Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = stretchable dielectric material

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 7182 KiB  
Review
Additively Manufactured Polymers for Electronic Components
by Filippo Iervolino, Raffaella Suriano, Marco Cavallaro, Laura Castoldi and Marinella Levi
Appl. Sci. 2025, 15(15), 8689; https://doi.org/10.3390/app15158689 (registering DOI) - 6 Aug 2025
Abstract
Over the last decade, polymers have attracted increasing attention for the fabrication of electronic devices due to the innovative results that can be achieved using additive manufacturing (AM) processes. Intrinsically conductive polymers are commonly used to obtain flexible and stretchable devices. They also [...] Read more.
Over the last decade, polymers have attracted increasing attention for the fabrication of electronic devices due to the innovative results that can be achieved using additive manufacturing (AM) processes. Intrinsically conductive polymers are commonly used to obtain flexible and stretchable devices. They also enable the customisation of electronic devices when processed through AM. However, their main limitation is the reduction in electrical conductivity under mechanical deformation, such as bending. Extrinsically conductive nanocomposites, incorporating conductive fillers into polymer matrices, demonstrate the ability to retain electrical conductivity even following repeated bending, presenting a promising solution to the limitations of intrinsically conductive polymers. However, a gap remains in optimising their processing conditions for diverse 3D printing technologies. Moreover, fillers should be carefully selected according to the application’s specific needs. Dielectric polymers are also very promising for various electronic applications, but they are less investigated and have lower visibility than their conductive counterparts. This review presents three classes of polymer materials, i.e., intrinsically and extrinsically conductive polymers and insulators, discussing their advantages, drawbacks, and applications for 3D printing in electronics. This overview concludes with assessing future investigation areas needed to unlock the possibilities of 3D-printed polymers in electronics. Full article
(This article belongs to the Special Issue Feature Review Papers in Additive Manufacturing Technologies)
Show Figures

Figure 1

20 pages, 3903 KiB  
Article
High-Performance Barium Titanate, Carbon Nanotube, and Styrene–Butadiene Rubber-Based Single Composite TENG for Energy Harvesting and Handwriting Recognition
by Md Najib Alam, Vineet Kumar, Youjung Kim, Dong-Joo Lee and Sang-Shin Park
Polymers 2025, 17(15), 2016; https://doi.org/10.3390/polym17152016 - 23 Jul 2025
Viewed by 282
Abstract
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. [...] Read more.
In this research, a single composite-type stretchable triboelectric nanogenerator (TENG) is proposed for efficient energy harvesting and handwriting recognition. The composite TENGs were fabricated by blending dielectric barium titanate (BT) and conductive carbon nanotubes (CNTs) in varying amounts into a styrene–butadiene rubber matrix. The energy harvesting efficiency depends on the type and amount of fillers, as well as their dispersion within the matrix. Stearic acid modification of BT enables near-nanoscale filler distribution, resulting in high energy conversion efficiencies. The composite achieved power efficiency, power density, charge efficiency, and charge density values of 1.127 nW/N, 8.258 mW/m3, 0.146 nC/N, and 1.072 mC/m3, respectively, under only 2% cyclic compressive strain at 0.85 Hz. The material performs better at low stress–strain ranges, exhibiting higher charge efficiency. The generated charge in the TENG composite is well correlated with the compressive stress, which provides a minimum activation pressure of 0.144 kPa, making it suitable for low-pressure sensing applications. A flat composite with dimensions of 0.02 × 6 × 5 cm3 can produce a power density of 26.04 W/m3, a charge density of 0.205 mC/m3, and an output voltage of 10 V from a single hand pat. The rubber composite also demonstrates high accuracy in handwriting recognition across different individuals, with clear differences in sensitivity curves. Repeated attempts by the same person show minimal deviation (<5%) in writing time. Additionally, the presence of reinforcing fillers enhances mechanical strength and durability, making the composite suitable for long-term cyclic energy harvesting and wearable sensor applications. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
Show Figures

