Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,844)

Search Parameters:
Keywords = structural viral proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2127 KiB  
Article
Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS
by Dakai Liu, Harlan Pietz, George D. Rodriguez, Yuexiu Wu, Yihan Cao, Vishnu Singh, Hui Li, Eric Konadu, Keither K. James, Calvin Lui, Bright Varghese, Mingyu Shao, Gary Chen, Andrew Schreiner, Jiankun Tong, Carl Urban, Nishant Prasad, Ameer Hassoun, Manish Sharma and William Harry Rodgers
Microorganisms 2025, 13(8), 1821; https://doi.org/10.3390/microorganisms13081821 - 4 Aug 2025
Viewed by 169
Abstract
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral [...] Read more.
SARS-CoV-2 undergoes frequent mutations that drive viral evolution and genomic diversity, influencing transmissibility, immune escape, and disease severity. In this study, we performed whole-genome sequencing on SARS-CoV-2 isolates from patients in New York City and identified several globally rare mutations across multiple viral lineages. The isolates analyzed for rare mutations belonged to three lineages: B.1.1.7 (Alpha), B.1.526 (Iota), and B.1.623. We identified 16 rare mutations (global incidence <1000) in non-structural protein genes, including nsp2, nsp3, nsp4, nsp6, nsp8, nsp13, nsp14, ORF7a, and ORF8. Three of these mutations—located in nsp2, nsp13, and ORF8—have been reported in fewer than 100 individuals worldwide. We also detected five rare mutations in structural proteins (S, M, and N), including two—one in M and one in N—previously reported in fewer than 100 cases globally. We present clinical profiles of three patients, each infected with genetically distinct viral isolates from the three lineages studied. Furthermore, we illustrate a local transmission chain inferred from unique mutation patterns identified in the Omicron genome. These findings underscore the importance of whole-genome sequencing for detecting rare mutations, tracking community spread, and identifying emerging variants with clinical and public health significance. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

18 pages, 6860 KiB  
Article
Molecular Characterization and Antiviral Function Against GCRV of Complement Factor D in Barbel Chub (Squaliobarbus curriculus)
by Yu Xiao, Zhao Lv, Yuling Wei, Mengyuan Zhang, Hong Yang, Chao Huang, Tiaoyi Xiao and Yilin Li
Fishes 2025, 10(8), 370; https://doi.org/10.3390/fishes10080370 - 2 Aug 2025
Viewed by 171
Abstract
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular [...] Read more.
The barbel chub (Squaliobarbus curriculus) exhibits remarkable resistance to grass carp reovirus (GCRV), a devastating pathogen in aquaculture. To reveal the molecular basis of this resistance, we investigated complement factor D (DF)—a rate-limiting serine protease governing alternative complement pathway activation. Molecular cloning revealed that the barbel chub DF (ScDF) gene encodes a 1251-bp cDNA sequence translating into a 250-amino acid protein. Crucially, bioinformatic characterization identified a unique N-glycosylation site at Asn139 in ScDF, representing a structural divergence absent in grass carp (Ctenopharyngodon idella) DF (CiDF). While retaining a conserved Tryp_SPc domain harboring the catalytic triad (His61, Asp109, and Ser204) and substrate-binding residues (Asp198, Ser219, and Gly221), sequence and phylogenetic analyses confirmed ScDF’s evolutionary conservation, displaying 94.4% amino acid identity with CiDF and clustering within the Cyprinidae. Expression profiling revealed constitutive ScDF dominance in the liver, and secondary prominence was observed in the heart. Upon GCRV challenge in S. curriculus kidney (SCK) cells, ScDF transcription surged to a 438-fold increase versus uninfected controls at 6 h post-infection (hpi; p < 0.001)—significantly preceding the 168-hpi response peak documented for CiDF in grass carp. Functional validation showed that ScDF overexpression suppressed key viral capsid genes (VP2, VP5, and VP7) and upregulated the interferon regulator IRF9. Moreover, recombinant ScDF protein incubation induced interferon pathway genes and complement C3 expression. Collectively, ScDF’s rapid early induction (peaking at 6 hpi) and multi-pathway coordination may contribute to barbel chub’s GCRV resistance. These findings may provide molecular insights into the barbel chub’s high GCRV resistance compared to grass carp and novel perspectives for anti-GCRV breeding strategies in fish. Full article
(This article belongs to the Special Issue Molecular Design Breeding in Aquaculture)
Show Figures

