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Abstract: Six new tirucallane-type triterpenoids, named munropenes A–F (1–6), were extracted from
the whole plants of Munronia pinnata using a water extraction method. Their chemical structures were
determined based on detailed spectroscopic data. The relative configurations of the acyclic structures
at C-17 of munropenes A–F (1–6) were established using carbon–proton spin-coupling constants
(2,3JC,H) and inter-proton spin-coupling constants (3JH,H). Furthermore, the absolute configurations of
munropenes A–F (1–6) were determined through high-performance liquid chromatography (HPLC),
single-crystal X-ray diffraction, and electronic circular dichroism (ECD) analyses. The antiproliferative
effects of munropenes A–F were evaluated in five tumor cell lines: HCT116, A549, HepG2, MCF7,
and MDAMB. Munropenes A, B, D, and F (1, 2, 4, and 6) inhibited proliferation in the HCT116 cell
line with IC50 values of 40.90, 19.13, 17.66, and 32.62 µM, respectively.

Keywords: tirucallane; Meliaceae; Munronia pinnata; munropenes A–F; cytotoxic activity

1. Introduction

Munronia pinnata (Wall.) W. Theob., also called M. henryi Harms, belongs to the family
Meliaceae [1,2]. It is a low subshrub that is naturally distributed in several countries,
including India, China, the Philippines, and others [3]. In traditional Chinese medicine,
Munronia pinnata is recognized for its efficacy in treating tuberculosis, cough, stomach pain,
and sores [1–4].

Numerous structurally diverse compounds have been extracted from this plant,
including limonoids, triterpenoids, flavonoids, lignans, sterols, sesquiterpenoids, and
diterpenoids [3,5,6]. These compounds exhibit a wide range of bioactivities, such as
anti-inflammatory, antiproliferative, anti-tobacco mosaic virus, and insect antifeedant
activities [3,7–9], and have various roles in preserving food, flavoring, and treating var-
ious illnesses. In the early stages of our research, phytochemical study on the aerial
parts of Munronia pinnata was isolated six novel limonoids [10]. In this study, six triter-
penoids, named munropenes A–F (1–6) (Figure 1) were obtained from the whole plants
of Munronia pinnata using a water extraction method, and their antiproliferative activities
against several tumor cell lines, including HCT116, A549, HepG2, MCF7, and MDAMB
acquired from the cell bank of Chinese Academy of Sciences (Shanghai, China) were also
carried out.
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Figure 1. The chemical structures of munropenes A–F (1–6).

2. Results and Discussion

In this investigation, compounds 1 and 2 were obtained as colorless amorphous solids
with optical activity: {[α]D

20.1 + 4.98 (c 0.10, MeOH) for 1; [α]D
20.1 − 5.00 (c 0.10, MeOH)

for 2}. The results of HRESIMS suggest that compounds 1 and 2 have the same molecular
formula—C32H50O12 {m/z 625.3354 ([M − H]−, ∆ + 12.4 mmu) for 1 and m/z 625.3136
([M − H]−, ∆ − 9.4 mmu) for 2}—indicating that both compounds are isomers with eight
degrees of unsaturation. The IR spectrum showed the presence of carbonyl functionalities
at 1748 cm−1 and 1689 cm−1 for 1 and 2. The 1H NMR spectrum revealed the existence of
one trisubstituted olefin, eight sp3 methines, seven sp3 methylenes, and six singlet methyls
(including one acetyl methyl). The 13C NMR spectrum displayed 32 signals, including 3
ester carbonyls, 2 olefinic, 2 oxygenated tertiary, and 3 quaternary carbon signals (Table 1).
These data indicate a tetracyclic triterpene structure for compounds 1 and 2, with the
primary difference being the configuration at C-7.

Table 1. 1H and 13C NMR data for munropenes A–D (1–4) in CD3OD.

Position
1 2 3 4

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

1 4.66 (1H, d, 7.2) 71.3 4.78 (1H, d, 7.5) 73.3 6.21 (1H, d, 7.5) 78.8 5.55 (1H, dd,
11.1, 1.6) 79.1

2 3.31 (1H, d,16.0)/
2.77 (1H, m) 35.5 3.84 (1H, m)/

2.93 (1H, m) 37.1 2.41 (1H, m)/
2.99 (1H, m) 36.2

2.41 (1H, dd,
15.1, 11.0)/

3.08 (1H, m)
36.3

3 - 170.5 - 175.8 - 175.5 - 175.5
4 - 87.4 - 91.4 - 81.9 - 147.7

5 2.77 (1H, m) 39.2 2.83 (1H, dd,
13.0, 2.6) 40.3 2.37 (1H, dd,

13.0, 2.6) 42.7 2.79 (1H, dd,
13.0, 3.4) 43.9

6 2.15 (1H, m)/
1.87 (1H, m) 27.6 2.49 (1H, m)/

1.99 (1H, m) 28.8 2.29 (1H, m)/
1.68 (1H, m) 28.1

2.07 (1H, m)/
1.76 (1H, dt,

14.5, 3.4)
28.4

7 3.75 (1H, m) 70.7 3.91 (1H, t, 3.1) 73 3.85 (1H, t, 3.1) 73 4.03 (1H, dd,
3.7, 1.5) 78.4
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Table 1. Cont.

