Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = structure–ice–water coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8827 KiB  
Article
Three-Dimensional Refined Numerical Modeling of Artificial Ground Freezing in Metro Cross-Passage Construction: Thermo-Mechanical Coupling Analysis and Field Validation
by Qingzi Luo, Junsheng Li, Wei Huang, Wanying Wang and Bingxiang Yuan
Buildings 2025, 15(13), 2356; https://doi.org/10.3390/buildings15132356 - 4 Jul 2025
Viewed by 228
Abstract
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus [...] Read more.
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus on analyzing the soil’s thermo-mechanical behavior and assessing safety performance throughout the construction process. A combined approach integrating field monitoring and refined three-dimensional numerical simulation using FLAC3D is adopted, considering critical factors, such as freezing pipe inclination, thermo-mechanical coupling, and ice–water phase transitions. Both field data and simulation results demonstrate that increasing the density of freezing pipes accelerates temperature reduction and intensifies frost heave-induced displacements near the pipes. After 45 days of active freezing, the freezing curtain reaches a thickness of 3.7 m with an average temperature below −10 °C. Extending the freezing duration beyond this period yields negligible improvement in curtain performance. Frost heave deformation develops rapidly during the initial phase and stabilizes after approximately 25 days, with maximum vertical displacements reaching 12 cm. Significant stress concentrations occur in the soil adjacent to the freezing pipes, with shield tunnel segments experiencing up to 5 MPa of stress. Thaw settlement is primarily concentrated in areas previously affected by frost heave, with a maximum settlement of 3 cm. Even after 45 days of natural thawing, a frozen curtain approximately 3.3 m thick remains intact, maintaining sufficient structural strength. The refined numerical model accurately captures the mechanical response of soil during the freezing and thawing processes under realistic engineering conditions, with field monitoring data validating its effectiveness. This research provides valuable guidance for managing construction risks and ensuring safety in similar cross-passage and cross-river tunnel projects, with broader implications for underground engineering requiring precise control of frost heave and thaw settlement. Full article
Show Figures

Figure 1

17 pages, 3598 KiB  
Article
Influence of Lamb Wave Anisotropy on Detection of Water-to-Ice Phase Transition
by Andrey Smirnov, Vladimir Anisimkin, Nikita Ageykin, Elizaveta Datsuk and Iren Kuznetsova
Sensors 2024, 24(24), 7969; https://doi.org/10.3390/s24247969 - 13 Dec 2024
Cited by 1 | Viewed by 639
Abstract
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study [...] Read more.
An important technical task is to develop methods for recording the phase transitions of water to ice. At present, many sensors based on various types of acoustic waves are suggested for solving this challenge. This paper focuses on the theoretical and experimental study of the effect of water-to-ice phase transition on the properties of Lamb and quasi shear horizontal (QSH) acoustic waves of a higher order propagating in different directions in piezoelectric plates with strong anisotropy. Y-cut LiNbO3, 128Y-cut LiNbO3, and 36Y-cut LiTaO3 plates with a thickness of 500 μm and 350 μm were used as piezoelectric substrates. It was shown that the amplitude of the waves under study can decrease, increase, or remain relatively stable due to the water-to-ice phase transition, depending on the propagation direction and mode order. The greatest decrease in amplitude (42.1 dB) due to glaciation occurred for Lamb waves with a frequency of 40.53 MHz and propagating in the YX+30° LiNbO3 plate. The smallest change in the amplitude (0.9 dB) due to glaciation was observed for QSH waves at 56.5 MHz propagating in the YX+60° LiNbO3 plate. Additionally, it was also found that, in the YX+30° LiNbO3 plate, the water-to-ice transition results in the complete absorption of all acoustic waves within the specified frequency range (10–60 MHz), with the exception of one. The phase velocities, electromechanical coupling coefficients, elastic polarizations, and attenuation of the waves under study were calculated. The structures “air–piezoelectric plate–air”, “air–piezoelectric plate–liquid”, and “air–piezoelectric plate–ice” were considered. The results obtained can be used to develop methods for detecting ice formation and measuring its parameters. Full article
Show Figures