Figure 1

19 pages, 5300 KiB  
Article
Structural Features of Nucleoproteins from the Recently Discovered Orthonairovirus songlingense and Norwavirus beijiense
by Alexey O. Yanshin, Daria I. Ivkina, Vitaliy Yu. Tuyrin, Irina A. Osinkina, Anton E. Tishin, Sergei E. Olkin, Egor O. Ukladov, Nikita S. Radchenko, Sergey G. Arkhipov, Yury L. Ryzhykau, Na Li, Alexander P. Agafonov, Ilnaz R. Imatdinov and Anastasia V. Gladysheva
Int. J. Mol. Sci. 2025, 26(15), 7445; https://doi.org/10.3390/ijms26157445 - 1 Aug 2025
Viewed by 135
Abstract
The recent discovery of Orthonairovirus songlingense (SGLV) and Norwavirus beijiense (BJNV) in China has raised significant concern due to their potential to cause severe human disease. However, little is known about the structural features and function of their nucleoproteins, which play a key [...] Read more.
The recent discovery of Orthonairovirus songlingense (SGLV) and Norwavirus beijiense (BJNV) in China has raised significant concern due to their potential to cause severe human disease. However, little is known about the structural features and function of their nucleoproteins, which play a key role in the viral life cycle. By combining small-angle X-ray scattering (SAXS) data and AlphaFold 3 simulations, we reconstructed the BJNV and SGLV nucleoprotein structures for the first time. The SGLV and BJNV nucleoproteins have structures that are broadly similar to those of Orthonairovirus haemorrhagiae (CCHFV) nucleoproteins despite low sequence similarity. Based on structural analysis, several residues located in the positively charged region of BJNV and SGLV nucleoproteins have been indicated to be important for viral RNA binding. A positively charged RNA-binding crevice runs along the interior of the SGLV and BJNV ribonucleoprotein complex (RNP), shielding the viral RNA. Despite the high structural similarity between SGLV and BJNV nucleoprotein monomers, their RNPs adopt distinct conformations. These findings provide important insights into the molecular mechanisms of viral genome packaging and replication in these emerging pathogens. Also, our work demonstrates that experimental SAXS data can validate and improve predicted AlphaFold 3 structures to reflect their solution structure and also provides the first low-resolution structures of the BJNV and SGLV nucleoproteins for the future development of POC tests, vaccines, and antiviral drugs. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