Position
1 2 3 4

δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC δH (J in Hz) δC

8 - 42.8 - 44.5 - 44.6 - 44.3
9 2.40 (1H, m) 33.3 2.52 (1H, m) 34.8 2.29 (1H, m) 35.3 2.30 (1H, m) 35.5

10 - 43.6 - 45.2 - 47.1 - 45.5

11 1.22 (1H, m)/
1.40 (1H, m) 16.4 1.47 (1H, m)/

1.52 (1H, m) 17.8 1.68 (1H, m)/
2.01 (1H, m) 20.3 1.63 (1H, m)/

1.94 (1H, m) 20.1

12 1.62 (1H, m)/
1.40 (1H, m) 34.4 1.84 (1H, m)/

1.49 (1H, m) 35.6
1.50 (1H, dt, 13.1,

9.3)/
1.92 (1H, m)

36.1 1.57 (1H, m)/
1.87 (1H, m) 37.3

13 - 46 - 47.7 - 47.3 - 47.3
14 - 160.2 - 162 - 161.8 - 159.5

15 5.32 (1H, m) 119.1 5.46 (1H, dd,
3.5, 1.5) 121 5.45 (1H, dd,

3.8, 1.5) 120.7 5.45 (1H, dd,
3.7, 1.7) 121.6

16 2.02 (1H, m)/
2.15 (1H, m) 34.6 2.18 (1H, m)/

2.34 (1H, m) 35.9 2.18 (1H, m)/
2.29 (1H, m) 35.9 2.08 (1H, m)/

2.30 (1H, m) 36.2

17 1.57 (1H, m) 55.9 1.66 (1H, td, 10.4,
7.2) 56.2 1.68 (1H, m) 57.9 1.63 (1H, m) 58.2

18 0.90 (3H, s) 18.4 1.04 (3H, s) 19 1.10 (3H, s) 19.4 1.12 (3H, s) 21.1
19 0.94 (3H, s) 13.1 1.14 (3H, s) 14.1 1.04 (3H, s) 14.8 0.97 (3H, s) 15.7
20 1.68 (1H, m) 39.5 1.84 (1H, m) 41.7 1.19 (1H, m) 41.8 1.87 (1H, m) 42.1

21 3.23 (1H, m)/
3.59 (1H, m) 63.9 3.34 (1H,

m)/3.84 (1H, m) 66
3.36 (1H, m)/
3.89 (1H, dd,

10.6, 3.6)
66.1

3.34 (1H, m)/
3.89 (1H, dd,

10.5, 3.6)
66.3

22 1.94 (1H, m)/
1.22 (1H, m) 36.9 1.36 (1H, m)/

2.18 (1H, m) 38.5 1.37 (1H, m)/
2.18 (1H, m) 38.7

1.35 (1H, ddd,
14.7, 9.3, 7.3)/
2.22 (1H, dt,

14.8, 2.9)

38.8

23 3.49 (1H, m) 72.9 3.66 (1H, td,
8.9,2.1) 74.7 3.67 (1H, td, 8.9,

2.1) 74.8 3.67 (1H, td, 9.0,
2.1) 74.9

24 2.89 (1H, d, 8.1) 78.4 3.09 (1H, d, 8.2) 79.9 3.08 (1H, d, 8.2) 79.9 3.08 (1H, m) 79.9
25 - 73.2 - 74.9 - 75 - 75
26 1.08 (3H, s) 28 1.22 (3H, s) 27.9 1.22 (3H, s) 28 1.24 (3H, s) 23.9
27 1.09 (3H, s) 24 1.24 (3H, s) 24.1 1.24 (3H, s) 23.9 1.22 (3H, s) 28

28 3.62 (1H, m)/
3.81 (1H, d, 10.9) 172.2

3.78 (1H, d,
14.7)/

4.01 (1H, d, 11.1)
177.6

3.78 (1H, d,
10.4)/

4.01 (1H, d, 10.4)
178.7 4.96 (1H, d, 2.4)/

4.88 (1H, d, 2.4) 116.1

29 - 70.7 - 70.9 - 69.4 1.83 (3H, s) 23.7
30 1.03 (3H, s) 27.4 1.16 (3H, s) 28.3 1.08 (3H, s) 27.6 1.17 (3H, s) 27.5

