Changing Characteristics of Tropical Extreme Precipitation–Cloud Regimes in Warmer Climates
Abstract
:1. Introduction
2. Model Description and Methodology
3. Results
3.1. Stratiform vs. Convective Precipitation
3.2. Precipitation Efficiency and MCS Organization
3.3. Convective Inhibition (CIN) and Extreme Precipitation
4. Concluding Remarks
- In a warming tropical climate, while both convective and stratiform rain increase, there is an increasing contribution from the stratiform rain fraction to extreme precipitation, with the most extreme but rare precipitation occurring preferentially over land compared to the ocean. However, the stratiform rain fraction approaches an upper limit of approximately 0.7, indicating that a deep convection core is essential to provide ice-phase condensate for stratiform rain even for the most extreme precipitation.
- The distributions of extreme precipitation (top 1% and 5%) generally follow the paradigms of wet-getting-wetter (WeGW) under the control and P4K, but both show WeGE and warmer-getting-wetter (WaGW) within an expanded tropical SST warm pool, and regional SST warming under 4xCO2.
- Extreme precipitation is facilitated by increased precipitation efficiency (PE), reflecting an accelerated rate of recycling of precipitation and total cloud water (both liquid and ice phases) in regions of strongly reduced outgoing longwave radiation (<190Wm−2), associated with colder (higher) anvil cloud tops.
- The increase in PE associated with the extreme precipitation under P4K and 4xCO2 is reflected in a more MCS-like organization structure over land and ocean compared to the control, including (a) increased ice-phase upper-level clouds, (b) an elevated level of condensation heating in the upper troposphere and strong cooling from the enhanced melting of ice near the freezing level and altitudes below from the evaporation of falling rain, and (c) an increased ascent (descent) of large-scale vertical motion in the upper (lower) troposphere.
- Analysis of the surface moist static energy distribution revealed that moisture forcing (Lq) from an increased higher SST is the primary driver of extreme precipitation over the ocean, in accordance with the Clausius–Clapeyron relationship. However, surface temperature forcing (CpT) is more important over land, as reflected in the much higher land surface temperature due to the smaller heat capacity of land and a lack of moisture sources from land.
- The high surface temperature over land leads to enhanced convective inhibition (CIN), that is, the drying of the land surface, reflected in reduced relative humidity of the near-surface air over land under P4K and 4xCO2, more so in the latter than the former. We argue that the very extreme but rare precipitation over land is likely due to increased CIN, delaying the triggering of deep convection, while building up the convective available energy in the lower atmosphere associated with the warming climate. When deep convection is triggered eventually through moisture advection from episodic small-scale atmospheric eddy processes associated with land–sea breeze, thunderstorms, and orography, an explosive growth of MCS-like organization occurs preferentially over land, releasing extra amounts of convective available potential energy (CAPE) stored during CIN, and resulting in very extreme “record-breaking” precipitation over land, as global climate warming continues unabated.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers; The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 3–32. [Google Scholar]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteor. Soc. 2003, 84, 1205–1218. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Sensitivity of tropical precipitation extremes to climate change. Nat. Geosci. 2012, 5, 697–700. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation Extremes Under Climate Change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B.; Mekonnen, A.; Pearl, C.; Goncalves, W. Tropical Precipitation Extremes. J. Clim. 2013, 26, 1457–1466. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Arkin, P.A. Analyses of Global Monthly Precipitation Using Gauge Observations, Satellite Estimates, and Numerical Model Predictions. J. Clim. 1996, 9, 840–858. [Google Scholar] [CrossRef]