Graphical abstract

20 pages, 2425 KiB  
Review
A Review of Electroactive Polymers in Sensing and Actuator Applications
by Diana Narvaez and Brittany Newell
Actuators 2025, 14(6), 258; https://doi.org/10.3390/act14060258 - 23 May 2025
Viewed by 3890
Abstract
Electroactive polymers (EAPs) represent a versatile class of smart materials capable of converting electrical stimuli into mechanical motion and vice versa, positioning them as key components in the next generation of actuators and sensors. This review summarizes recent developments in both electronic and [...] Read more.
Electroactive polymers (EAPs) represent a versatile class of smart materials capable of converting electrical stimuli into mechanical motion and vice versa, positioning them as key components in the next generation of actuators and sensors. This review summarizes recent developments in both electronic and ionic EAPs, highlighting their activation mechanisms, material architectures, and multifunctional capabilities. Representative systems include dielectric elastomers, ferroelectric and conducting polymers, liquid crystal elastomers, and ionic gels. Advances in fabrication methods, such as additive manufacturing, nanocomposite engineering, and patternable electrode deposition, are discussed with emphasis on miniaturization, stretchability, and integration into soft systems. Applications span biomedical devices, wearable electronics, soft robotics, and environmental monitoring, with growing interest in platforms that combine actuation and sensing within a single structure. Finally, the review addresses critical challenges such as long-term material stability and scalability, and outlines future directions toward self-powered, AI-integrated, and sustainable EAP technologies. Full article
(This article belongs to the Special Issue Electroactive Polymer (EAP) for Actuators and Sensors Applications)
Show Figures

Figure 1

36 pages, 6996 KiB  
Review
Organic–Inorganic Hybrid Dielectric Layers for Low-Temperature Thin-Film Transistors Applications: Recent Developments and Perspectives
by Javier Meza-Arroyo and Rafael Ramírez-Bon
Technologies 2025, 13(1), 20; https://doi.org/10.3390/technologies13010020 - 2 Jan 2025
Viewed by 3031
Abstract
This paper reviews the recent development of organic–inorganic hybrid dielectric materials for application as gate dielectrics in thin-film transistors (TFTs). These hybrid materials consist of the blending of high-k inorganic dielectrics with polymers, and their resulting properties depend on the amount and type [...] Read more.
This paper reviews the recent development of organic–inorganic hybrid dielectric materials for application as gate dielectrics in thin-film transistors (TFTs). These hybrid materials consist of the blending of high-k inorganic dielectrics with polymers, and their resulting properties depend on the amount and type of interactions between the organic and inorganic phases. The resulting amorphous networks, characterized by crosslinked organic and inorganic phases, can be tailored for specific applications, including gate dielectrics in TFTs. As dielectric materials, they offer a synergistic combination of high dielectric constants, low leakage currents, and mechanical flexibility, crucial for next-generation flexible electronics. Furthermore, organic–inorganic hybrid materials are easily processed in solution, allowing for low-temperature deposition compatible with flexible substrates. Various configurations of these hybrid gate dielectrics, such as bilayer structures and polymer nanocomposites, are discussed, with an emphasis on their potential to enhance device performance. Despite the significant advancements, challenges remain in optimizing the performance and stability of these hybrid materials. This review summarizes recent progress and highlights the advantages and emerging applications of low-temperature, solution-processed hybrid dielectrics, with a focus on their integration into flexible, stretchable, and wearable electronic devices. Full article
Show Figures