23 pages, 2284 KiB  
Article
The Replication Function of Rabies Virus P Protein Is Regulated by a Novel Phosphorylation Site in the N-Terminal N Protein-Binding Region
by Ericka Tudhope, Camilla M. Donnelly, Ashish Sethi, Cassandra David, Nicholas Williamson, Murray Stewart, Jade K. Forwood, Paul R. Gooley and Gregory W. Moseley
Viruses 2025, 17(8), 1075; https://doi.org/10.3390/v17081075 - 1 Aug 2025
Viewed by 332
Abstract
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for [...] Read more.
The rabies virus (RABV) phosphoprotein (P protein) has multiple functions, including acting as the essential non-catalytic cofactor of the viral polymerase (L protein) for genome replication and transcription; the principal viral antagonist of the interferon (IFN)-mediated innate immune response; and the chaperone for the viral nucleoprotein (N protein). Although P protein is known to undergo phosphorylation by cellular kinases, the location and functions of the phosphorylation sites remains poorly defined. Here, we report the identification by mass-spectrometry (MS) of residues of P protein that are modified by phosphorylation in mammalian cells, including several novel sites. Analysis of P protein with phospho-mimetic and phospho-inhibitory mutations of three novel residues/clusters that were commonly identified by MS (Ser48, Ser183/187, Ser217/219/220) indicate that phosphorylation at each of these sites does not have a major influence on nuclear trafficking or antagonistic functions toward IFN signalling pathways. However, phosphorylation of Ser48 in the N-terminus of P protein impaired function in transcription/replication and in the formation of replication structures that contain complexes of P and N proteins, suggestive of altered interactions of these proteins. The crystal structure of P protein containing the S48E phospho-mimetic mutation indicates that Ser48 phosphorylation facilitates the binding of residues 41–52 of P protein into the RNA-binding groove of non-RNA-bound N protein (N0), primarily through the formation of a salt bridge with Arg434 of N protein. These data indicate that Ser48 modification regulates the cycling of P-N0 chaperone complexes that deliver N protein to RNA to enable transcription/replication, such that enhanced interaction due to S48E phospho-mimetic mutation reduces N protein delivery to the RNA, inhibiting subsequent transcription/replication processes. These data are, to our knowledge, the first to implicate phosphorylation of RABV P protein in conserved replication functions of the P gene. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

17 pages, 1571 KiB  
Review
Super-Resolution Microscopy in the Structural Analysis and Assembly Dynamics of HIV
by Aiden Jurcenko, Olesia Gololobova and Kenneth W. Witwer
Appl. Nano 2025, 6(3), 13; https://doi.org/10.3390/applnano6030013 - 31 Jul 2025
Viewed by 197
Abstract
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and [...] Read more.
Super-resolution microscopy (SRM) has revolutionized our understanding of subcellular structures, including cell organelles and viruses. For human immunodeficiency virus (HIV), SRM has significantly advanced knowledge of viral structural biology and assembly dynamics. This review analyzes how SRM techniques (particularly PALM, STORM, STED, and SIM) have been applied over the past decade to study HIV structural components and assembly. By categorizing and comparing studies based on SRM methods, HIV components, and labeling strategies, we assess the strengths and limitations of each approach. Our analysis shows that PALM is most commonly used for live-cell imaging of HIV Gag, while STED is primarily used to study the viral envelope (Env). STORM and SIM have been applied to visualize various components, including Env, capsid, and matrix. Antibody labeling is prevalent in PALM and STORM studies, targeting Env and capsid, whereas fluorescent protein labeling is mainly associated with PALM and focused on Gag. A recent emphasis on Gag and Env points to deeper investigation into HIV assembly and viral membrane dynamics. Insights from SRM studies of HIV not only enhance virological understanding but also inform future research in therapeutic strategies and delivery systems, including extracellular vesicles. Full article
(This article belongs to the Collection Review Papers for Applied Nano Science and Technology)
Show Figures