- Lau, K.M.; Wu, H.T. Detecting trends in tropical rainfall characteristics, 1979–2003. Int. J. Climatol. 2007, 27, 979–988. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Gu, G.; Wang, J.-J.; Huffman, G.J.; Curtis, S.; Bolvin, D. Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J. Geophys. Res. 2008, 113, D2210. [Google Scholar] [CrossRef]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.-J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Neelin, J.D. Mechanisms of Global Warming Impacts on Regional Tropical Precipitation. J. Clim. 2004, 17, 2688–2701. [Google Scholar] [CrossRef]
- Chou, C.; Neelin, J.D.; Chen, C.A.; Tu, J.Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 2009, 22, 1982–2005. [Google Scholar] [CrossRef]
- Xie, S.P.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H.; Wittenberg, A.T. Global warming pattern formation: Sea surface temperature and rainfall. J. Clim. 2010, 23, 966–986. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Xie, S.-P.; Hu, K.; Huang, G.; Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 2013, 6, 357–361. [Google Scholar] [CrossRef]
- Qian, C.; Chen, G. Warmer-get-wetter or wet-get-wetter? A criterion to classify oceanic precipitation. J. Ocean Univ. China 2014, 13, 552–560. [Google Scholar] [CrossRef]
- Wu, H.-T.J.; Lau, W.K.-M. Detecting climate signals in precipitation extremes from TRMM (1998–2013)—Increasing contrast between wet and dry extremes during the “global warming hiatus”. Geophys. Res. Lett. 2016, 43, 1340–1348. [Google Scholar] [CrossRef]
- Bony, S.; Lau, K.-M.; Sud, Y.C. Sea Surface Temperature and Large-Scale Circulation Influences on Tropical Greenhouse Effect and Cloud Radiative Forcing. J. Clim. 1997, 10, 2055–2077. [Google Scholar] [CrossRef]
- Bony, S.; Stevens, B.; Frierson, D.M.W.; Jakob, C.; Kageyama, M.; Pincus, R.; Shepherd, T.G.; Sherwood, S.C.; Siebesma, A.P.; Sobel, A.H.; et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 2015, 8, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.-M.; Wu, H.-T.; Bony, S. The Role of Large-Scale Atmospheric Circulation in the Relationship between Tropical Convection and Sea Surface Temperature. J. Clim. 1997, 10, 381–392. [Google Scholar] [CrossRef]
- Lau, W.K.M.; Kim, K.-M.; Chern, J.; Tao, W.-K.; Leung, R. Structural change and variability of the ITCZ induced by radiation-cloud-convection-circulation interactions: Inferences from the Goddard Multi-Model Framework (GMMF) experiments. Clim. Dym. 2019, 54, 211–229. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, R.S. Sensitivity of Precipitation Accumulation in Elevated Convective Systems to Small Changes in Low-Level Moisture. J. Atmos. Sci. 2015, 72, 2507–2524. [Google Scholar] [CrossRef]
- Ahmed, F.; Schumacher, C. Convective and stratiform components of the precipitation-moisture relationship. Geophys. Res. Lett. 2015, 42, 453-10–462-10. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M.; Tao, W. Precipitation–Radiation–Circulation Feedback Processes Associated with Structural Changes of the ITCZ in a Warming Climate during 1980–2014: An Observational Portrayal. J. Clim. 2020, 33, 8737–8749. [Google Scholar] [CrossRef]
- Laing, A.G.; Fritsch, J.M. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 1997, 123, 389–405. [Google Scholar] [CrossRef]
- Houze, R.A., Jr. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 1989, 115, 425–461. [Google Scholar] [CrossRef]
- Houze, R.A. Mesoscale convective systems. Rev. Geophys. 2004, 42, RG4003. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, R.S.; Johnson, R.H. Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems. Mon. Weather Rev. 2005, 133, 961–976. [Google Scholar] [CrossRef]
- Schumacher, R.S.; Rasmussen, K.L. The formation, character and changing nature of mesoscale convective systems. Nat. Rev. Earth Environ. 2020, 1, 300–314. [Google Scholar] [CrossRef]
- Tao, W.-K.; Lang, S.; Zeng, X.; Shige, S.; Takayabu, Y. Relating Convective and Stratiform Rain to Latent Heating. J. Clim. 2010, 23, 1874–1893. [Google Scholar] [CrossRef]
- Tao, W.-K.; Lang, S.; Zeng, X.; Li, X.; Matsui, T.; Mohr, K.; Posselt, D.; Chern, J.; Peters-Lidard, C.; Norris, P.M.; et al. The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmos. Res. 2014, 143, 392–424. [Google Scholar] [CrossRef] [Green Version]