Figure 1

22 pages, 15149 KiB  
Article
A Peridynamics-Smoothed Particle Hydrodynamics Coupling Method for Fluid-Structure Interaction
by Chengjie Cao, Chenxu Gu, Chao Wang, Chunhui Wang, Pei Xu and Hui Wang
J. Mar. Sci. Eng. 2024, 12(11), 1968; https://doi.org/10.3390/jmse12111968 - 1 Nov 2024
Cited by 1 | Viewed by 1223
Abstract
Ice–water interaction is a critical issue of engineering studies in polar regions. This paper proposes a methodology to simulate fluid–ice interactions by employing a structure modeled using ordinary state-based peridynamics (OSB-PD) within a smoothed particle hydrodynamics (SPH) framework, effectively representing a deformable moving [...] Read more.
Ice–water interaction is a critical issue of engineering studies in polar regions. This paper proposes a methodology to simulate fluid–ice interactions by employing a structure modeled using ordinary state-based peridynamics (OSB-PD) within a smoothed particle hydrodynamics (SPH) framework, effectively representing a deformable moving boundary. The forces at the fluid–structure interface are delineated by solving the fluid motion equations for normal forces exerted by the fluid on the structure, grounded in the momentum conservation law. Upon validating the PD and SPH methods, a dam break flowing through an elastic gate was simulated. When compared with experimental results, the model exhibited discrepancies of 3.8%, 0.5%, and 4.6% in the maximum horizontal displacement, maximum vertical displacement, and the waterline deviation (W = 0.05 m), respectively. Moreover, the method demonstrated a high degree of accuracy in simulating the fracture of in-situ cantilever ice beams, with deflection closely matching experimental data and a 7.4% error in maximum loading force. The proposed PD-SPH coupling approach demonstrates its effectiveness in capturing the complex fluid–structure interactions and provides a valuable tool for studying the deformation and fracture of structures under the influence of fluid forces. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 5741 KiB  
Article
Investigation into Using CFD for Estimation of Ship Specific Parameters for the SPICE Model for Prediction of Sea Spray Icing: Part 1—The Proposal
by Sujay Deshpande and Per-Arne Sundsbø
J. Mar. Sci. Eng. 2024, 12(10), 1872; https://doi.org/10.3390/jmse12101872 - 18 Oct 2024
Cited by 3 | Viewed by 898
Abstract
A machine learning model for prediction of icing on vessels and offshore structures, Spice, was recently developed by Deshpande 2023. Some variables required for the prediction of icing rates in most prediction models, including Spice, such as the spray flux, cannot be easily [...] Read more.
A machine learning model for prediction of icing on vessels and offshore structures, Spice, was recently developed by Deshpande 2023. Some variables required for the prediction of icing rates in most prediction models, including Spice, such as the spray flux, cannot be easily measured. Existing models estimate these using empirical formulations that have been heavily criticized. Most existing models are also incapable of providing the distribution of icing on the structure. The current study demonstrates a method to estimate the local wind speeds, along with spray duration, spray period, and spray flux at different locations on the surface of a moving vessel. These, along with other easily measurable values of air temperature, water temperature, and salinity, are used to predict the icing rates. The result is a model, dubbed Spice2—an upgrade of the existing Spice model—that is able to provide the icing rates and the distribution of icing on the surface of vessels and other offshore structures. The model was demonstrated with a case study of a totally enclosed lifeboat where icing rates were predicted at different locations on its surface. Successful implementation of a two-phase simulation with a coupled wind–wave domain and a moving vessel was demonstrated. Research into simplification of the currently computationally expensive method is suggested. Validation of the proposed Spice2 model against a full-scale measurement is covered in part 2 of the study. Full article
(This article belongs to the Special Issue Novel Maritime Techniques and Technologies, and Their Safety)
Show Figures