1-OAc - 169.5 - 171.6 - 172.5 - 172.4
1.99 (3H, s) 20.7 2.06 (3H, s) 20.9 2.00 (3H, s) 21.2 2.00 (3H, s) 21.1

1′ - - - - - - 4.30 d (7.8) 100.3
2′ - - - - - - 3.12 (1H, m) 75.4
3′ - - - - - - 3.33 (1H, m) 78.8
4′ - - - - - - 3.17 (1H, m) 72.3

5′ - - - - - - 3.18 (1H, dd,
9.7, 2.4) 77.6

6′ - - - - - -

3.59 (1H, dd,
11.5, 5.9)/

3.88 (1H, dd,
11.4, 2.3)

63.5

The tetracyclic ring moiety includes an α,β-unsaturated-ε-caprolactone ring (C-1–C-5,
C-10) with a formyl group and a methoxy group at C-4, as well as three methyl groups
at C-8, C-10, and C-13. The 1H-1H COSY cross-peaks were observed among H-1/H2-2,
H-5/H2-6/H-7, H-9-H2-11/H2-12, and H-15/H2-16/H-17. Additionally, HMBC correla-
tions were found between H-1 and C-3; H2-28 and C-4, C-5, and C-29; H3-30 and C-7, C-8,
C-9, and C-14; H3-19 and C-1, C-5, C-9, and C-10; H3-18 and C-12, C-13, C-14, and C-17;
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and H-15 and C-14 (Figure 2). From the IR spectrum and the degree of unsaturation of
compound 1, it was determined that an α,β-unsaturated-ε-caprolactone ring is present.
Furthermore, the presence of an acetoxy group at C-11 was elucidated by the heteronuclear
multiple bond correlation (HMBC) between H-1 and the acetoxy carbonyl carbon. The
presence of a 1,4,5,6-tetrahydroxy-6-methyl-heptanol moiety at C-17 was suggested based
on the 1H-1H COSY cross-peaks of H-17/H-20 and H2-21/H-20/H2-22/H-23/H-24, as well
as the HMBC correlations between H3-26 and C-24, C-25, and C-26, and H-21 with C-20
and C-22. In short, the planar structure of 1 was established as described.
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The relative configuration of the tetracyclic ring moiety in compound 1 was primar-
ily confirmed using the ROESY method (Figure 3). The rotating-frame nuclear Over-
hauser effect spectroscopy (ROESY) correlations of H3-19/H-1, H3-19/H-6b, H3-19/H3-30,
H3-30/H-7, H3-30/H-17, H-16b/H-17, and H-7/H-6β suggested that these protons were
cofacial and they were arbitrarily assigned as β-oriented. Consequently, the orientations
of H-5, H-16a, H-9, H-18, and H2-29 were assigned as α-oriented based on the ROESY
correlations between H2-28/H-5, H-5/H-6a, H-5/H-9, H-9/H3-18, and H3-18/H-16α. The
relative configurations of C-20, C-23, and C-24 were determined based on J-based config-
uration analysis [11]. In addition to the 3JH,H values, 2,3JC,H values were detected using
hetero half-filtered TOCSY (HETLOC) [12,13], phase-sensitive COSY (PS-COSY) [14], and
phase-sensitive HMBC (PS-HMBC) [15,16] spectra of 1 in CD3OD. The relative magnitudes
of coupling constants assigned from the 3JH,H and 2,3JC,H values indicated that each of
C-17–C-20, C-20–C-22, C-22–C-23, and C-23–C-24 bonds adopted a single dominant con-
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former (Figure 4), which was further supported by the ROESY correlations (Figure 3). Thus,
the relative configuration at C-20, C-23, and C-24 in compound 1 was assigned as R*, S*,
and S*, respectively.
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The confirmation was obtained through the utilization of single-crystal X-ray diffrac-
tion (Figure 5). Accordingly, the relative configuration of compound 2 was assigned as
1S*, 4S*, 5R*, 7R*, 8R*, 9R*, 10R*,13S*, 17S*, 20S*, 23R*, and 24R* based on the comparison
of 1D NMR data (Table 1) and the 3JH,H and 2,3JC,H values of compound 2 with those of
compound 1. This determination was further supported by ROESY correlations, such as
H-9/H3-18 and H3-18/H-17, in compound 2 (Figure 3). The absolute configurations of
compound 2 were assigned using the electronic circular dichroism (ECD) spectrum since
obtaining a crystal for single-crystal X-ray diffraction data was not possible. The TDDFT
{CAM-B3LYP/6-31G + (d)} calculation of a possible enantiomer (1S*, 4S*, 5R*, 7R*, 8R*, 9R*,
10R*,13S*, 17S*, 20S*, 23R*, 24R*) of compound 2 yielded a calculated ECD spectrum that
matched the experimental spectrum of compound 2 (Figure 6), confirming the 1S*, 4S*, 5R*,
7R*, 8R*, 9R*, 10R*,13S*, 17S*, 20S*, 23R*, and 24R* configurations of compound 2. Thus,
the chemical structures of compounds 1 and 2 were established as shown in Figure 1.
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Munropene C (compound 3) was obtained as an optically active, colorless amorphous
solid. The specific rotation [α]D