Figure 1

19 pages, 4270 KiB  
Article
Viral Inactivation by Light-Emitting Diodes: Action Spectra Reveal Genomic Damage as the Primary Mechanism
by Kazuaki Mawatari, Yasuko Kadomura-Ishikawa, Takahiro Emoto, Yushi Onoda, Kai Ishida, Sae Toda, Takashi Uebanso, Toshihiko Aizawa, Shigeharu Yamauchi, Yasuo Fujikawa, Tomotake Tanaka, Xing Li, Eduardo Suarez-Lopez, Richard J. Kuhn, Ernest R. Blatchley III and Akira Takahashi
Viruses 2025, 17(8), 1065; https://doi.org/10.3390/v17081065 - 30 Jul 2025
Viewed by 315
Abstract
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic [...] Read more.
Irradiation with ultraviolet light-emitting diodes (UV-LEDs) represents a promising method for viral inactivation, but a detailed understanding of the wavelength-dependent action spectra remains limited, particularly across different viral components. In this study, we established standardized UV action spectra for infectivity reduction in pathogenic viruses using a system equipped with interchangeable LEDs at 13 different peak wavelengths (250–365 nm). The reduction in viral infectivity induced by UV-LED exposure was strongly related to viral genome damage, whereas no significant degradation of viral structural proteins was detected. Peak virucidal efficiency was observed at 267–270 nm across all tested viruses, representing a slight shift from the traditionally expected 260 nm nucleic acid absorption peak. Enveloped RNA viruses, including influenza A virus, respiratory syncytial virus, and coronavirus, exhibited greater UV sensitivity than nonenveloped viruses such as feline calicivirus and adenovirus. These observations indicate that structural characteristics, such as the presence of an envelope and genome organization, influence UV susceptibility. The wavelength-specific action spectra established in this study provide critical data for optimizing UV-LED disinfection systems to achieve efficient viral inactivation while minimizing energy consumption in healthcare, food safety, and environmental sanitation. Full article
Show Figures

Graphical abstract

27 pages, 7908 KiB  
Article
Deciphering Cowpea Resistance to Potyvirus: Assessment of eIF4E Gene Mutations and Their Impact on the eIF4E-VPg Protein Interaction
by Fernanda Alves de Andrade, Madson Allan de Luna-Aragão, José Diogo Cavalcanti Ferreira, Fernanda Freitas Souza, Ana Carolina da Rocha Oliveira, Antônio Félix da Costa, Francisco José Lima Aragão, Carlos André dos Santos-Silva, Ana Maria Benko-Iseppon and Valesca Pandolfi
Viruses 2025, 17(8), 1050; https://doi.org/10.3390/v17081050 - 28 Jul 2025
Viewed by 400
Abstract
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It [...] Read more.
Cowpea (Vigna unguiculata) is a crop of significant socioeconomic importance, particularly in the semi-arid regions of Africa and America. However, its productivity has been adversely affected by viral diseases, including the cowpea aphid-borne mosaic virus (CABMV), a single-stranded RNA virus. It is known that the VPg protein interacts with the host’s translation initiation factor (eIF4E), promoting viral replication. This study aimed to investigate the relationship between mutations in the cowpea eIF4E gene and resistance to CABMV. Twenty-seven cultivars were screened by PCR and bioassays for presence/absence of mutations associated with resistance or susceptibility to Potyviruses. Of the cultivars with mutations previously associated with susceptibility, 88.24% exhibited viral symptoms, while 62.5% associated with resistance remained asymptomatic. The in silico analyses revealed that non-synonymous mutations (Pro68Arg, Gly109Arg) alter the structure of the eIF4E protein, reducing its affinity to VPg. Molecular dynamics simulations also pointed to an enhanced structural stability of eIF4E in resistant cultivars and reinforced, for the first time, key mutations and the functional role of the eIF4E gene in resistance to CABMV in cowpea. Our results offer valuable insights for virus disease management and for genetic improvement programs for this important crop. Full article
(This article belongs to the Special Issue Viral Manipulation of Plant Stress Responses)
Show Figures

Graphical abstract

21 pages, 1546 KiB  
Review
The Role of SARS-CoV-2 Nucleocapsid Protein in Host Inflammation
by Yujia Cao, Yaju Wang, Dejian Huang and Yee-Joo Tan
Viruses 2025, 17(8), 1046; https://doi.org/10.3390/v17081046 - 27 Jul 2025
Viewed by 1033
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has posed substantial health threats and triggered widespread global economic disruption. The nucleocapsid (N) protein of SARS-CoV-2 is not only a key structural protein but also instrumental in [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has posed substantial health threats and triggered widespread global economic disruption. The nucleocapsid (N) protein of SARS-CoV-2 is not only a key structural protein but also instrumental in mediating the host immune response, contributing significantly to inflammation and viral pathogenesis. Due to its immunogenic properties, SARS-CoV-2 N protein also interacts with host factors associated with various pre-existing inflammatory conditions and may possibly contribute to the long-term symptoms suffered by some COVID-19 patients after recovery—known as long COVID. This review provides a comprehensive overview of recent advances in elucidating the biological functions of the N protein. In particular, it highlights the mechanisms by which the N protein contributes to host inflammatory responses and elaborates on its association with long COVID and pre-existing inflammatory disorders. Full article
(This article belongs to the Special Issue Viral Mechanisms of Immune Evasion)
Show Figures