Figure 1

19 pages, 10918 KiB  
Article
Polyimide Films Based on β-Cyclodextrin Polyrotaxane with Low Dielectric and Excellent Comprehensive Performance
by Xuexin Zhang, Yao Dou, Liqun Liu, Meixuan Song, Zhenhao Xi, Yisheng Xu, Weihua Shen and Jie Wang
Polymers 2024, 16(7), 901; https://doi.org/10.3390/polym16070901 - 25 Mar 2024
Cited by 4 | Viewed by 2242
Abstract
In order to prepare polyimide (PI) films with a low dielectric constant and excellent comprehensive performance, a two-step method was employed in this study to integrate β-cyclodextrin into a semi-aromatic fluorine-containing polyimide ternary system. By introducing trifluoromethyl groups to reduce the dielectric constant, [...] Read more.
In order to prepare polyimide (PI) films with a low dielectric constant and excellent comprehensive performance, a two-step method was employed in this study to integrate β-cyclodextrin into a semi-aromatic fluorine-containing polyimide ternary system. By introducing trifluoromethyl groups to reduce the dielectric constant, the dielectric constant was further reduced to 2.55 at 10 MHz. Simultaneously, the film exhibited noteworthy thermal stability (a glass transition temperature exceeding 300 °C) and a high coefficient of thermal expansion. The material also demonstrated outstanding mechanical properties, boasting a strength of 122 MPa and a modulus of 2.2 GPa, along with high optical transparency (transmittance reaching up to 89% at 450 nm). Moreover, the inherent high transparency of colorless polyimide (CPI) combined with good stretchability contributed to the attainment of a low dielectric constant. This strategic approach not only opens up new opportunities for novel electroactive polymers but also holds potential applications in flexible displays, circuit printing, and chip packaging. Full article
(This article belongs to the Collection Polyimide)
Show Figures

Figure 1

12 pages, 4598 KiB  
Article
Modeling the Effect of Material Viscoelasticity on the Dielectric Permittivity of Deformed Elastomers
by Xianghe Zheng and Jianyou Zhou
Polymers 2024, 16(1), 113; https://doi.org/10.3390/polym16010113 - 29 Dec 2023
Cited by 2 | Viewed by 1262
Abstract
Elastomers, as a typical category of soft dielectrics, have shown great potential for developing stretchable electronics and soft transducers. However, the performance of dielectric elastomers (DEs) is susceptible to the dielectric permittivity of the material, whether as insulators or actuators. On the other [...] Read more.
Elastomers, as a typical category of soft dielectrics, have shown great potential for developing stretchable electronics and soft transducers. However, the performance of dielectric elastomers (DEs) is susceptible to the dielectric permittivity of the material, whether as insulators or actuators. On the other hand, experiments suggest that the material viscoelasticity significantly influences the dielectric permittivity of DEs. Based on the theory of finite-deformation viscoelasticity, this work adopts the Brillouin function to develop a modeling framework to examine the effect of material viscoelasticity on the dielectric permittivity for the first time. A comparison of the data fitting results between the models with and without consideration of the material viscoelasticity is presented. Simulation results also reveal that the viscous network of the elastomer exerts a mitigation effect on the decrease in the dielectric permittivity when the material is deformed. Furthermore, it is found that the loading rate is a key parameter that strongly affects the dielectric permittivity, mainly through the inelastic deformation. Full article
(This article belongs to the Special Issue Dielectric Properties of Polymer Based Materials)
Show Figures

Figure 1

19 pages, 2583 KiB  
Article
Enhancement in Capacitance of Ionic Type of EAP-Based Strain Sensors
by Nitin Kumar Singh, Kazuto Takashima and Shyam S. Pandey
Sensors 2023, 23(23), 9400; https://doi.org/10.3390/s23239400 - 25 Nov 2023
Cited by 3 | Viewed by 2955
Abstract
This paper aims to enhance the capacitance of electroactive polymer (EAP)-based strain sensors. The enhancement in capacitance was achieved by using a free-standing stretchable polymer film while introducing conducting polymer to fabricate a hybrid dielectric film with controlled conductivity. In this work, styrene-ethylene-butylene-styrene [...] Read more.
This paper aims to enhance the capacitance of electroactive polymer (EAP)-based strain sensors. The enhancement in capacitance was achieved by using a free-standing stretchable polymer film while introducing conducting polymer to fabricate a hybrid dielectric film with controlled conductivity. In this work, styrene-ethylene-butylene-styrene (SEBS) rubber was used as the base material, and dodecyl benzene sulfonate anion (DBSA)-doped polyaniline (PANI) was used as filler to fabricate a hybrid composite conducting film. The maleic anhydride group of the SEBS Rubber and DBSA, the anion of the polyaniline dopant, make a very stable dispersion in Toluene and form a free-standing stretchable film by solution casting. DBSA-doped polyaniline increased the conductivity and dielectric constant of the dielectric film, resulting in a significant enhancement in the capacitance of the EAP-based strain sensor. The sensor presented in this article exhibits capacitance values ranging from 24.7 to 100 µF for strain levels ranging from 0 to 100%, and sensitivity was measured 3 at 100% strain level. Full article
(This article belongs to the Special Issue Intelligent Health Monitoring Systems Based on Sensor Processing)
Show Figures