Figure 1

18 pages, 10082 KiB  
Article
A Numerical Simulation Method for Investigating the Fluid–Structure–Ice Coupling Mechanism of a Wedge Breaking through Ice into Water
by Fucun Wang, Yongyi Lu, Zhiqing Zhao, Bingsen Qiu, Lixiao Mu, Xiaoyu Wang and Yeqing Jin
Appl. Sci. 2024, 14(20), 9204; https://doi.org/10.3390/app14209204 - 10 Oct 2024
Viewed by 1272
Abstract
We aimed to investigate the fluid–solid–ice coupling mechanism as structures break through ice into water. Using LS–DYNA finite element software, a numerical simulation method is established, based on the ALE flow–solid coupling method, and the penalty function contact algorithm, which describes the structure–ice–water [...] Read more.
We aimed to investigate the fluid–solid–ice coupling mechanism as structures break through ice into water. Using LS–DYNA finite element software, a numerical simulation method is established, based on the ALE flow–solid coupling method, and the penalty function contact algorithm, which describes the structure–ice–water coupling interaction. The Eulerian algorithm is used to describe the air and water domains, while the Lagrange method is applied to the wedge and ice structure. The mechanical properties of ice are characterized using the elastic–plastic failure strain model. The feasibility of simulating the entry of structures into water via the ALE method is demonstrated by comparing the experimental and simulation results of wedges entering into water. The applicability of the ice material model in simulating collision–induced breakup is verified by comparing a simulation of a rigid plate hitting a spherical head of ice, with results from the ISO standard. The effects of water during icebreaking are assessed by simulating a wedge breaking through ice into water, as well as through ice without water. Additionally, the ice breakup and motion response of the wedge under different working conditions are compared by varying the wedge mass and icebreaking speed. Full article
Show Figures

Figure 1

20 pages, 7273 KiB  
Article
Functionalisation of the Aluminium Surface by CuCl2 Chemical Etching and Perfluoro Silane Grafting: Enhanced Corrosion Protection and Improved Anti-Icing Behaviour
by Peter Rodič, Matic Može, Iztok Golobič and Ingrid Milošev
Metals 2024, 14(10), 1118; https://doi.org/10.3390/met14101118 - 1 Oct 2024
Cited by 2 | Viewed by 1895
Abstract
This study aimed to prepare a facile hierarchical aluminium surface using a two-step process consisting of chemical etching in selected concentrations of CuCl2 solution and surface grafting through immersion in an ethanol solution containing 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane. The goal was to [...] Read more.
This study aimed to prepare a facile hierarchical aluminium surface using a two-step process consisting of chemical etching in selected concentrations of CuCl2 solution and surface grafting through immersion in an ethanol solution containing 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane. The goal was to achieve superhydrophobic characteristics on the aluminium surface, including enhanced corrosion resistance, efficient self-cleaning ability, and improved anti-icing performance. The surface characterisation of the untreated aluminium and treated in CuCl2 solutions of different concentrations was performed using contact profilometry, optical tensiometry, and scanning electron microscopy coupled with energy dispersive spectroscopy to determine the surface topography, wettability, morphology, and surface composition. The corrosion properties were evaluated using potentiodynamic measurements in simulated acid rain solution and salt-spray test according to ASTM B117-22. In addition, self-cleaning and anti-icing tests were performed on superhydrophobic surfaces prepared under optimal conditions. The results showed that the nano-/micro-structured etched aluminium surface with an optimal 0.5 M concentration of CuCl2 grafted with a perfluoroalkyl silane film achieved superhydrophobic characteristics, with water droplets exhibiting efficient corrosion protection, self-cleaning ability, and improved anti-icing performance with decreased ice nucleation temperature and up to 545% increased freezing delay. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