Figure 1

41 pages, 7499 KiB  
Article
Development of a Broad-Spectrum Pan-Mpox Vaccine via Immunoinformatic Approaches
by Japigorn Puagsopa, Panuwid Jumpalee, Sittichoke Dechanun, Sukanya Choengchalad, Pana Lohasupthawee, Thanawat Sutjaritvorakul and Bunyarit Meksiriporn
Int. J. Mol. Sci. 2025, 26(15), 7210; https://doi.org/10.3390/ijms26157210 - 25 Jul 2025
Viewed by 916
Abstract
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time [...] Read more.
Monkeypox virus (MPXV) has caused 148,892 confirmed cases and 341 deaths from 137 countries worldwide, as reported by the World Health Organization (WHO), highlighting the urgent need for effective vaccines to prevent the spread of MPXV. Traditional vaccine development is low-throughput, expensive, time consuming, and susceptible to reversion to virulence. Alternatively, a reverse vaccinology approach offers a rapid, efficient, and safer alternative for MPXV vaccine design. Here, MPXV proteins associated with viral infection were analyzed for immunogenic epitopes to design multi-epitope vaccines based on B-cell, CD4+, and CD8+ epitopes. Epitopes were selected based on allergenicity, antigenicity, and toxicity parameters. The prioritized epitopes were then combined via peptide linkers and N-terminally fused to various protein adjuvants, including PADRE, beta-defensin 3, 50S ribosomal protein L7/12, RS-09, and the cholera toxin B subunit (CTB). All vaccine constructs were computationally validated for physicochemical properties, antigenicity, allergenicity, safety, solubility, and structural stability. The three-dimensional structure of the selected construct was also predicted. Moreover, molecular docking and molecular dynamics (MD) simulations between the vaccine and the TLR-4 immune receptor demonstrated a strong and stable interaction. The vaccine construct was codon-optimized for high expression in the E. coli and was finally cloned in silico into the pET21a (+) vector. Collectively, these results could represent innovative tools for vaccine formulation against MPXV and be transformative for other infectious diseases. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

12 pages, 1562 KiB  
Article
Intra-Host Evolution During Relapsing Parvovirus B19 Infection in Immunocompromised Patients
by Anne Russcher, Yassene Mohammed, Margriet E. M. Kraakman, Xavier Chow, Stijn T. Kok, Eric C. J. Claas, Manfred Wuhrer, Ann C. T. M. Vossen, Aloys C. M. Kroes and Jutte J. C. de Vries
Viruses 2025, 17(8), 1034; https://doi.org/10.3390/v17081034 - 23 Jul 2025
Viewed by 342
Abstract
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report [...] Read more.
Background: Parvovirus B19 (B19V) can cause severe relapsing episodes of pure red cell aplasia in immunocompromised individuals, which are commonly treated with intravenous immunoglobulins (IVIGs). Few data are available on B19V intra-host evolution and the role of humoral immune selection. Here, we report the dynamics of genomic mutations and subsequent protein changes during relapsing infection. Methods: Longitudinal plasma samples from immunocompromised patients with relapsing B19V infection in the period 2011–2019 were analyzed using whole-genome sequencing to evaluate intra-host evolution. The impact of mutations on the 3D viral protein structure was predicted by deep neural network modeling. Results: Of the three immunocompromised patients with relapsing infections for 3 to 9 months, one patient developed two consecutive nonsynonymous mutations in the VP1/2 region: T372S/T145S and Q422L/Q195L. The first mutation was detected in multiple B19V IgG-seropositive follow-up samples and resolved after IgG seroreversion. Computational prediction of the VP1 3D structure of this mutant showed a conformational change in the proximity of the antibody binding domain. No conformational changes were predicted for the other mutations detected. Discussion: Analysis of relapsing B19V infections showed mutational changes occurring over time. Resulting amino acid changes were predicted to lead to a conformational capsid protein change in an IgG-seropositive patient. The impact of humoral response and IVIG treatment on B19V infections should be further investigated to understand viral evolution and potential immune escape. Full article
(This article belongs to the Collection Parvoviridae)
Show Figures