Figure 1

13 pages, 4924 KiB  
Article
An Underwater Triboelectric Biomechanical Energy Harvester to Power the Electronic Tag of Marine Life
by Bo Liu, Taili Du, Xiaoyan Xu, Jianhua Liu, Peng Zhu, Linan Guo, Yuanzheng Li, Tianrun Wang, Yongjiu Zou, Hao Wang, Peng Xu, Peiting Sun and Minyi Xu
J. Mar. Sci. Eng. 2023, 11(9), 1766; https://doi.org/10.3390/jmse11091766 - 9 Sep 2023
Cited by 5 | Viewed by 2162
Abstract
Implantable electronic tags are crucial for the conservation of marine biodiversity. However, the power supply associated with these tags remains a significant challenge. In this study, an underwater flexible triboelectric nanogenerator (UF-TENG) was proposed to harvest the biomechanical energy from the movements of [...] Read more.
Implantable electronic tags are crucial for the conservation of marine biodiversity. However, the power supply associated with these tags remains a significant challenge. In this study, an underwater flexible triboelectric nanogenerator (UF-TENG) was proposed to harvest the biomechanical energy from the movements of marine life, ensuring a consistent power source for the implantable devices. The UF-TENG, which is watertight by the protection of a hydrophobic poly(tetrafluoroethylene) film, consists of high stretchable carbon black-silicone as electrode and silicone as a dielectric material. This innovative design enhances the UF-TENG’s adaptability and biocompatibility with marine organisms. The UF-TENG’s performance was rigorously assessed under various conditions. Experimental data highlight a peak output of 14 V, 0.43 μA and 38 nC, with a peak power of 2.9 μW from only one unit. Notably, its performance exhibited minimal degradation even after three weeks, showing its excellent robustness. Furthermore, the UF-TENG is promising in the self-powered sensing of the environmental parameter and the marine life movement. Finally, a continuous power supply of an underwater temperature is achieved by paralleling UF-TENGs. These findings indicate the broad potential of UF-TENG technology in powering implantable electronic tags. Full article
(This article belongs to the Special Issue Advanced Marine Energy Harvesting Technologies)
Show Figures

Figure 1

19 pages, 4694 KiB  
Article
Fabrication of High-Performance Natural Rubber Composites with Enhanced Filler–Rubber Interactions by Stearic Acid-Modified Diatomaceous Earth and Carbon Nanotubes for Mechanical and Energy Harvesting Applications
by Md Najib Alam, Vineet Kumar, Han-Saem Jung and Sang-Shin Park
Polymers 2023, 15(17), 3612; https://doi.org/10.3390/polym15173612 - 31 Aug 2023
Cited by 17 | Viewed by 3120
Abstract
Mechanical robustness and high energy efficiency of composite materials are immensely important in modern stretchable, self-powered electronic devices. However, the availability of these materials and their toxicities are challenging factors. This paper presents the mechanical and energy-harvesting performances of low-cost natural rubber composites [...] Read more.
Mechanical robustness and high energy efficiency of composite materials are immensely important in modern stretchable, self-powered electronic devices. However, the availability of these materials and their toxicities are challenging factors. This paper presents the mechanical and energy-harvesting performances of low-cost natural rubber composites made of stearic acid-modified diatomaceous earth (mDE) and carbon nanotubes (CNTs). The obtained mechanical properties were significantly better than those of unfilled rubber. Compared to pristine diatomaceous earth, mDE has higher reinforcing efficiencies in terms of mechanical properties because of the effective chemical surface modification by stearic acid and enhanced filler–rubber interactions. The addition of a small amount of CNT as a component in the hybrid filler systems not only improves the mechanical properties but also improves the electrical properties of the rubber composites and has electromechanical sensitivity. For example, the fracture toughness of unfilled rubber (9.74 MJ/m3) can be enhanced by approximately 484% in a composite (56.86 MJ/m3) with 40 phr (per hundred grams of rubber) hybrid filler, whereas the composite showed electrical conductivity. At a similar mechanical load, the energy-harvesting efficiency of the composite containing 57 phr mDE and 3 phr CNT hybrid filler was nearly double that of the only 3 phr CNT-containing composite. The higher energy-harvesting efficiency of the mDE-filled conductive composites may be due to their increased dielectric behaviour. Because of their bio-based materials, rubber composites made by mDE can be considered eco-friendly composites for mechanical and energy harvesting applications and suitable electronic health monitoring devices. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage)
Show Figures