23 pages, 6775 KiB  
Article
Evaluation of a Coupled CFD and Multi-Body Motion Model for Ice-Structure Interaction Simulation
by Hanif Pourshahbaz, Tadros Ghobrial and Ahmad Shakibaeinia
Water 2024, 16(17), 2454; https://doi.org/10.3390/w16172454 - 29 Aug 2024
Viewed by 1514
Abstract
The interaction of water flow, ice, and structures is common in fluvial ice processes, particularly around Ice Control Structures (ICSs) that are used to manage and prevent ice jam floods. To evaluate the effectiveness of ICSs, it is essential to understand the complex [...] Read more.
The interaction of water flow, ice, and structures is common in fluvial ice processes, particularly around Ice Control Structures (ICSs) that are used to manage and prevent ice jam floods. To evaluate the effectiveness of ICSs, it is essential to understand the complex interaction between water flow, ice and the structure. Numerical modeling is a valuable tool that can facilitate such understanding. Until now, classical Eulerian mesh-based methods have not been evaluated for the simulation of ice interaction with ICS. In this paper we evaluate the capability, accuracy, and efficiency of a coupled Computational Fluid Dynamic (CFD) and multi-body motion numerical model, based on the mesh-based FLOW-3D V.2023 R1 software for simulation of ice-structure interactions in several benchmark cases. The model’s performance was compared with results from meshless-based models (performed by others) for the same laboratory test cases that were used as a reference for the comparison. To this end, simulation results from a range of dam break laboratory experiments were analyzed, encompassing varying numbers of floating objects with distinct characteristics, both in the presence and absence of ICS, and under different downstream water levels. The results show that the overall accuracy of the FLOW-3D model under various experimental conditions resulted in a RMSE of 0.0534 as opposed to an overall RMSE of 0.0599 for the meshless methods. Instabilities were observed in the FLOW-3D model for more complex phenomena that involve open boundaries and a larger number of blocks. Although the FLOW-3D model exhibited a similar computational time to the GPU-accelerated meshless-based models, constraints on the processors speed and the number of cores available for use by the processors could limit the computational time. Full article
(This article belongs to the Special Issue Cold Region Hydrology and Hydraulics)
Show Figures

Figure 1

20 pages, 12121 KiB  
Article
Simulation of Frost-Heave Failure of Air-Entrained Concrete Based on Thermal–Hydraulic–Mechanical Coupling Model
by Xinmiao Wang, Feng Xue, Xin Gu and Xiaozhou Xia
Materials 2024, 17(15), 3727; https://doi.org/10.3390/ma17153727 - 27 Jul 2024
Cited by 1 | Viewed by 1508
Abstract
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based [...] Read more.
The internal pore structural characteristics and microbubble distribution features of concrete have a significant impact on its frost resistance, but their size is relatively small compared to aggregates, making them difficult to visually represent in the mesoscopic numerical model of concrete. Therefore, based on the ice-crystal phase transition mechanism of pore water and the theory of fine-scale inclusions, this paper establishes an estimation model for effective thermal conductivity and permeability coefficients that can reflect the distribution characteristics of the internal pore size and the content of microbubbles in porous media and explores the evolution mechanism of effective thermal conductivity and permeability coefficients during the freezing process. The segmented Gaussian integration method is adopted for the calculation of integrals involving pore size distribution curves. In addition, based on the concept that the fracture phase represents continuous damage, a switching model for the permeability coefficient is proposed to address the fundamental impact of frost cracking on permeability. Finally, the proposed estimation models for thermal conductivity and permeability are applied to the cement mortar and the interface transition zone (ITZ), and a thermal–hydraulic–mechanical coupling finite element model of concrete specimens at the mesoscale based on the fracture phase-field method is established. After that, the frost-cracking mechanism in ordinary concrete samples during the freezing process is explored, as well as the mechanism of microbubbles in relieving pore pressure and the adverse effect of accelerated cooling on frost cracking. The results show that the cracks first occurred near the aggregate on the concrete sample surface and then extended inward along the interface transition zone, which is consistent with the frost-cracking scenario of concrete structures in cold regions. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