20.0 = −50.51 (c 0.10, MeOH) indicated its optical activity.
From the HRESIMS, a sodiated molecular ion at m/z 643.3221 ([M − H]−, ∆−11.4 mmu)
was observed, revealing the molecular formula of compound 3 to be C32H52O13, suggesting
the presence of seven degrees of unsaturation. The 1D NMR spectra of compound 3 (Table 1)
were similar to those of compound 1, except for signals related to ring A. By comparing
the degrees of unsaturation and molecular formula of 3 with those of compound 1, it
was concluded that compound 3 was a ring A-seco munropene A (1). This conclusion
was further supported by the 1H NMR chemical shifts of H-1 and H-2 in compound 3
(Figure 2). Therefore, a possible biosynthetic pathway for munropene C (compound 3) was
proposed, suggesting that it might be generated through the hydrolysis of munropene A
(compound 1) in ring A (Figure S2).

The β orientation of H-5, H-7, H-17, H3-19, and H3-30 was assigned based on the
ROESY correlations of H3-19/H-5, H3-19/H3-30, H3-30/H-7, H3-30/H-17, and H-7/H-5.
The ROESY cross-peaks of H-9/H3-18 suggested the α orientations of H-9 and H3-18
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(Figure S1). Thus, considering the similar biosynthetic pathway of compounds 1 and 3,
the S* configuration was assigned to C-1 and C-4 of compound 3. The ROESY cross-peaks
of H-1/H-5, H-1/H3-19, H2-29/H-5, and H2-29/H3-19 further supported this assignment
(Figure S1). Consequently, the structure and relative configuration of compound 3 were
established as shown.

The molecular formula of munropene D (compound 4) was determined to be C38H62O14
through HRESIMS analysis, showing a peak at m/z 741.4010 ([M − H]−, ∆−5.7 mmu). The
1D NMR spectra of compound 4 (Table 1) exhibited signals originating from a glucose group,
indicating its structural similarity to that of compound 3, except for the modifications at the
C-5 and C-7 positions. The attachment of a methylethylene moiety at C-5 was confirmed
by the HMBC correlation of H3-29 with C-4, C-5, and C-28.

The sugar moiety was obtained through acid hydrolysis, followed by treatment with
L-cysteine methyl ester and o-tolylisothiocyanate, resulting in a reaction mixture that
produced a peak during HPLC analysis identical to that of the derivative of authentic D-
glucose prepared using the same procedure [17]. Hence, the glucose moiety of compound 4
was determined to be D-glucose. The β-glycosidic linkage of the D-glucosyl moiety at
C-7 was concluded based on the coupling constant value of the anomeric proton (H-1′,
J = 7.8 Hz), as well as the HMBC correlation of H-1′ with C-7 (Figure 2).

The relative configurations of compound 4 were assigned as 1S*, 4S*, 5R*, 7R*, 8R*,
9R*, 10R*, 13S*, 17R*, 21R*, 23S*, and 24S* through a comparison of the NMR data of
compound 4 with that of compound 1. ROESY cross-peaks observed in compound 4
between H3-19/H3-30, H3-30/H-7, H3-30/H-17, H-5/H-9, H3-18/H-9, H3-18/H-16a, and
H-16b/H-17, which were also present in compound 1, supported this assignment.

Munropenes E (compound 5) and F (compound 6) were isolated as optically ac-
tive colorless amorphous solids. Their optical rotations were determined as [α]D

