Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = styrene sulfide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1506 KiB  
Article
Effect of Washing Method and Intake Concentration on the Removal of Odor and Particulate Matter
by Yexi Li, Zhize Liu, Qubo Zhu and Haisheng Zhu
Atmosphere 2025, 16(2), 195; https://doi.org/10.3390/atmos16020195 - 9 Feb 2025
Cited by 1 | Viewed by 677
Abstract
This study investigates the effects of different washing methods and intake concentrations on the removal efficiency of odor gases and particulate matter. Odor concentration (OU value) was used as the evaluation criterion, with three concentration gradients established: high (1000–1100 OU), medium (500–600 OU), [...] Read more.
This study investigates the effects of different washing methods and intake concentrations on the removal efficiency of odor gases and particulate matter. Odor concentration (OU value) was used as the evaluation criterion, with three concentration gradients established: high (1000–1100 OU), medium (500–600 OU), and low (200–300 OU). The experiment employed water washing, acidic washing (pH = 4), and alkaline washing (pH = 10) to analyze the removal rates across nine treatments. Results indicated that the removal rate of ammonia significantly increased with higher intake concentrations (p < 0.01), while intake concentration had no significant effect on the removal rates of hydrogen sulfide and volatile organic compounds (VOCs). Acidic washing achieved the highest ammonia removal rate (72.68%) (p < 0.01), whereas alkaline washing showed the highest hydrogen sulfide removal rate (64.87%) (p < 0.01). For VOCs, the removal rates for water washing, acidic washing, and alkaline washing were 50.35%, 59.70%, and 61.56%, respectively, which were significantly lower than those for acidic and alkaline washing (p < 0.01). Alkaline washing demonstrated a significantly higher removal rate for methyl mercaptan compared to water washing and acidic washing (p < 0.01), and also for dimethyl sulfide compared to acidic washing (p < 0.05). Trimethylamine and carbon disulfide removal rates by acidic and alkaline washing were significantly higher than those by water washing (p < 0.01). There was no significant difference in styrene removal rates among different washing methods (p > 0.05), although acidic washing showed the best performance. Neither washing method nor intake concentration significantly affected particulate matter removal. It is recommended to combine acidic and alkaline washing for optimal deodorization. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

13 pages, 6401 KiB  
Article
On the Use of Styrene-Based Nanoparticles to Mitigate the Effect of Montmorillonite in Copper Sulfide Recovery by Flotation
by Darwin Estrada, Romina Murga, Olga Rubilar, John Amalraj, Leopoldo Gutierrez and Lina Uribe
Polymers 2024, 16(12), 1682; https://doi.org/10.3390/polym16121682 - 13 Jun 2024
Cited by 2 | Viewed by 1444
Abstract
Clay minerals have different negative effects on the froth flotation process such as low adsorption of collectors on valuable minerals, increased pulp viscosity, and the reduction in recovery and grade concentrates of copper sulfides. This study aims to evaluate the use of polystyrene-based [...] Read more.
Clay minerals have different negative effects on the froth flotation process such as low adsorption of collectors on valuable minerals, increased pulp viscosity, and the reduction in recovery and grade concentrates of copper sulfides. This study aims to evaluate the use of polystyrene-based nanoparticles (NPs) for the froth flotation of chalcopyrite and their ability to mitigate the negative effect of montmorillonite on the recovery of this sulfide. The experimental stage consisted of preparing a type of polystyrene-based nanoparticle (St-CTAB-VI), which was analyzed by dynamic night scattering (DLS) to establish its hydrodynamic size. Then, the effect of NPs on chalcopyrite’s angle’s in the presence and absence of montmorillonite (15%) was evaluated and compared with the contact angle achieved using potassium amyl xanthate (PAX) and a mixture of PAX and NPs. In addition, zeta potential measurements were carried out to investigate the interactions between the chalcopyrite and the montmorillonite or the NPs under fixed concentrations and microflotation tests were performed employing different times to evaluate the chalcopyrite recovery in the presence of montmorillonite, using NPs and mixtures with PAX. Finally, turbidity analysis as a function of time was performed to evaluate the occurrence of sedimentation and flocculation phenomena in suspensions of 15% montmorillonite in the presence and absence of chalcopyrite, nanoparticles, and mixtures of NPs and PAX. The results indicated that the mixture of NPs and PAX contributed to increasing the contact angle of chalcopyrite in the presence of montmorillonite. This can be associated with the presence of molecular and nanometric collectors that generated a higher hydrophobicity on the chalcopyrite particles, contributing to reducing the presence of clay minerals on the mineral surface. In addition, the mixture of NPs and PAX promoted the generation of nanoparticles on the sulfide mineral surface, which helps to detach the slime and facilitate the bubble/mineral attachment step during flotation. Full article
(This article belongs to the Special Issue Status and Progress of Soluble Polymers II)
Show Figures