Figure 1

20 pages, 7204 KiB  
Article
Structural Features and In Vitro Antiviral Activities of Fungal Metabolites Sphaeropsidins A and B Against Bovine Coronavirus
by Luca Del Sorbo, Maria Michela Salvatore, Clementina Acconcia, Rosa Giugliano, Giovanna Fusco, Massimiliano Galdiero, Violetta Iris Vasinioti, Maria Stella Lucente, Paolo Capozza, Annamaria Pratelli, Luigi Russo, Rosa Iacovino, Anna Andolfi and Filomena Fiorito
Int. J. Mol. Sci. 2025, 26(15), 7045; https://doi.org/10.3390/ijms26157045 - 22 Jul 2025
Viewed by 223
Abstract
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member [...] Read more.
The scientific community’s interest in natural compounds with antiviral properties has considerably increased after the emergence of the severe acute respiratory syndrome coronavirus (SARS-CoV-2), especially for their potential use in the treatment of the COVID-19 infection. From this perspective, bovine coronavirus (BCoV), member of the genus β-CoV, represents a valuable virus model to study human β-CoVs, bypassing the risks of handling highly pathogenic and contagious viruses. Pimarane diterpenes are a significant group of secondary metabolites produced by phytopathogenic fungi, including several Diplodia species. Among the members of this class of natural products, sphaeropsidin A (SphA) and its analog sphaeropsidin B (SphB) are well known for their bioactivities, such as antimicrobial, insecticidal, herbicidal, and anticancer. In this study, the antiviral effects of SphA and SphB were evaluated for the first time on bovine (MDBK) cells infected with BCoV. Our findings showed that both sphaeropsidins significantly increased cell viability in infected cells. These substances also caused substantial declines in the virus yield and in the levels of the viral spike S protein. Interestingly, during the treatment, a cellular defense mechanism was detected in the downregulation of the aryl hydrocarbon receptor (AhR) signaling, which is affected by BCoV infection. We also observed that the presence of SphA and SphB determined the deacidification of the lysosomal environment in infected cells, which may be related to their antiviral activities. In addition, in silico investigations have been performed to elucidate the molecular mechanism governing the recognition of bovine AhR (bAhR) by Sphs. Molecular docking studies revealed significant insights into the structural determinants driving the bAhR binding by the examined compounds. Hence, in vitro and in silico results demonstrated that SphA and SphB are promising drug candidates for the development of efficient therapies able to fight a β-CoV-like BCoV during infection. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 3rd Edition)
Show Figures