20.0 =
−24.04 (c 0.10, MeOH) for compound 5 and [α]D

20.0 = −6.80 (c 0.10, MeOH) for com-
pound 6. HRESIMS analysis revealed the molecular formulas as C36H58O12 (m/z 727.3846
[M + HCOO]−, ∆−6.4 mmu for compound 5; m/z 727.3845 [M + HCOO]−, ∆−6.5 mmu for
compound 6), suggesting the presence of eight degrees of unsaturation. The 1H NMR data
(Table 2) displayed resonances corresponding to a trisubstituted olefin, a 1,2-disubstituted
olefin, seven sp3 methines, seven sp3 methylenes, six singlet methyls, and a glucosyl moi-
ety. The 13C NMR spectrum exhibited 36 signals, including 1 ketone carbonyl, 4 olefinic,
1 oxygenated tertiary, and 4 quaternary carbon signals (Table 2). These data indicate that
compounds 5 and 6 are isomers of each other and closely related to compounds 1 and 2,
except for changes occurring in the A ring and at C-7. The glucose moiety of compounds 5
and 6 was determined to be D-glucose through similar HPLC analyses as performed for
compound 4. The comparison of the 1D NMR spectroscopic data of compounds 5 and 6
with those of compound 4 indicated that the β-glycosidic linkage of the D-glucosyl moiety
was attached at C-7, which was confirmed by the HMBC correlation of H-1′ with C-7, as
well as similar HPLC analyses as conducted for compound 4. The A rings of these two
compounds were assigned as α, β-unsaturated hexane ketones with one methyl and one
methanol group at C-4, elucidated by 1H-1H COSY cross-peaks of H-1/H-2 and the HMBC
correlations of H3-29 with C-3, C-4, C-5, and C-28, as well as H-1 with C-3, C-5, and C-10.
Additionally, the HMBC correlations of H3-19 with C-1, C-10, C-5, and C-9 supported this
assignment and allowed for the connectivity between ring A and ring B.

The relative configurations of compounds 5 and 6 in the aglycone moieties were
deduced to be similar to those of compounds 1 and 2, respectively, based on the resemblance
of their 1D NMR data (Tables 1 and 2) and ROESY correlations (Figure S2). The ECD
spectra of compounds 5 and 6 indicated a similar Cotton effect at 237 nm and 203 nm.
According to the octant rule [18], the positive Cotton effect observed in compounds 5 and 6,
attributed to the exciton coupling ofα, β-unsaturated hexane ketone, suggested the absolute
configuration of 4S*, 5R*, and 10R* in compounds 5 and 6. The absolute configuration
of compound 6 was confirmed by comparing the experimental ECD spectrum with the
TDDFT calculated spectrum. The experimental ECD spectrum of compound 5 correlated
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well with the calculated spectrum of a possible enantiomer with the 4S*, 5R*, 7R*, 8R*, 9R*,
10R*, 13S*, 17R*, 20R*, 23S*, and 24S* configurations (Figure 7), confirming the assignment
of the absolute configuration of compound 5 as mentioned above. Thus, the structures of
compounds 5 and 6 were elucidated as shown in Figure 1.

Table 2. 1H and 13C NMR data for munropenes E–F (5–6) in CD3OD.

Position
5 6

δH (J in Hz) δC δH (J in Hz) δC

1 7.28 (1H, d, 10.2) 161.3 7.28(1H, d, 10.2) 161.3
2 5.77 (1H, d, 10.2) 125.6 5.77(1H, d, 10.2) 125.6
3 206.3 206.3
4 51.7 51.7
5 2.63 (1H, dd, 10.2, 5.2) 46 2.63(1H, dd, 10.2, 5.4) 46
6 2.03 (1H, m) 23.3 2.03 (1H, m) 23.3
7 4.14 (1H, t, 2.8, 2.8) 78.3 4.14 (1H, t, 2.8, 2.8) 78.4
8 44.9 44.9
9 2.25 (1H, m) 40.1 2.25 (1H, m) 40.1

10 41.1 41
11 1.68 (1H, m)/1.87 (1H, m) 18.7 1.66 (1H, m)/1.87 (1H, m) 18.7
12 1.68 (1H, m)/1.87 (1H, m) 37.3 1.66 (1H, m)/1.87 (1H, m) 37.5
13 47.6 47.6
14 158.7 159.1
15 5.49 (1H, dd, 3.7, 1.7) 122.2 5.49 (1H, dd, 3.7, 1.7) 122.2
16 2.03(1H, m)/2.25(1H, m) 36.1 2.07 (1H, m)/2.30 (1H, ddd, 15.1, 7.2, 3.5) 36.3
17 1.72(1H, m) 57.5 1.66 (1H, m) 58.1
18 1.06 (3H, s) 21.2 1.06 (3H, s) 21.1
19 1.24 (3H, s) 19.7 1.23 (3H, s) 19.7
20 1.80 (1H, m) 40.9 1.86 (1H, m) 42

21 3.44 (1H, dd, 10.6, 6.8)/3.79 (1H,
dd, 10.6, 6.8) 65.3 3.35 (1H, m)/3.87 (1H, m) 66.2