Figure 1

18 pages, 5613 KiB  
Article
Mechanisms of Sulfoxidation and Epoxidation Mediated by Iron(III)-Iodosylbenzene Adduct: Electron-Transfer vs. Oxygen-Transfer Mechanism
by Patrik Török, Dóra Lakk-Bogáth and József Kaizer
Molecules 2023, 28(12), 4745; https://doi.org/10.3390/molecules28124745 - 13 Jun 2023
Cited by 4 | Viewed by 1777
Abstract
The mechanisms of sulfoxidation and epoxidation mediated by previously synthesized and characterized iron(III)-iodosylbenzene adduct, FeIII(OIPh) were investigated using para-substituted thioanisole and styrene derivatives as model substrates. Based on detailed kinetic reaction experiments, including the linear free-energy relationships between the relative reaction [...] Read more.
The mechanisms of sulfoxidation and epoxidation mediated by previously synthesized and characterized iron(III)-iodosylbenzene adduct, FeIII(OIPh) were investigated using para-substituted thioanisole and styrene derivatives as model substrates. Based on detailed kinetic reaction experiments, including the linear free-energy relationships between the relative reaction rates (logkrel) and the σp (4R-PhSMe) with ρ = −0.65 (catalytic) and ρ = −1.13 (stoichiometric), we obtained strong evidence that the stoichiometric and catalytic oxidation of thioanisoles mediated by FeIII(OIPh) species involves direct oxygen transfer. The small negative slope −2.18 from log kobs versus Eox for 4R-PhSMe gives further clear evidence for the direct oxygen atom transfer mechanism. On the contrary, with the linear free-energy relationships between the relative reaction rates (logkrel) and total substituent effect (TE, 4R-PhCHCH2) parameters with slope = 0.33 (catalytic) and 2.02 (stoichiometric), the stoichiometric and catalytic epoxidation of styrenes takes place through a nonconcerted electron transfer (ET) mechanism, including the formation of the radicaloid benzylic radical intermediate in the rate-determining step. On the basis of mechanistic studies, we came to the conclusion that the title iron(III)-iodosylbenzene complex is able to oxygenate sulfides and alkenes before it is transformed into the oxo-iron form by cleavage of the O−I bond. Full article
(This article belongs to the Special Issue Applications of Metal Complexes)
Show Figures

Figure 1

13 pages, 2852 KiB  
Article
Effect of Polymer Substrate on Adhesion of Electroless Plating in Irradiation-Based Direct Immobilization of Pd Nanoparticles Catalyst
by Naoto Uegaki, Satoshi Seino, Yuji Ohkubo and Takashi Nakagawa
Nanomaterials 2022, 12(22), 4106; https://doi.org/10.3390/nano12224106 - 21 Nov 2022
Cited by 4 | Viewed by 2368
Abstract
Pd nanoparticles were directly immobilized on acrylonitrile–butadiene–styrene copolymer (ABS), acrylonitrile–styrene copolymer (AS), polystyrene (PS), polyphenylene sulfide (PPS), poly(vinyl chloride) (PVC), polypropylene (PP), and polyethylene (PE) polymer substrates via chemical reactions induced by ionizing irradiation. X-ray photoelectron spectroscopy analysis revealed that the chemical state [...] Read more.
Pd nanoparticles were directly immobilized on acrylonitrile–butadiene–styrene copolymer (ABS), acrylonitrile–styrene copolymer (AS), polystyrene (PS), polyphenylene sulfide (PPS), poly(vinyl chloride) (PVC), polypropylene (PP), and polyethylene (PE) polymer substrates via chemical reactions induced by ionizing irradiation. X-ray photoelectron spectroscopy analysis revealed that the chemical state of the immobilized Pd nanoparticles depended on the polymer substrate type. Electroless plating was performed using the immobilized Pd nanoparticles as the catalyst, and Cu-plating films were deposited on all polymer substrates. The results of the tape-peeling test suggested that the chemical state of the immobilized Pd nanoparticles on the polymer substrates affected the plating adhesion strength. Notably, ABS with immobilized Pd particles exhibited a high adhesion strength beyond the practical level, even without prior chemical etching. It was presumed that the high adhesion strength was owing to the anchoring effect of the holes generated on the ABS surface by ionizing irradiation. Full article
Show Figures