- Soden, B.J.; Broccoli, A.J.; Hemler, R.S. On the Use of Cloud Forcing to Estimate Cloud Feedback. J. Clim. 2004, 17, 3661–3665. [Google Scholar] [CrossRef]
- Stephens, G.L. Cloud Feedbacks in the Climate System: A Critical Review. J. Clim. 2005, 18, 237–273. [Google Scholar] [CrossRef] [Green Version]
- Soden, B.J.; Vecchi, G.A. The vertical distribution of cloud feedback in coupled ocean-atmosphere models. Geophys. Res. Lett. 2011, 38, L12704. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Dufresne, J.-L. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett. 2005, 32, L20806. [Google Scholar] [CrossRef] [Green Version]
- Klein, S.A.; Hall, A. Emergent Constraints for Cloud Feedbacks. Curr. Clim. Chang. Rep. 2015, 1, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Sherwood, S.C. Processes Responsible for Cloud Feedback. Curr. Clim. Chang. Rep. 2016, 2, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, M.D.; Zhou, C.; Klein, S.A. Insights from a refined decomposition of cloud feedbacks. Geophys. Res. Lett. 2016, 43, 9259–9269. [Google Scholar] [CrossRef]
- Ceppi, P.; Brient, F.; Zelinka, M.D.; Hartmann, D.L. Cloud feedback mechanisms and their representation in global climate models. WIREs Clim. Chang. 2017, 8, e465. [Google Scholar] [CrossRef]
- Voigt, A.; Bony, S.; Dufresne, J.-L.; Stevens, B. The radiative impact of clouds on the shift of the Intertropical Convergence Zone. Geophys. Res. Lett. 2014, 41, 4308–4315. [Google Scholar] [CrossRef] [Green Version]
- Voigt, A.; Shaw, T. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 2015, 8, 102–106. [Google Scholar] [CrossRef]
- Su, H.; Jiang, J.H.; Zhai, C.; Shen, T.J.; Neelin, J.D.; Stephens, G.L.; Yung, Y.L. Weakening and strengthening structures in the Hadley Circulation change under global warming and implications for cloud response and climate sensitivity. J. Geophys. Res. Atmos. 2014, 119, 5787–5805. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Jiang, J.H.; Neelin, J.D.; Shen, T.J.; Zhai, C.; Yue, Q.; Wang, Z.; Huang, L.; Choi, Y.-S.; Stephens, G.L.; et al. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate. Nat. Commun. 2017, 8, 15771. [Google Scholar] [CrossRef] [Green Version]
- Bony, S.; Stevens, B.; Coppin, D.; Becker, T.; Reed, K.A.; Voigt, A.; Medeiros, B. Thermodynamic control of anvil cloud amount. Proc. Natl. Acad. Sci. USA 2016, 113, 8927–8932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, W.K.M.; Kim, K.-M. Robust responses of the Hadley circulation and global dryness in CMIP5 model CO2 warming projections. Proc. Natl. Acad. Sci. USA 2015, 112, 3630–3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, A.; Albern, N.; Ceppi, P.; Grise, K.; Li, Y.; Medeiros, B. Clouds, radiation, and atmospheric circulation in the present-day climate and under climate change. WIREs Clim. Chang. 2021, 12, e694. [Google Scholar] [CrossRef]
- Romps, D.M. Response of Tropical Precipitation to Global Warming. J. Atmos. Sci. 2011, 68, 123–138. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J. The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett. 2015, 42, 3591–3595. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.; Jakob, C.; Rossow, W.B.; Tselioudis, G. Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature 2015, 519, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Morake, D.M.; Blamey, R.C.; Reason, C.J.C. 2021: Long-Lived Mesoscale Convective Systems over Eastern South Africa. J. Clim. 2021, 34, 6421–6439. [Google Scholar] [CrossRef]
- Roca, R.; Fiolleau, T. Extreme precipitation in the tropics is closely associated with long-lived convective systems. Comm. Earth Environ. 2020, 1, 18. [Google Scholar] [CrossRef]
- Dong, W.; Zhao, M.; Ming, Y.; Ramaswamy, V. Representation of tropical mesoscale convective systems in a general circulation model: Climatology and response to global warming. J. Clim. 2021, 34, 5657–5671. [Google Scholar] [CrossRef]
- Gates, W.L.; Boyle, J.S.; Covey, C.; Dease, C.G.; Doutriaux, C.M.; Drach, R.S.; Fiorino, M.; Gleckler, P.J.; Hnilo, J.J.; Marlais, S.M.; et al. An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I). Bull. Am. Meteorol. Soc. 1999, 80, 29–55. [Google Scholar] [CrossRef]