22 pages, 33425 KiB  
Article
Geocryological Structure of a Giant Spring Aufeis Glade at the Anmangynda River (Northeastern Russia)
by Vladimir Olenchenko, Anastasiia Zemlianskova, Olga Makarieva and Vladimir Potapov
Geosciences 2023, 13(11), 328; https://doi.org/10.3390/geosciences13110328 - 26 Oct 2023
Cited by 5 | Viewed by 2151
Abstract
Gigantic aufeis fields serve as indicators of water exchange processes within the permafrost zone and are important in assessing the state of the cryosphere in a changing climate. The Anmangynda aufeis, located in the upstream of the Kolyma River basin, is present in [...] Read more.
Gigantic aufeis fields serve as indicators of water exchange processes within the permafrost zone and are important in assessing the state of the cryosphere in a changing climate. The Anmangynda aufeis, located in the upstream of the Kolyma River basin, is present in the mountainous regions of Northeast Eurasia. Recent decades have witnessed significant changes in aufeis formation patterns, necessitating a comprehensive understanding of cryospheric processes. The objective of the study, conducted in 2021–2022, was to examine the structure of the Anmangynda aufeis and its glade, aiming to understand its genesis and formation processes. The tasks included identifying above- and intra-frozen taliks, mapping groundwater (GW) discharge channels, determining permafrost base depth, and assessing ice thickness distribution. Soundings using ground-penetrating radar (GPR), capacitively coupled electrical resistivity tomography (CCERT), and the transient electromagnetic (TEM) method were employed. GW discharge channels originating from alluvial deposits and extending to the aufeis surface within river channels were identified through GPR and verified through drilling. Deep-seated sources of GW within the bedrock were inferred. CCERT data allowed us to identify large and localized frozen river taliks, from which water is forced onto the ice surface. According to the TEM data, the places of GW outlets spatially coincide with the zones interpreted as faults. Full article
(This article belongs to the Special Issue Mass Transfer and Phase Transformations in Permafrost)
Show Figures

Graphical abstract

13 pages, 3984 KiB  
Article
Study on the Interaction Mechanism between Residual Coal and Mine Water in Goaf of Coal Mine Underground Reservoir
by Binbin Jiang, Ze Zhao, Deqian Liu, Zhiguo Cao, Jiawei Tang, Min Wu, Haiqin Zhang, Peng Li and Dingcheng Liang
Sustainability 2023, 15(20), 15106; https://doi.org/10.3390/su152015106 - 20 Oct 2023
Cited by 5 | Viewed by 1459
Abstract
In this paper, the coal pillar dam body of the underground reservoir in Daliuta coal mine, along with the residual coal and the mine water present in the goaf, were taken as research subjects, and a dynamic simulation experiment device was constructed to [...] Read more.
In this paper, the coal pillar dam body of the underground reservoir in Daliuta coal mine, along with the residual coal and the mine water present in the goaf, were taken as research subjects, and a dynamic simulation experiment device was constructed to simulate the actual process of a coal mine underground reservoir (CMUR). The composition and structure of middling coal during the experiment were determined by X-ray diffraction analysis (XRD) and X-ray fluorescence spectrometry (XRF), while changes in ion content in the mine water were assessed through ion chromatography (IC) and inductively coupled plasma emission spectrometry (ICP-OES). Based on both the composition and structure of coal as well as variations in ion concentrations in water, the interaction mechanism between coal and mine water was explored. The results showed that the water–coal interaction primarily arose from the dissolution of minerals, such as rock salt and gypsum, within coal. Additionally, coal samples in mine water exhibited adsorption and precipitation of metal ions, along with cation exchange reaction. Na+ in mine water predominantly originated from the dissolution of rock salt (sodium chloride) in coal, while Ca2+ and SO42 were released through the dissolution of gypsum and other minerals in coal. In the process of the water–coal interaction, Ca2+ in the water body was adsorbed and immobilized by the coal sample, leading to the formation and deposition of CaCO3 on the surface of the coal, thereby increasing the calcite content. These processes collectively contributed to a decrease in the concentration of Ca2+ in the water body. Moreover, the cation exchange reaction occurred between Ca2+ and Mg2+ in mine water and Na+ in the coal sample. The presence of Ca2+ and Mg2+ resulted in their displacement of Na+ within the coal matrix, consequently elevating Na+ concentration in the mine water while reducing both the Ca2+ and Mg2+ concentrations. On this basis, combined with insights from the water–rock interaction, it can be inferred that the adsorption mechanisms involving rocks played a dominant role in the decrease of Ca2+ concentration during the water–rock interactions. Meanwhile, the dissolution processes of minerals both in the water–rock and water–coal interactions predominantly contributed to the increase of Na+ and Cl concentrations. Full article
Show Figures