22 1.65 (1H, m)/1.77 (1H, m) 38.2 1.34 (1H, m)/2.20 (1H, m) 38.8
23 4.09 (1H, m) 71.2 3.66 (1H, m) 74.9
24 3.17 (1H, m) 78.7 3.08(1H, m) 79.9
25 74.7 75
26 1.27 (3H, s) 27.2 1.22 (3H, s) 28
27 1.24 (3H, s) 26.5 1.24 (3H, s) 23.9
28 3.62 (1H, d, 11.3)/3.74 (1H, d, 11.3) 66.2 3.62 (1H, m)/3.74 (1H, d, 11.4) 66.2
29 1.25 (3H, s) 21.6 1.25 (3H, s) 21.6
30 1.21 (3H, s) 28.3 1.20 (3H, s) 28.2
1′ 4.32 (1H, d, 7.6) 100.7 4.32 (1H, d, 7.6) 100.7
2′ 3.08 (1H, m) 75.3 3.09 (1H, m) 75.3
3′ 3.34 (1H, m) 78.4 3.32 (1H, m) 74.9
4′ 3.15 (1H, m) 72.3 3.15 (1H, m) 72.3
5′ 3.23 (1H, ddd, 9.2, 6.4, 2.5) 77.6 3.22 (1H, ddd, 9.2, 6.6, 2.4) 77.6
6′ 3.35 (1H, m)/3.88 (1H, m) 63.6 3.58 (1H, m)/3.87 (1H, m) 63.6

As part of our ongoing search for potential natural product leads for therapeutic
agents from M. pinnata, we evaluated the antiproliferative activity of munropenes A–F
(compounds 1–6) against various human cancer cell lines including HCT116, A549, HepG2,
MCF7, and MDAMB. Munropenes A, B, D, and F (compounds 1, 2, 4, and 6) were not
cytotoxic (IC50 > 50 µM) to A549, HepG2, MCF7, and MDAMB cells. However, they
exhibited moderate cytotoxicity against HCT116 cells, with IC50 values of 40.90, 19.13,
17.66, and 32.62 µM, respectively (Table 3). In contrast, munropenes C and E (compounds 3
and 5) did not exert any cytotoxicity against the tested cell lines (Table 3).
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Table 3. IC50 values (µM) of munropenes A–F (A-6) from M. pinnata in human tumor cell lines.

Compounds HCT116 A549 HepG2 MCF7 MDAMB

1 19.13 >160 >160 >160 >160
2 40.9 >160 >160 >160 >160
3 >160 >160 >160 >160 >160
4 17.66 >160 >160 >160 >160
5 57.9 >160 >160 >160 >160
6 32.62 >160 >160 >160 >160

3. Materials and Methods
3.1. General Experimental Protocols

The Jasco P-1020 polarimeter was used to measure optical rotation. Infrared (IR)
spectra were obtained using a Tensor 27 spectrometer and a Nicolet Fourier transform
infrared spectrometer (Thermo Fisher, Waltham, MA, USA) with KBr pellets. Circular
dichroism (CD) spectra were recorded using a J-810 CD spectrometer. MS spectra were
measured using an LC/MS-IT-TOF mass spectrometer. Nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker AVANCE III-HD 500 spectrometer with MeOH (δH 3.30
and δC 49.0) serving as the internal standard. The countercurrent chromatography (CCC)
experiment was conducted using a TBE-300C machine (manufactured by Tauto Biotech-
nique, located in Shanghai, China). HPLC analysis was performed using an Agilent
1260 InfinityIILC system (Agilent Technologies, Santa Clara, CA, USA). The columns uti-
lized were Agilent Poroshell 120 SB-C18 (4 mm, 4.6 mm × 150 mm, Agilent, Santa Clara,
CA, USA), ChromCore 120-C18 (5 mm, 10 mm × 250 mm, NanoChrom, Suzhou, China),
and Agilent ZORBAX SB-C18 (5 mm, 9.4 mm × 250 mm, Agilent, Santa Clara, CA, USA).
Silica gel (200–300 mesh, Qingdao Marine Chemical Factory, Qingdao, China) and MCI gel
(Mitsubishi Chemical Corporation, Tokyo, Japan) were used for column chromatography.
Thin-layer chromatography (TLC) analyses were performed using preloaded silica gel 60
F254 plates from Merck Millipore in Germany. The spots were visualized by heating the
silica gel plate, which was sprayed with a mixture of 10% H2SO4 and ethanol.
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3.2. Plant Material

Botanical samples of Munronia pinnata (Wall.) W. Theob. were collected in July 2021
from Jingxi City, located in the Guangxi Zhuang Autonomous Region. The plant material
was identified by one of the authors, X.-Q. Li. Voucher specimens have been preserved at
the herbarium of the Center for Natural Products Chemistry Studies, Guangxi Institute
of Botany, Guangxi Zhuang Autonomous Region, and Chinese Academy of Sciences
(21-GX-001).