Figure 1

17 pages, 6805 KiB  
Article
Ferritin Nanocages Exhibit Unique Structural Dynamics When Displaying Surface Protein
by Monikaben Padariya, Natalia Marek-Trzonkowska and Umesh Kalathiya
Int. J. Mol. Sci. 2025, 26(15), 7047; https://doi.org/10.3390/ijms26157047 - 22 Jul 2025
Viewed by 201
Abstract
Ferritin nanocages with spherical shells carry proteins or antigens that enable their use as highly efficient nanoreactors and nanocarriers. Mimicking the surface Spike (S) receptor-binding domain (RBD) from SARS-CoV-2, ferritin nanocages induce neutralizing antibody production or block viral entry. Herein, by implementing molecular [...] Read more.
Ferritin nanocages with spherical shells carry proteins or antigens that enable their use as highly efficient nanoreactors and nanocarriers. Mimicking the surface Spike (S) receptor-binding domain (RBD) from SARS-CoV-2, ferritin nanocages induce neutralizing antibody production or block viral entry. Herein, by implementing molecular dynamics simulation, we evaluate the efficiency in the interaction pattern (active or alternative sites) of H-ferritin displaying the 24 S RBDs with host-cell-receptor or monoclonal antibodies (mAbs; B38 or VVH-72). Our constructed nanocage targeted the receptor- or antibody-binding interfaces, suggesting that mAbs demonstrate an enhanced binding affinity with the RBD, with key interactions originating from its variable heavy chain. The S RBD interactions with ACE2 and B38 involved the same binding site but led to divergent dynamic responses. In particular, both B38 chains showed that asymmetric fluctuations had a major effect on their engagement with the Spike RBD. Although the receptor increased the binding affinity of VVH-72 for the RBD, the mAb structural orientation on the nanocage remained identical to its conformation when bound to the host receptor. Overall, our findings characterize the essential pharmacophore formed by Spike RBD residues over nanocage molecules, which mediates high-affinity interactions with either binding partner. Importantly, the ferritin-displayed RBD maintained native receptor and antibody binding profiles, positioning it as a promising scaffold for pre-fusion stabilization and protective RBD vaccine design. Full article
Show Figures

Figure 1

29 pages, 2729 KiB  
Article
Computational Evaluation and Multi-Criteria Optimization of Natural Compound Analogs Targeting SARS-CoV-2 Proteases
by Paul Andrei Negru, Andrei-Flavius Radu, Ada Radu, Delia Mirela Tit and Gabriela Bungau
Curr. Issues Mol. Biol. 2025, 47(7), 577; https://doi.org/10.3390/cimb47070577 - 21 Jul 2025
Viewed by 388
Abstract
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize [...] Read more.
The global impact of the COVID-19 crisis has underscored the need for novel therapeutic candidates capable of efficiently targeting essential viral proteins. Existing therapeutic strategies continue to encounter limitations such as reduced efficacy against emerging variants, safety concerns, and suboptimal pharmacodynamics, which emphasize the potential of natural-origin compounds as supportive agents with immunomodulatory, anti-inflammatory, and antioxidant benefits. The present study significantly advances prior molecular docking research through comprehensive virtual screening of structurally related analogs derived from antiviral phytochemicals. These compounds were evaluated specifically against the SARS-CoV-2 main protease (3CLpro) and papain-like protease (PLpro). Utilizing chemical similarity algorithms via the ChEMBL database, over 600 candidate molecules were retrieved and subjected to automated docking, interaction pattern analysis, and comprehensive ADMET profiling. Several analogs showed enhanced binding scores relative to their parent scaffolds, with CHEMBL1720210 (a shogaol-derived analog) demonstrating strong interaction with PLpro (−9.34 kcal/mol), and CHEMBL1495225 (a 6-gingerol derivative) showing high affinity for 3CLpro (−8.04 kcal/mol). Molecular interaction analysis revealed that CHEMBL1720210 forms hydrogen bonds with key PLpro residues including GLY163, LEU162, GLN269, TYR265, and TYR273, complemented by hydrophobic interactions with TYR268 and PRO248. CHEMBL1495225 establishes multiple hydrogen bonds with the 3CLpro residues ASP197, ARG131, TYR239, LEU272, and GLY195, along with hydrophobic contacts with LEU287. Gene expression predictions via DIGEP-Pred indicated that the top-ranked compounds could influence biological pathways linked to inflammation and oxidative stress, processes implicated in COVID-19’s pathology. Notably, CHEMBL4069090 emerged as a lead compound with favorable drug-likeness and predicted binding to PLpro. Overall, the applied in silico framework facilitated the rational prioritization of bioactive analogs with promising pharmacological profiles, supporting their advancement toward experimental validation and therapeutic exploration against SARS-CoV-2. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