Figure 1

33 pages, 7212 KiB  
Article
Numerical Analysis of the Freezing Behavior of Saturated Cementitious Materials with Different Amounts of Chloride
by Sekandar Zadran, Joško Ožbolt and Serena Gambarelli
Materials 2023, 16(19), 6594; https://doi.org/10.3390/ma16196594 - 8 Oct 2023
Cited by 2 | Viewed by 1723
Abstract
The freezing behavior of cement paste saturated with different chloride concentrations is investigated numerically with a coupled 3D hygro-thermo-mechanical FE analysis. The mathematical formulation of the freezing processes in the context of poromechanics takes into account the water (hydraulic) and ice pore pressures, [...] Read more.
The freezing behavior of cement paste saturated with different chloride concentrations is investigated numerically with a coupled 3D hygro-thermo-mechanical FE analysis. The mathematical formulation of the freezing processes in the context of poromechanics takes into account the water (hydraulic) and ice pore pressures, as well as the distribution of heat (temperature) and strains. These quantities are calculated numerically based on three coupled differential equations, namely the static equilibrium equation and the equations for the transport of water and heat. The coupling between the mechanical (loading) and the non-mechanical processes (freezing) is performed using a staggered solution scheme. The proposed numerical approach is first validated using numerical and experimental studies from the literature dealing with two different cement pastes saturated with different amounts of chloride. The validated model is then used to investigate the effects of liquid water permeability, total porosity and pore size distribution on the freezing behavior of hardened cement paste. The results show that liquid water permeability has a strong effect on the pore pressure and deformation of the hardened cement paste. It is also shown that by decreasing the total porosity, the material becomes denser and contracts more as the temperature decreases, leading to a decrease in freezing strain. The results of this paper will provide important findings for the development of a simplified engineering model to investigate the mechanism that leads to freeze–thaw salt-induced damage to concrete structures in the framework of the DFG-funded research project. Full article
(This article belongs to the Special Issue Durability Studies on the Concrete and Related Composites)
Show Figures

Figure 1

13 pages, 2806 KiB  
Article
The Triterpenoids from Munronia pinnata and Their Anti-Proliferative Effects
by Xuerong Yang, Peiyuan Liu, Yulu Wei, Jingru Song, Xiaojie Yan, Xiaohua Jiang, Jianxing Li, Xiangqin Li, Dianpeng Li and Fenglai Lu
Molecules 2023, 28(19), 6839; https://doi.org/10.3390/molecules28196839 - 28 Sep 2023
Cited by 2 | Viewed by 1543
Abstract
Six new tirucallane-type triterpenoids, named munropenes A–F (16), were extracted from the whole plants of Munronia pinnata using a water extraction method. Their chemical structures were determined based on detailed spectroscopic data. The relative configurations of the acyclic structures [...] Read more.
Six new tirucallane-type triterpenoids, named munropenes A–F (16), were extracted from the whole plants of Munronia pinnata using a water extraction method. Their chemical structures were determined based on detailed spectroscopic data. The relative configurations of the acyclic structures at C-17 of munropenes A–F (16) were established using carbon–proton spin-coupling constants (2,3JC,H) and inter-proton spin-coupling constants (3JH,H). Furthermore, the absolute configurations of munropenes A–F (16) were determined through high-performance liquid chromatography (HPLC), single-crystal X-ray diffraction, and electronic circular dichroism (ECD) analyses. The antiproliferative effects of munropenes A–F were evaluated in five tumor cell lines: HCT116, A549, HepG2, MCF7, and MDAMB. Munropenes A, B, D, and F (1, 2, 4, and 6) inhibited proliferation in the HCT116 cell line with IC50 values of 40.90, 19.13, 17.66, and 32.62 µM, respectively. Full article
Show Figures

