, high dielectric constant, and ferroelectricity under specific phase and doping conditions. However, defects and [...] Read more.
Various high-k dielectrics have been proposed for AlGaN/GaN MOSHEMTs for gate leakage and drain-current collapse suppression. Hafnium oxide (HfO2) is particularly interesting because of its large bandgap, high dielectric constant, and ferroelectricity under specific phase and doping conditions. However, defects and surface scattering caused by HfO2 dissimilarity and degraded HfO2/GaN interface quality still leave the challenge of reducing the SS and Ron. In this study, we investigated the effects of the first spike-annealed HfO2 (6 nm) layer, compared with the conventional ALD-HfO2 (6 nm) layer in the HfO2 bilayer gate dielectric structure on AlGaN/GaN HEMTs. Both devices exhibit negligible hysteresis and near-ideal (~60 mV/dec) subthreshold slopes of more than three orders of magnitude. The device with the first annealed HfO2 layer exhibited a reduced Ron with notably less gate bias dependency and enhanced output current. On the other hand, the capacitance–voltage and conductance methods revealed that the border and interface trap densities of the device were inferior to those of the conventional HfO2 layer. The trade-off between enhanced electrical performance and oxide traps is discussed based on these results. Full article
(This article belongs to the Special Issue Challenges, Innovation and Future Perspectives of GaN Technology)
Show Figures

Figure 1

14 pages, 4424 KB  
Article
Impact of Rh, Ru, and Pd Leads and Contact Topologies on Performance of WSe2 FETs: A First Comparative Ab Initio Study
by Chih-Hung Chung, Chiung-Yuan Lin, Hsien-Yang Liu, Shao-En Nian, Yu-Tzu Chen and Cheng-En Tsai
Materials 2024, 17(11), 2665; https://doi.org/10.3390/ma17112665 - 1 Jun 2024
Viewed by 5000
Abstract
2D field-effect transistors (FETs) fabricated with transition metal dichalcogenide (TMD) materials are a potential replacement for the silicon-based CMOS. However, the lack of advancement in p-type contact is also a key factor hindering TMD-based CMOS applications. The less investigated path towards improving electrical [...] Read more.
2D field-effect transistors (FETs) fabricated with transition metal dichalcogenide (TMD) materials are a potential replacement for the silicon-based CMOS. However, the lack of advancement in p-type contact is also a key factor hindering TMD-based CMOS applications. The less investigated path towards improving electrical characteristics based on contact geometries with low contact resistance (RC) has also been established. Moreover, finding contact metals to reduce the RC is indeed one of the significant challenges in achieving the above goal. Our research provides the first comparative analysis of the three contact configurations for a WSe2 monolayer with different noble metals (Rh, Ru, and Pd) by employing ab initio density functional theory (DFT) and non-equilibrium Green’s function (NEGF) methods. From the perspective of the contact topologies, the RC and minimum subthreshold slope (SSMIN) of all the conventional edge contacts are outperformed by the novel non-van der Waals (vdW) sandwich contacts. These non-vdW sandwich contacts reveal that their RC values are below 50 Ω∙μm, attributed to the narrow Schottky barrier widths (SBWs) and low Schottky barrier heights (SBHs). Not only are the RC values dramatically reduced by such novel contacts, but the SSMIN values are lower than 68 mV/dec. The new proposal offers the lowest RC and SSMIN, irrespective of the contact metals. Further considering the metal leads, the WSe2/Rh FETs based on the non-vdW sandwich contacts show a meager RC value of 33 Ω∙μm and an exceptional SSMIN of 63 mV/dec. The two calculated results present the smallest-ever values reported in our study, indicating that the non-vdW sandwich contacts with Rh leads can attain the best-case scenario. In contrast, the symmetric convex edge contacts with Pd leads cause the worst-case degradation, yielding an RC value of 213 Ω∙μm and an SSMIN value of 95 mV/dec. While all the WSe2/Ru FETs exhibit medium performances, the minimal shift in the transfer curves is interestingly advantageous to the circuit operation. Conclusively, the low-RC performances and the desirable SSMIN values are a combination of the contact geometries and metal leads. This innovation, achieved through noble metal leads in conjunction with the novel contact configurations, paves the way for a TMD-based CMOS with ultra-low RC and rapid switching speeds. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