Figure 1

24 pages, 13938 KiB  
Article
Fly Ash from Lignite Combustion as a Filler for Rubber Mixes—Part II: Chemical Valorisation of Fly Ash
by Wojciech Orczykowski, Dariusz M. Bieliński, Rafał Anyszka, Tomasz Gozdek, Katarzyna Klajn, Grzegorz Celichowski, Zbigniew Pędzich and Agnieszka Wojteczko
Materials 2022, 15(17), 5979; https://doi.org/10.3390/ma15175979 - 29 Aug 2022
Cited by 5 | Viewed by 2030
Abstract
Fly ash (FA) fractions with a particle size of 63 µm < FA < 250 µm obtained by sieve fractionation were used as a partial carbon black (CB) replacement in a rubber mixture based on styrene-butadiene rubber (SBR). In order to improve the [...] Read more.
Fly ash (FA) fractions with a particle size of 63 µm < FA < 250 µm obtained by sieve fractionation were used as a partial carbon black (CB) replacement in a rubber mixture based on styrene-butadiene rubber (SBR). In order to improve the interactions at the interface between rubber and fractionated ash, at the stage of preparing the rubber mixtures, two different vinyl silanes were added to the system: Vinyltrimethoxysilane (U-611) or Vinyl-tris (2-methoxy-ethoxy) silane (LUVOMAXX VTMOEO DL50), silane with epoxy groups: 3-(glycidoxypropyl)trimethoxysilane (U-50) or sulfur functionalized silanes: containing sulfide bridges: Bis(triethoxysilylpropyl)polysulfide silane (Si-266) or mercapto groups: Mercaptopropyltrimethoxysilane (Dynaslan MTMO). The conducted research confirmed the effectiveness of silanization with selected functional silanes, from the point of view of improving the processing and operational properties of vulcanizates, in which CB is partially replaced with the finest fractions of fly ash. The silanization generally increased the interaction at the rubber–ash interface, while improving the degree of filler dispersion in the rubber mixture. The results of TGA and FTIR analyses confirmed the presence of silanes chemically bonded to the surface of fly ash particles. SEM tests and determination of the bound rubber (BdR) content show that the introduction of the silanes to the mixture increases the degree of ash dispersion (DI) and the Payne effect, which is the greatest when mercaptosilane was used for modification. The highest increase in torque, which was recorded in the case of rubber mixtures containing sulfur silanes and silane with epoxy groups, may be due to their participation in the vulcanization process, which is confirmed by the results of vulcametric studies. The lowest values of mechanical strength, elongation at break, and the highest hardness of vulcanizates obtained in this case may be the result of the over-crosslinking of the rubber. The addition of sulfur-containing silanes significantly slowed down the vulcanization process, which is particularly visible (up to three times extension of the t90 parameter, compared to mixtures without silane) in the case of Si-266. The addition of silanes, except for Si-266 (with a polysulfide fragment), generally improved the abrasion resistance of vulcanizates. The Dynaslan MTMO silane (with mercapto groups) performs best in this respect. Proper selection of silane for the finest fraction of fly ash in the rubber mixtures tested allows for an increase in the mechanical strength of their vulcanizates from 9.1 to 17 MPa, elongation at break from 290 to 500%, hardness from 68 to 74 °ShA, and reduction in abrasion from 171 to 147 mm3. Full article
(This article belongs to the Special Issue Advanced Rubber Composites II)
Show Figures