- Leung, L.R.; Bader, D.C.; Taylor, M.A.; McCoy, R.B. An introduction to the E3SM special collection: Goals, science drivers, development, and analysis. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001821. [Google Scholar] [CrossRef]
- Xie, S.; Lin, W.; Rasch, P.J.; Ma, P.-L.; Neale, R.; Larson, V.E.; Qian, Y.; Bogenschutz, P.A.; Caldwell, P.; Cameron-Smith, P.; et al. Understanding cloud and convective characteristics in version 1 of the E3SM atmosphere model. J. Adv. Model. Earth Syst. 2018, 10, 2618–2644. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Wan, H.; Yang, B.; Golaz, J.C.; Harrop, B.; Hou, Z.; Larson, V.E.; Leung, L.R.; Lin, G.; Lin, W.; et al. Parametric sensitivity and uncertainty quantification in the version 1 of E3SM Atmosphere Model based on short Perturbed Parameters Ensemble simulations. J. Geophys. Res. 2018, 123, 13046–13073. [Google Scholar] [CrossRef] [Green Version]
- Golaz, C.; Caldwell, P.M.; Van Roekel, L.P.; Petersen, M.R.; Tang, Q.; Wolfe, J.D.; Abeshu, G.; Anantharaj, V.; Asay-Davis, X.S.; Bader, D.C.; et al. The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution. J. Adv. Model. Earth Syst. 2019, 11, 2089–2129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.J.; McFarlane, N.A. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos. Ocean 1995, 33, 407–446. [Google Scholar] [CrossRef] [Green Version]
- Rasch, P.J.; Xie, S.; Ma, P.-L.; Lin, W.; Wang, H.; Tang, Q.; Burrows, S.M.; Caldwell, P.; Zhang, K.; Easter, R.C.; et al. An overview of the atmospheric component of the Energy Exascale Earth System Model. J. Adv. Model. Earth Syst. 2019, 11, 2377–2411. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, P.-L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R.C.; Ghan, S.J.; Rasch, P.J. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model. Geosci. Model Dev. 2016, 9, 505–522. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Morrison, H.; Santos, S.; Bogenschutz, P.; Caldwell, P.M. Advanced Two-Moment Bulk Microphysics for Global Models. Part II: Global Model Solutions and Aerosol–Cloud Interactions. J. Clim. 2015, 28, 1288–1307. [Google Scholar] [CrossRef]
- Harrop, B.E.; Ma, P.-L.; Rasch, P.J.; Neale, R.B.; Hannay, C. The role of convective gustiness in reducing seasonal precipitation biases in the tropical West Pacific. J. Adv. Model. Earth Syst. 2018, 10, 961–970. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fan, J.; Feng, Z.; Zhang, K.; Roesler, E.; Hillman, B.; Shpund, J.; Lin, W.; Xie, S. Impact of a New Cloud Microphysics Parameterization on the Simulations of Mesoscale Convective Systems in E3SM. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002628. [Google Scholar] [CrossRef]
- Li, H.; Wigmosta, M.S.; Wu, H.; Huang, M.; Ke, Y.; Coleman, A.M.; Leung, L.R. A physically based runoff routing model for land surface and Earth system models. J. Hydrometeorol. 2013, 14, 808–828. [Google Scholar] [CrossRef]
- Li, H.-Y.; Leung, L.R.; Getirana, A.; Huang, M.; Wu, H.; Xu, Y.; Guo, J.; Voisin, N. Evaluating global streamflow simulations by a physically-based routing model coupled with the Community Land Model. J. Hydrometeorol. 2015, 16, 948–971. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.-Y.; Leung, L.R.; Liu, L.; Hejazi, M.; Forman, B.A.; Yigzaw, W. River regulation alleviates the impacts of climate change on US thermoelectricity production. J. Geophys. Res. 2020, 125, e2019JD031618. [Google Scholar] [CrossRef]
- Houze, R.A. 100 Years of Research on Mesoscale Convective Systems. Meteor. Monogr. 2018, 59, 17.1–17.54. [Google Scholar] [CrossRef]
- Sui, C.; Satoh, M.; Suzuki, K. Precipitation Efficiency and its Role in Cloud-Radiative Feedbacks to Climate Variability. J. Meteorol. Soc. Japan 2020, 98, 261–282. [Google Scholar] [CrossRef] [Green Version]
- Webb, M.J.; Andrews, T.; Bodas-Salcedo, A.; Bony, S.; Bretherton, C.S.; Chadwick, R.; Chepfer, H.; Douville, H.; Good, P.; Kay, J.E.; et al. The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6. Geosci. Model Dev. 2017, 10, 359–384. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteor. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.M.; Wu, H.T. Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett. 2003, 30, 2290. [Google Scholar] [CrossRef]
- Sui, C.; Li, X.; Yang, M.; Huang, H. Estimation of Oceanic Precipitation Efficiency in Cloud Models. J. Atmos. Sci. 2005, 62, 4358–4370. [Google Scholar] [CrossRef]