9 pages, 5739 KB  
Article
High-Performance N-Polar GaN/AlGaN Metal–Insulator–Semiconductor High-Electron-Mobility Transistors with Low Surface Roughness Enabled by Chemical–Mechanical-Polishing-Incorporated Layer Transfer Technology
by Bohan Guo, Guohao Yu, Li Zhang, Jiaan Zhou, Zheming Wang, Runxian Xing, An Yang, Yu Li, Bosen Liu, Xiaohong Zeng, Zhongkai Du, Xuguang Deng, Zhongming Zeng and Baoshun Zhang
Crystals 2024, 14(3), 253; https://doi.org/10.3390/cryst14030253 - 4 Mar 2024
Cited by 7 | Viewed by 3379
Abstract
This article presents the utilization of the chemical–mechanical polishing (CMP) method to fabricate high-performance N-polar GaN/AlGaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs) through layer transfer technology. The nucleation and buffer layers were removed via CMP to attain a pristine N-polar GaN surface with elevated smoothness, [...] Read more.
This article presents the utilization of the chemical–mechanical polishing (CMP) method to fabricate high-performance N-polar GaN/AlGaN metal–insulator–semiconductor high-electron-mobility transistors (MIS-HEMTs) through layer transfer technology. The nucleation and buffer layers were removed via CMP to attain a pristine N-polar GaN surface with elevated smoothness, featuring a low root-mean-square (RMS) roughness of 0.216 nm. Oxygen, carbon, and chlorine impurity elements content were low after the CMP process, as detected via X-ray photoelectron spectroscopy (XPS). The electrical properties of N-polar HEMTs fabricated via CMP exhibited a sheet resistance (Rsh) of 244.7 Ω/sq, a mobility of 1230 cm2/V·s, and an ns of 2.24 × 1013 cm−2. Compared with a counter device fabricated via inductively coupled plasma (ICP) dry etching, the CMP devices showed an improved output current of 756.1 mA/mm, reduced on-resistance of 6.51 Ω·mm, and a significantly reduced subthreshold slope mainly attributed to the improved surface conditions. Meanwhile, owing to the MIS configuration, the reverse gate leakage current could be reduced to as low as 15 μA/mm. These results highlight the feasibility of the CMP-involved epitaxial layer transfer (ELT) technique to deliver superior N-polar GaN MIS-HEMTs for power electronic applications. Full article
(This article belongs to the Special Issue High Electron Mobility Transistor (HEMT) Devices and Applications)
Show Figures

Figure 1

15 pages, 5592 KB  
Article
A Novel Enhancement-Mode Gallium Nitride p-Channel Metal Insulator Semiconductor Field-Effect Transistor with a Buried Back Gate for Gallium Nitride Single-Chip Complementary Logic Circuits
by Haochen Wang, Kuangli Chen, Ning Yang, Jianggen Zhu, Enchuan Duan, Shuting Huang, Yishang Zhao, Bo Zhang and Qi Zhou
Electronics 2024, 13(4), 729; https://doi.org/10.3390/electronics13040729 - 10 Feb 2024
Cited by 1 | Viewed by 3269
Abstract
In this work, a novel enhancement-mode GaN p-MISFET with a buried back gate (BBG) is proposed to improve the gate-to-channel modulation capability of a high drain current. By using the p-GaN/AlN/AlGaN/AlN double heterostructure, the buried 2DEG channel is tailored and connected to the [...] Read more.
In this work, a novel enhancement-mode GaN p-MISFET with a buried back gate (BBG) is proposed to improve the gate-to-channel modulation capability of a high drain current. By using the p-GaN/AlN/AlGaN/AlN double heterostructure, the buried 2DEG channel is tailored and connected to the top metal gate, which acts as a local back gate. Benefiting from the dual-gate structure (i.e., top metal gate and 2DEG BBG), the drain current of the p-MISFET is significantly improved from −2.1 (in the conv. device) to −9.1 mA/mm (in the BBG device). Moreover, the dual-gate design also bodes well for the gate to p-channel control; the subthreshold slope (SS) is substantially reduced from 148 to ~60 mV/dec, and such a low SS can be sustained for more than 3 decades. The back gate effect and the inherent hole compensation mechanism of the dual-gate structure are thoroughly studied by TCAD simulation, revealing their profound impact on enhancing the subthreshold and on-state characteristics in the BBG p-MISFET. Furthermore, the decent device performance of the proposed BBG p-MISFET is projected to the complementary logic inverters by mixed-mode simulation, showcasing excellent voltage transfer characteristics (VTCs) and dynamic switching behavior. The proposed BBG p-MISFET is promising for developing GaN-on-Si monolithically integrated complementary logic and power devices for high efficiency and compact GaN power IC. Full article
(This article belongs to the Special Issue GaN Power Devices and Applications)
Show Figures

Figure 1

Back to TopTop