14 pages, 2669 KiB  
Article
Glutamic Acid at Position 343 in PB2 Contributes to the Virulence of H1N1 Swine Influenza Virus in Mice
by Yanwen Wang, Qiu Zhong, Fei Meng, Zhang Cheng, Yijie Zhang, Zuchen Song, Yali Zhang, Zijian Feng, Yujia Zhai, Yan Chen, Chuanling Qiao and Huanliang Yang
Viruses 2025, 17(7), 1018; https://doi.org/10.3390/v17071018 - 20 Jul 2025
Viewed by 419
Abstract
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to [...] Read more.
The H1N1 swine influenza viruses CQ91 and CQ445, isolated from pigs in China, exhibited distinct virulence in mice despite sharing similar genomic constellations. CQ91 demonstrated higher pathogenicity (MLD50: 5.4 log10 EID50) and replication efficiency in mice compared to CQ445 (MLD50: 6.6 log10 EID50). Through reverse genetics, we found that the attenuation of CQ445 was due to a single substitution of glutamic acid (E) with lysine (K) at position 343 in the PB2 protein. Introducing the CQ445-PB2 (343K) into CQ91 significantly reduced viral replication and pathogenicity in mice, while replacing CQ445-PB2 with CQ91-PB2 (343E) restored virulence. In vitro studies showed that the K343E mutation impaired viral replication in MDCK and A549 cells and reduced polymerase activity in minigenome assays. Mechanistically, the amino acid at position 343 in the PB2 affects the transcription stage of the viral replication process. Structural modeling indicated that the charge reversal caused by E343K altered local electrostatic interactions without major conformational changes. Phylogenetic analysis revealed that PB2-343E is highly conserved (>99.9%) in human and swine H1/H3 influenza viruses, suggesting that PB2-343E confers an adaptive advantage. This study identifies PB2-343E as a critical determinant of influenza virus pathogenicity in mammals, highlighting its role in host adaptation. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

22 pages, 1765 KiB  
Review
Polyphenols as Antiviral Agents: Their Potential Against a Range of Virus Types
by Nurten Coşkun, Ranya Demir, Ahmet Alperen Canbolat, Sümeyye Sarıtaş, Burcu Pekdemir, Mikhael Bechelany and Sercan Karav
Nutrients 2025, 17(14), 2325; https://doi.org/10.3390/nu17142325 - 16 Jul 2025
Viewed by 778
Abstract
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, [...] Read more.
Polyphenols are structurally diverse plant metabolites that have attracted significant interest. Their compositions are versatile, depending on their structures, including the number of rings in the polyphenol composition. Based on these attributes, polyphenols can be classified as flavanols, anthocyanins, flavones, phenolic acids, stilbenes, and lignans. Polyphenols mainly possess inhibition of viral replication, interference with viral protein synthesis, and modulation of immune responses, providing significant antiviral effects against several viruses, including herpes simplex virus, hepatitis C virus, and influenza. They are crucial for medical compounds in diverse, versatile treatments, namely in diabetes, cardiovascular disorders, cancer, and neurodegenerative problems. Plants are the primary source of bioactive molecules, which are valued for their anti-inflammatory, antioxidant, anticancer, and antiviral activities. Especially, polyphenols are extracted as the most abundant bioactive compounds of plants. Moreover, viral infections are one of the major factors in illnesses and diseases, along with bacteria and fungi. Numerous in vitro and in vivo studies report antiviral activity against SARS-CoV-2, Mayaro virus, dengue virus, herpesvirus, and influenza A virus, though clinical validation remains limited. Additionally, inhibition of viral entry, interference with viral replication, modulation of host immune response, and direct virucidal effects were examined. Full article
Show Figures

Figure 1

Back to TopTop