Figure 1

15 pages, 3945 KiB  
Article
Effect of Sulfur Variation on the Vulcanizate Structure of Silica-Filled Styrene-Butadiene Rubber Compounds with a Sulfide–Silane Coupling Agent
by Sangwook Han, Bonyoung Gu, Sungwoo Kim, Seongrae Kim, Dalyong Mun, Koichi Morita, Donghyuk Kim and Wonho Kim
Polymers 2020, 12(12), 2815; https://doi.org/10.3390/polym12122815 - 27 Nov 2020
Cited by 10 | Viewed by 4169
Abstract
The vulcanizate structure of filled compounds is affected by filler–rubber interactions (FRI) and the chemical crosslink density (CCD) of the matrix rubber. In particular, in filled compounds using a silica–silane system, FRIs due to silica–rubber coupling are a major influencing factor for the [...] Read more.
The vulcanizate structure of filled compounds is affected by filler–rubber interactions (FRI) and the chemical crosslink density (CCD) of the matrix rubber. In particular, in filled compounds using a silica–silane system, FRIs due to silica–rubber coupling are a major influencing factor for the vulcanizate structure and physical properties. In this study, the effect of sulfur variation on the vulcanizate structure of silica-filled solution styrene–butadiene rubber compounds using a sulfide–silane coupling agent was studied. The vulcanizate structure according to sulfur variation was quantitatively analyzed using the swelling test and Flory–Rehner and Kraus equations. As the sulfur content increased, both FRI and the CCD increased, and it was confirmed that sulfur variation influenced the silica–rubber coupling efficiency through increased FRI. In addition, field emission scanning electron microscope images showed that increased FRI contributed to improvements in silica dispersion, abrasion resistance, and energy loss characteristics. Full article
Show Figures

Graphical abstract

15 pages, 1294 KiB  
Article
Volatile Organic Compounds (VOCs) of Endophytic Fungi Growing on Extracts of the Host, Horseradish (Armoracia rusticana)
by Tamás Plaszkó, Zsolt Szűcs, Zoltán Kállai, Hajnalka Csoma, Gábor Vasas and Sándor Gonda
Metabolites 2020, 10(11), 451; https://doi.org/10.3390/metabo10110451 - 8 Nov 2020
Cited by 26 | Viewed by 3662
Abstract
The interaction between plant defensive metabolites and different plant-associated fungal species is of high interest to many disciplines. Volatile organic compounds (VOCs) are natural products that are easily evaporated under ambient conditions. They play a very important role in inter-species communication of microbes [...] Read more.
The interaction between plant defensive metabolites and different plant-associated fungal species is of high interest to many disciplines. Volatile organic compounds (VOCs) are natural products that are easily evaporated under ambient conditions. They play a very important role in inter-species communication of microbes and their hosts. In this study, the VOCs produced by 43 different fungal isolates of endophytic and soil fungi during growth on horseradish root (Armoracia rusticana) extract or malt extract agar were examined, by using headspace-gas chromatography-mass spectrometry (headspace-GC-MS) and a high relative surface agar film as a medium. The proposed technique enabled sensitive detection of several typical VOCs (acetone, methyl acetate, methyl formate, ethyl acetate, methyl butanol isomers, styrene, beta-phellandrene), along with glucosinolate decomposition products, including allyl cyanide and allyl isothiocyanate and other sulfur-containing compounds—carbon disulfide, dimethyl sulfide. The VOC patterns of fungi belonging to Setophoma, Paraphoma, Plectosphaerella, Pyrenochaeta, Volutella, Cadophora, Notophoma, and Curvularia genera were described for the first time. The VOC pattern was significantly different among the isolates. The pattern was indicative of putative myrosinase activity for many tested isolates. On the other hand, endophytes and soil fungi as groups could not be separated by VOC pattern or intensity. Full article
(This article belongs to the Special Issue Plant Metabolomics)
Show Figures