3.3. Extraction and Isolation

Munronia pinnata (25 kg), which had been air-dried and powdered, was extracted three
times with 95% ethanol (250 L) under reflux conditions. The resulting mixture was then
filtered to remove any insoluble components. The filtrate was concentrated under reduced
pressure to obtain the extract. The extract was further extracted using petroleum ether and
EtOAc, yielding a remaining water layer. To obtain fraction Fr 3 (34 g), the water layer was
subjected to macroporous resin column chromatography with elution using 20%, 40%, and
80% ethanol. Additionally, the 80% fraction was subjected to gel column chromatography
with methanol elution, yielding fraction Fr2 (15 g). Fr2 was separated by C18 column
chromatography with a methanol gradient elution (MeOH-H2O, 30:70–50:50 gradient
system) to obtain seven fractions (Fr2.1–Fr2.7). Fr2.1 (1.46 g) was further separated by
HSCCC [CH2Cl2-MeOH-H2O (2:2:1, v/v/v)] followed by silica gel (CH2Cl2-MeOH, 4:1) to
yield 2 (68 mg). Fr2.3 (1.27 g) was obtained by HSCCC [CH2Cl2-MeOH-H2O (2:2:1, v/v/v)].
Fr2.3.1–Fr2.3.3. Fr2.3.3 was subjected to prep-HPLC [MeCN-H2O-HCOOH (23:77:0.1,
v/v/v)] to obtain compound 3 (26 mg, tR = 10.1 min). Fr2.4 (1.39 g) was isolated by HSCCC
[CH2Cl2-MeOH-H2O (2:2:1, v/v/v)], and then compound 5 (10 mg, tR = 12.2 min) and
compound 6 (15 mg, tR = 14.7 min) were obtained by prep-HPLC [MeCN-H2O-HCOOH
(23:77:0.1, v/v/v)]. Fr2.7 (0.9 g) yielded compound 4 (184 mg) through HSCCC [CH2Cl2-
MeOH-H2O (2:2:1, v/v/v)]. Fr.3 (30 g) was subjected to silica gel column chromatography
(CH2Cl2-MeOH, 80:20–100:0 gradient system) resulting in twenty fractions (Fr3.1–Fr3.20).
Fr3.3 (1.49 g) was purified by prep-HPLC [MeCN-H2O-HCOOH (18:82:0.1, v/v/v)] to
obtain compound 1 (321 mg, tR = 21.3 min).

3.3.1. Munropene A (Compound 1)

Colorless amorphous solid; [a]D
20.1 + 4.98 (c 0.10, 90% MeOH aq.); IR (KBr) nmax 3368

(-OH), 2968 (-CH), 1724 (-C=O), and 1636 (-C=C-) cm−1; UV (MeOH) λmax 209 (e = A/CL,
24,281) nm; 1H and 13C NMR (CD3OD/D2O, Table 1); HRESIMS m/z 625.3354 ([M − H]−,
calcd for C32H49O12, 625.3230).

3.3.2. Munropene B (Compound 2)

Colorless amorphous solid; [a]D
20.1 − 5.00 (c 0.10, 90% MeOH aq.); IR (KBr) nmax 3422

(-OH), 2930 (-CH), 1720 (-C=O), and 1620 (-C=C-) cm−1; UV (MeOH) λmax 197 (e = A/CL,
10,532) nm; ECD (MeOH) De (nm) + 6.0 (223); 1H and 13C NMR (CD3OD/D2O, Table 1);
HRESIMS m/z 625.3136 ([M − H]−, calcd for C32H49O12, 625.3230).

3.3.3. Munropene C (Compound 3)

Colorless amorphous solid; [a]D
20.0 − 50.51 (c 0.10, 90% MeOH aq.); IR (KBr) nmax 3422

(-OH), 2930 (-CH), 1731 (-C=O), and 1630 (-C=C-) cm−1; UV (MeOH) λmax 195 (e = A/CL,
13,859) nm; ECD (MeOH) De (nm) + 9.1 (227), +0.5 (197); 1H and 13C NMR (CD3OD/D2O,
Table 1); HRESIMS m/z 643.3221 ([M − H]−, calcd for C32H51O13, 643.3335).