Figure 1

18 pages, 8617 KiB  
Article
Can a Hand-Held 3D Scanner Capture Temperature-Induced Strain of Mortar Samples? Comparison between Experimental Measurements and Numerical Simulations
by Alexander Haynack, Sekandar Zadran, Jithender J. Timothy, Serena Gambarelli, Thomas Kränkel, Charlotte Thiel, Joško Ožbolt and Christoph Gehlen
Mathematics 2023, 11(17), 3672; https://doi.org/10.3390/math11173672 - 25 Aug 2023
Cited by 1 | Viewed by 1379
Abstract
The expected lifespan of cement-based materials, particularly concrete, is at least 50 years. Changes in the pore structure of the material need to be considered due to external influences and associated transport processes. The expansion behaviour of concrete and mortar during freeze–thaw attacks, [...] Read more.
The expected lifespan of cement-based materials, particularly concrete, is at least 50 years. Changes in the pore structure of the material need to be considered due to external influences and associated transport processes. The expansion behaviour of concrete and mortar during freeze–thaw attacks, combined with de-icing salt agents, is crucial for both internal and external damage. It is essential to determine and simulate the expansion behaviour of these materials in the laboratory, as well as detect the slow, long-term expansion in real structures. This study measures the expansion of mortar samples during freeze–thaw loading using a high-resolution hand-held 3D laser scanner. The specimens are prepared with fully or partially saturated pore structures through water storage or drying. During freeze–thaw experiments, the specimens are exposed to pure water or a 3% sodium chloride solution (NaCl). Results show contraction during freezing and subsequent expansion during thawing. Both test solutions exhibit similar expansion behaviour, with differences primarily due to saturation levels. Further investigations are required to explore the changing expansion behaviour caused by increasing microcracking resulting from continuous freeze–thaw cycles. A numerical analysis using a 3D coupled hygro-thermo-mechanical (HTM) model is conducted to examine the freeze–thaw behaviour of the mortar. The model accurately represents the freezing deformation during the freeze–thaw cycle. Full article
(This article belongs to the Special Issue Computational Modelling and Simulation of Building Materials)
Show Figures