Figure 1

19 pages, 3902 KiB  
Article
Anionic Copolymerization of Styrene Sulfide with Elemental Sulfur (S8)
by Jakub Wręczycki, Dariusz M. Bieliński, Marcin Kozanecki, Paulina Maczugowska and Grzegorz Mlostoń
Materials 2020, 13(11), 2597; https://doi.org/10.3390/ma13112597 - 7 Jun 2020
Cited by 33 | Viewed by 4666
Abstract
The superior ability of thiiranes (episulfides) to undergo ring-opening polymerization (ROP) in the presence of anionic initiators allows the preparation of chemically stable polysulfide homopolymers. Incorporation of elemental sulfur (S8) by copolymerization below the floor temperature of S8 permits the [...] Read more.
The superior ability of thiiranes (episulfides) to undergo ring-opening polymerization (ROP) in the presence of anionic initiators allows the preparation of chemically stable polysulfide homopolymers. Incorporation of elemental sulfur (S8) by copolymerization below the floor temperature of S8 permits the placement of a large quantity of sulfur atoms in the polysulfide mainchain. The utility of styrene sulfide (2-phenylthiirane; StS) for copolymerization with elemental sulfur is reported here. A few polysulfides differing depending on the initial ratio of S8 to StS and copolymerization time were synthesized. Various spectroscopic methods (1H NMR, 13C NMR, Raman spectroscopy and FTIR spectroscopy) were applied to characterize the chemical structure of the copolymers. Additionally, the phase structure and thermal stability of the synthesized polysulfides were investigated using DSC and TGA, respectively. The successful anionic copolymerization of styrene sulfide and elemental sulfur has been demonstrated. Full article
(This article belongs to the Special Issue Current Problems of the Organic Chemistry of Sulfur and Selenium)
Show Figures

Figure 1

29 pages, 9281 KiB  
Article
Use of Thermal Black as Eco-Filler in Thermoplastic Composites and Hybrids for Injection Molding and 3D Printing Applications
by Mihaela Mihai, Karen Stoeffler and Edward Norton
Molecules 2020, 25(7), 1517; https://doi.org/10.3390/molecules25071517 - 26 Mar 2020
Cited by 8 | Viewed by 4469
Abstract
Thermal black (TB) is one of the purest and cleanest forms of carbon black (CB) commercially available. TB is manufactured by the decomposition of natural gas in the absence of oxygen while the common furnace CB is derived from the burning of organic [...] Read more.
Thermal black (TB) is one of the purest and cleanest forms of carbon black (CB) commercially available. TB is manufactured by the decomposition of natural gas in the absence of oxygen while the common furnace CB is derived from the burning of organic oil. TB has a larger particle size, a lower surface area, and lower level of particle aggregation, while being the most eco-friendly grade among the CB family. This study is the first-time evaluation of TB as filler in composites and hybrids based on thermoplastics such as polypropylene (PP), polyamide 6 (PA6), polyphenylene sulfide (PPS), and acrylonitrile butadiene styrene (ABS). TB loadings in composites were varied from 1 up to 40 wt. % and, in hybrids, the TB was used in combination with carbon fibers (CFs) at total contents up to 20 wt. %. TB-containing composites and hybrids based on PA6 and ABS were also extruded in filaments, used in 3D printing, and the obtained 3D printed parts were characterized. TB provided a very high loadability in thermoplastics while preserving their viscosity and performance. TB can replace a fraction of expensive CFs in composites without important changes in the composites’ performance. The composites and hybrids exhibited electrical resistivity and good mechanical and thermal properties when compared to commercial compounds, while enabling significant cost savings. TB also showed to be an excellent coloring agent. TB proved to be an outstanding eco-filler for compounds to be used in injection molding and 3D printing technologies. Full article
(This article belongs to the Special Issue Polymer Composites and Nanocomposites with Enhanched Properties)
Show Figures