3.3.4. Munropene D (Compound 4)

Colorless amorphous solid; [a]D
20.0 − 76.15 (c 0.10, 90% MeOH aq.); IR (KBr) nmax 3419

(-OH), 2927 (-CH), 1722 (-C=O), and 1636 (-C=C-) cm−1; UV (MeOH) λmax 195 (e = A/CL,
26,334) nm; ECD (MeOH) De (nm) + 1.2 (198), −6.3 (211); 1H and 13C NMR (CD3OD/D2O,
Table 1); HRESIMS m/z 741.4010 ([M − H]−, calcd for C38H61O14, 741.4067).
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3.3.5. Munropene E (Compound 5)

Colorless amorphous solid; [a]D
20.0 − 24.04 (c 0.10, 90% MeOH aq.); IR (KBr) nmax 3421

(-OH), 2926 (-CH), 1722 (-C=O), and 1650 (-C=C-) cm−1; UV (MeOH) λmax 196 (e = A/CL,
12,066) nm; ECD (MeOH) De (nm) + 22.9 (235),−16.8 (204); 1H and 13C NMR (CD3OD/D2O,
Table 1); HRESIMS m/z 727.3846 ([M + HCOO]−, calcd for C37H59O14, 727.3910).

3.3.6. Munropene F (Compound 6)

Colorless amorphous solid; [a]D
20.0 − 6.80 (c 0.10, 90% MeOH aq.); IR (KBr) nmax 3412

(-OH), 2926 (-CH), 1722 (-C=O), and 1656 (-C=C-) cm−1; UV (MeOH) λmax 197 (e = A/CL,
13,228) nm; ECD (MeOH) De (nm) + 23.8 (235),−18.1 (203); 1H and 13C NMR (CD3OD/D2O,
Table 1); HRESIMS m/z 727.3845 ([M + HCOO]−, calcd for C37H59O14, 727.3910).

3.4. Acid Hydrolysis and Sugar Analysis of Munropenes D–F (Compounds 4–6)

Compounds 4–6 (1.5 mg each) were subjected to hydrolysis using 2.0 M HCl (2.0 mL)
for a duration of 2 h at a temperature of 90 ◦C. To establish neutral conditions, anion
exchange resin (IRA 400) was added and subsequently removed through filtration. The
resulting filtrate was then subjected to vacuum concentration and dried under vacuum
conditions. The resultant residue was dissolved in pyridine (1.0 mL) supplemented with
L-cysteine methyl ester hydrochloride (1.0 mg) and heated at 60 ◦C for 1 h. Subsequently,
o-torylisothiocyanate (1.0 mg) was added to the mixture, which was then stirred at 60 ◦C
for an additional hour. Reversed-phase HPLC was used to directly analyze the reaction
mixture, and the retention times of reference compounds and carbohydrate derivatives were
compared, which was performed under the following conditions: detection wavelength
of 250 nm, mobile phase consisting of 25% acetonitrile–water with 0.1% formic acid, and
utilizing an Agilent Poroshell 120 SB-C18 column (4 mm, 4.6 mm × 150 mm, Agilent,
Santa Clara, CA, USA). The absolute conformation of the sugar moiety was ascertained
through comparison with D-glucose (tR = 9.55 min).

3.5. Cytotoxicity Assay

The cytotoxicity of munropenes A–F (1–6) in A549, HepG2, HCT116, MCF7, and
MDAMB was tested using the Cell Counting Kit-8 (CCK-8). A 100 µL cell suspension
(2 × 105 cells/mL) was seeded into 96-well plates. Following incubation for 24 h, the cells
were treated with various concentrations (5, 10, 20, 40, 80, or 160 µM) of each specific
compound, while the control cells received an equal volume of DMSO. Subsequently, after
an additional 24 h of culture, 10 µL CCK-8 was added and incubated for an additional
2 h. The absorbance value at 450 nm was detected using a microplate reader, enabling the
calculation of the cell survival rate.

4. Conclusions

The phytochemical study on the whole plants of a Chinese traditional medicine plant
Munronia pinnata (Meliaceae) led to the isolation of six new tirucallane-type triterpenoids,
munropenes A–F (compounds 1–6). Tirucallane-type triterpenoids are known as major
components of plants belonging to Meliaceae, but they had not been systematically studied
in M. pinnata. In the present paper, munropenes A and B (1 and 2) were identified as
tirucallane-type triterpenoids with an α,β-unsaturated-ε-caprolactone moiety in ring A,
while munropenes C and D (compounds 3 and 4) were categorized as ring A seco-tirucallane-
type triterpenoids. Additionally, munropenes D, E, and F (compounds 4, 5, and 6) were
determined to be glycosides of tirucallane-type triterpenoids based on 1D and 2D-NMR,
HR-ESI-MS, IR, single-crystal X-ray diffraction, ECD, and J-based configuration analyses.
Munropenes A, B, D, and F (compounds 1, 2, 4, and 6) was moderately cytotoxic to the
HCT116 cell line, but did not show any cytotoxicity in the A549, HepG2, MCF7, and
MDAMB cell lines. Furthermore, munropenes C (compound 3) and E (compound 5)
exerted no cytotoxicity against all tested cell lines, including HCT116, A549, HepG2, MCF7,
and MDAMB cells.
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