- Sui, C.; Li, X.; Yang, M. On the Definition of Precipitation Efficiency. J. Atmos. Sci. 2007, 64, 4506–4513. [Google Scholar] [CrossRef]
- Lutsko, N.J.; Cronin, T.W. Increase in precipitation efficiency with surface warming in radiative-convective equilibrium. J. Adv. Model. Earth Syst. 2018, 10, 2992–3010. [Google Scholar] [CrossRef] [Green Version]
- Narsey, S.; Jakob, C.N.; Singh, M.S.; Bergemann, M.; Louf, V.; Protat, A.; Williams, C. Convective precipitation efficiency observed in the tropics. Geophys. Res. Lett. 2019, 46, 13574–13583. [Google Scholar] [CrossRef]
- Li, R.L.; Studholme, J.H.P.; Fedorov, A.V.; Storelvmo, T. Precipitation efficiency constraint on climate change. Nat. Clim. Chang. 2022, 12, 642–648. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Huang, Y. Understanding the Atmospheric Temperature Adjustment to CO2 Perturbation at the Process Level. J. Clim. 2019, 33, 787–803. [Google Scholar] [CrossRef]
- Tokinaga, H.; Xie, S.-P.; Deser, C.; Kosaka, Y.; Okumura, Y.M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 2012, 491, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, T. Relative roles of differential SST warming, uniform SST warming and land surface warming in determining the Walker circulation changes under global warming. Clim. Dyn. 2017, 48, 987–997. [Google Scholar] [CrossRef]
- Byrne, M.P.; O’Gorman, P.A. Understanding Decreases in Land Relative Humidity with Global Warming: Conceptual Model and GCM Simulations. J. Clim. 2016, 29, 9045–9061. [Google Scholar] [CrossRef]
- Berg, A.; Findell, K.; Lintner, B.; Giannini, A.; Seneviratne, S.I.; Hurk, B.v.D.; Lorenz, R.; Pitman, A.; Hagemann, S.; Meier, A.; et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Chang. 2016, 6, 869–874. [Google Scholar] [CrossRef]
- Chen, J.; Dai, A.; Zhang, Y.; Rasmussen, K.L. Changes in Convective Available Potential Energy and Convective Inhibition under Global Warming. J. Clim. 2020, 33, 2025–2050. [Google Scholar] [CrossRef]
- Neelin, J.D.; Münnich, M.; Su, H.; Meyerson, J.E.; Holloway, C.E. Tropical drying trends in global warming models and observations. Proc. Natl. Acad. Sci. USA 2006, 103, 6110–6115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rio, C.; Hourdin, F.; Grandpeix, J.-Y.; Lafore, J.-P. Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett. 2009, 36, L07809. [Google Scholar] [CrossRef] [Green Version]
- Doan, Q.; Chen, F.; Kusaka, H.; Dipankar, A.; Khan, A.; Hamdi, R.; Roth, M.; Niyogi, D. Increased risk of extreme precipitation over an urban agglomeration with future global warming. Earth Future 2022, 10, e2021EF002563. [Google Scholar] [CrossRef]
- Song, F.; Zhang, G.J.; Ramanathan, V.; Leung, L.R. Trends in surface equivalent potential temperature: A more comprehensive metric for global warming and weather extremes. Proc. Natl. Acad. Sci. USA 2022, 119, e2117832119. [Google Scholar] [CrossRef] [PubMed]
P > 15 | P > 20 | P > 25 | P > 30 | P > 35 | ||
---|---|---|---|---|---|---|
Ocean (192984) | Control P4K 4xCO2 | 555 2357 5555 | 149 322 1012 | 27 43 161 | 6 6 36 | 0 0 3 |
Land (66216) | Control P4K 4xCO2 | 840 1172 1739 | 283 276 581 | 104 111 244 | 39 27 117 | 13 13 51 |
Ocean+ Land (259200) | Control P4K 4xCO2 | 1395 3529 7294 | 432 598 1593 | 131 154 405 | 45 33 153 | 13 13 54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lau, W.K.M.; Kim, K.-M.; Harrop, B.; Leung, L.R. Changing Characteristics of Tropical Extreme Precipitation–Cloud Regimes in Warmer Climates. Atmosphere 2023, 14, 995. https://doi.org/10.3390/atmos14060995
Lau WKM, Kim K-M, Harrop B, Leung LR. Changing Characteristics of Tropical Extreme Precipitation–Cloud Regimes in Warmer Climates. Atmosphere. 2023; 14(6):995. https://doi.org/10.3390/atmos14060995
Chicago/Turabian StyleLau, William K. M., Kyu-Myong Kim, Bryce Harrop, and L. Ruby Leung. 2023. "Changing Characteristics of Tropical Extreme Precipitation–Cloud Regimes in Warmer Climates" Atmosphere 14, no. 6: 995. https://doi.org/10.3390/atmos14060995
APA StyleLau, W. K. M., Kim, K. -M., Harrop, B., & Leung, L. R. (2023). Changing Characteristics of Tropical Extreme Precipitation–Cloud Regimes in Warmer Climates. Atmosphere, 14(6), 995. https://doi.org/10.3390/atmos14060995