Figure 1

13 pages, 5990 KiB  
Article
VpStyA1/VpStyA2B of Variovorax paradoxus EPS: An Aryl Alkyl Sulfoxidase Rather than a Styrene Epoxidizing Monooxygenase
by Dirk Tischler, Ringo Schwabe, Lucas Siegel, Kristin Joffroy, Stefan R. Kaschabek, Anika Scholtissek and Thomas Heine
Molecules 2018, 23(4), 809; https://doi.org/10.3390/molecules23040809 - 2 Apr 2018
Cited by 21 | Viewed by 4226
Abstract
Herein we describe the first representative of an E2-type two-component styrene monooxygenase of proteobacteria. It comprises a single epoxidase protein (VpStyA1) and a two domain protein (VpStyA2B) harboring an epoxidase (A2) and a FAD-reductase (B) domain. It was annotated [...] Read more.
Herein we describe the first representative of an E2-type two-component styrene monooxygenase of proteobacteria. It comprises a single epoxidase protein (VpStyA1) and a two domain protein (VpStyA2B) harboring an epoxidase (A2) and a FAD-reductase (B) domain. It was annotated as VpStyA1/VpStyA2B of Variovorax paradoxus EPS. VpStyA2B serves mainly as NADH:FAD-oxidoreductase. A Km of 33.6 ± 4.0 µM for FAD and a kcat of 22.3 ± 1.1 s−1 were determined and resulted in a catalytic efficiency (kcat Km−1) of 0.64 s−1 μM−1. To investigate its NADH:FAD-oxidoreductase function the linker between A2- and B-domain (AREAV) was mutated. One mutant (AAAAA) showed 18.7-fold higher affinity for FAD (kcat Km−1 of 5.21 s−1 μM−1) while keeping wildtype NADH-affinity and -oxidation activity. Both components, VpStyA2B and VpStyA1, showed monooxygenase activity on styrene of 0.14 U mg−1 and 0.46 U mg−1, as well as on benzyl methyl sulfide of 1.62 U mg−1 and 3.11 U mg−1, respectively. The high sulfoxidase activity was the reason to test several thioanisole-like substrates in biotransformations. VpStyA1 showed high substrate conversions (up to 95% in 2 h) and produced dominantly (S)-enantiomeric sulfoxides of all tested substrates. The AAAAA-mutant showed a 1.6-fold increased monooxygenase activity. In comparison, the GQWCSQY-mutant did neither show monooxygenase nor efficient FAD-reductase activity. Hence, the linker between the two domains of VpStyA2B has effects on the reductase as well as on the monooxygenase performance. Overall, this monooxygenase represents a promising candidate for biocatalyst development and studying natural fusion proteins. Full article
(This article belongs to the Special Issue Flavoenzymes)
Show Figures

Figure 1

21 pages, 5039 KiB  
Article
The Effect of Allylic Sulfide-Mediated IrreversibleAddition-Fragment Chain Transfer on the EmulsionPolymerization Kinetics of Styrene
by Li An, Zhihui Di, Biaobiao Yu, Jialing Pu and Zhongxiao Li
Polymers 2015, 7(10), 1918-1938; https://doi.org/10.3390/polym7101490 - 29 Sep 2015
Cited by 4 | Viewed by 8468
Abstract
The effect of the irreversible addition-fragment chain transfer agent, butyl(2-phenylallyl)sulfane (BPAS), on the course of the emulsion polymerization of styrene and on the product molecular weight was investigated. The emulsion polymerizations were performed using various amounts of sodium dodecyl sulfate (SDS) as the [...] Read more.
The effect of the irreversible addition-fragment chain transfer agent, butyl(2-phenylallyl)sulfane (BPAS), on the course of the emulsion polymerization of styrene and on the product molecular weight was investigated. The emulsion polymerizations were performed using various amounts of sodium dodecyl sulfate (SDS) as the surfactant and potassium peroxodisulfate (KPS) as the initiator. The relationships between the rates of polymerization (\(R_{p} \)) and the number of particles per volume (\(N_{c} \)) with respect to the concentrations of KPS, SDS, and BPAS were found to be \(R_{p} \propto \left\lbrack KPS \right\rbrack^{0.29} \), \(N_{c} \propto \left\lbrack KPS \right\rbrack^{0.26} \),\(R_{p} \propto \left\lbrack SDS \right\rbrack^{0.68} \), \(N_{c} \propto \left\lbrack SDS \right\rbrack^{0.72} \), and \(R_{p} \propto \left\lbrack BPAS \right\rbrack^{- 0.73} \) . The obtained relationships can be attributed to the exit of the leaving group radicals on BPAS from the polymer particles. The experimental values of the average number of radicals per particle (\(\overset{\_}{n} \)) were strongly dependent on the BPAS concentration and were in good agreement with the theoretical values (\({\overset{\_}{n}}_{theo} \)) from model calculations. The number-average molecular weight (\(\overset{\_}{M_{n}} \)) can be controlled by BPAS over nearly the entire conversion range, which is also in agreement with the mathematical model. In addition, the transfer rate coefficient (\(k_{tr} \)) of BPAS can be estimated as 326 L/mol/s at 70 \(^\circ\)C. Moreover, similar good results were found for the tested redox reactions at 30 \(^\circ\)C. Full article
(This article belongs to the Special Issue Precision Polymer Synthesis)
Show Figures

Graphical abstract

Back to TopTop