Figure 1

19 pages, 4706 KiB  
Article
Changing Characteristics of Tropical Extreme Precipitation–Cloud Regimes in Warmer Climates
by William K. M. Lau, Kyu-Myong Kim, Bryce Harrop and L. Ruby Leung
Atmosphere 2023, 14(6), 995; https://doi.org/10.3390/atmos14060995 - 8 Jun 2023
Cited by 7 | Viewed by 3000
Abstract
In this study, we investigated the changing characteristics of climatic scale (monthly) tropical extreme precipitation in warming climates using the Energy Exascale Earth System Model (E3SM). The results are from Atmospheric Model Intercomparison Project (AMIP)-type simulations driven by (a) a control experiment with [...] Read more.
In this study, we investigated the changing characteristics of climatic scale (monthly) tropical extreme precipitation in warming climates using the Energy Exascale Earth System Model (E3SM). The results are from Atmospheric Model Intercomparison Project (AMIP)-type simulations driven by (a) a control experiment with the present-day sea surface temperature (SST) and CO2 concentration, (b) P4K, the same as in (a) but with a uniform increase of 4K in the SST globally, and (c) the same as in (a), but with an imposed SST and CO2 concentration from the outputs of the coupled E3SM forced by a 4xCO2 concentration. We found that as the surface warmed under P4K and 4xCO2, both convective and stratiform rain increased. Importantly, there was an increasing fractional contribution of stratiform rain as a function of the precipitation intensity, with the most extreme but rare events occurring preferentially over land more than the ocean, and more so under 4xCO2 than P4K. Extreme precipitation was facilitated by increased precipitation efficiency, reflecting accelerated rates of recycling of precipitation cloud water (both liquid and ice phases) in regions with colder anvil cloud tops. Changes in the vertical profiles of clouds, condensation heating, and vertical motions indicate increasing precipitation–cloud–circulation organization from the control and P4K to 4xCO2. The results suggest that large-scale ocean warming, that is, P4K, was the primary cause contributing to an organization structure resembling the well-known mesoscale convective system (MCS), with increased extreme precipitation on shorter (hourly to daily) time scales. Additional 4xCO2 atmospheric radiative heating and dynamically consistent anomalous SST further amplified the MCS organization under P4K. Analyses of the surface moist static energy distribution show that increases in the surface moisture (temperature) under P4K and 4xCO2 was the key driver leading to enhanced convective instability over tropical ocean (land). However, a fast and large increase in the land surface temperature and lack of available local moisture resulted in a strong reduction in the land surface relative humidity, reflecting severe drying and enhanced convective inhibition (CIN). It is argued that very extreme and rare “record-breaking” precipitation events found over land under P4K, and more so under 4xCO2, are likely due to the delayed onset of deep convection, that is, the longer the suppression of deep convection by CIN, the more severe the extreme precipitation when it eventually occurs, due to the release of a large amount of stored surplus convective available potential energy in the lower troposphere during prolonged CIN. Full article
Show Figures

Figure 1

14 pages, 5079 KiB  
Article
Numerical Simulation of Frost Heave Deformation of Concrete-Lined Canal Considering Thermal-Hydro-Mechanical Coupling Effect
by Renjie Teng, Xin Gu, Xiaozhou Xia and Qing Zhang
Water 2023, 15(7), 1412; https://doi.org/10.3390/w15071412 - 5 Apr 2023
Cited by 4 | Viewed by 2812
Abstract
This work presents a comprehensive coupled thermal-hydro-mechanical model to explore the frost heave mechanism of the concrete-lined canal under a freeze–thaw environment. Unlike previous models that regard concrete as a homogeneous material, this model considers concrete a porous medium and considers the effect [...] Read more.
This work presents a comprehensive coupled thermal-hydro-mechanical model to explore the frost heave mechanism of the concrete-lined canal under a freeze–thaw environment. Unlike previous models that regard concrete as a homogeneous material, this model considers concrete a porous medium and considers the effect of the concrete pore structure, as well as the water content, ice content, and ice-water phase transition, on the mechanical deformation of the canal. Firstly, based on the theories of unsaturated soil mechanics, thermodynamics, and poroelasticity, the thermal-hydro-mechanical coupling equations of the soil under the freeze–thaw condition are established. Then, based on the theories of thermodynamics, poroelasticity, and permeability mechanics of porous media, the thermal-hydro-mechanical coupling equations of the concrete under the freeze–thaw condition are established. Finally, the freeze–thaw simulation of a canal is carried out and compared with the referred indoor model test, in which the evolution behavior of temperature, frost depth, and frost heave deformation of the canal are studied. The results show that the freezing process of the soil foundation is a unidirectional process that develops from the surface to the bottom, and the thawing process of the soil foundation is a bidirectional process that thaws from the surface and bottom to the center. The frost heave deformation of the soil foundation at the 1/2~1/3 slope height area is the largest, which may easily lead to frost heave damage to the concrete lining in this area. The frost heave deformation of the canal obtained by the numerical simulation is consistent with the experimental results, which illustrates the validity of the established model for predicting the frost heave deformation of concrete-lined canals. Full article
(This article belongs to the Special Issue Numerical Methods for the Solution of Hydraulic Engineering Problems)
Show Figures

Figure 1

Back to TopTop