Graphical abstract

13 pages, 4005 KiB  
Article
A Water-Resistant, Self-Healing Encapsulation Layer for a Stable, Implantable Wireless Antenna
by Soojung An, Hyunsang Lyu, Duhwan Seong, Hyun Yoon, In Soo Kim, Hyojin Lee, Mikyung Shin, Keum Cheol Hwang and Donghee Son
Polymers 2023, 15(16), 3391; https://doi.org/10.3390/polym15163391 - 13 Aug 2023
Cited by 3 | Viewed by 2417
Abstract
Polymers for implantable devices are desirable for biomedical engineering applications. This study introduces a water-resistant, self-healing fluoroelastomer (SHFE) as an encapsulation material for antennas. The SHFE exhibits a tissue-like modulus (approximately 0.4 MPa), stretchability (at least 450%, even after self-healing in an underwater [...] Read more.
Polymers for implantable devices are desirable for biomedical engineering applications. This study introduces a water-resistant, self-healing fluoroelastomer (SHFE) as an encapsulation material for antennas. The SHFE exhibits a tissue-like modulus (approximately 0.4 MPa), stretchability (at least 450%, even after self-healing in an underwater environment), self-healability, and water resistance (WVTR result: 17.8610 g m−2 day−1). Further, the SHFE is self-healing in underwater environments via dipole–dipole interactions, such that devices can be protected from the penetration of biofluids and withstand external damage. With the combination of the SHFE and antennas designed to operate inside the body, we fabricated implantable, wireless antennas that can transmit information from inside the body to a reader coil that is outside. For antennas designed considering the dielectric constant, the uniformity of the encapsulation layer is crucial. A uniform and homogeneous interface is formed by simply overlapping two films. This study demonstrated the possibility of wireless communication in vivo through experiments on rodents for 4 weeks, maintaining the maximum communication distance (15 mm) without chemical or physical deformation in the SHFE layer. This study illustrates the applicability of fluoroelastomers in vivo and is expected to contribute to realizing the stable operation of high-performance implantable devices. Full article
(This article belongs to the Special Issue Functional Self-Healing Materials)
Show Figures

Figure 1

14 pages, 12249 KiB  
Article
Paintable Silicone-Based Corrugated Soft Elastomeric Capacitor for Area Strain Sensing
by Han Liu, Simon Laflamme and Matthias Kollosche
Sensors 2023, 23(13), 6146; https://doi.org/10.3390/s23136146 - 4 Jul 2023
Cited by 2 | Viewed by 2153
Abstract
Recent advances in soft polymer materials have enabled the design of soft machines and devices at multiple scales. Their intrinsic compliance and robust mechanical properties and the potential for a rapid scaling of the production process make them ideal candidates for flexible and [...] Read more.
Recent advances in soft polymer materials have enabled the design of soft machines and devices at multiple scales. Their intrinsic compliance and robust mechanical properties and the potential for a rapid scaling of the production process make them ideal candidates for flexible and stretchable electronics and sensors. Large-area electronics (LAE) made from soft polymer materials that are capable of sustaining large deformations and covering large surfaces and are applicable to complex and irregular surfaces and transducing deformations into readable signals have been explored for structural health monitoring (SHM) applications. The authors have previously proposed and developed an LAE consisting of a corrugated soft elastomeric capacitor (cSEC). The corrugation is used to engineer the directional strain sensitivity by using a thermoplastic styrene-ethylene-butadiene-styrene (SEBS). A key limitation of the SEBS-cSEC technology is the need of an epoxy for reliable bonding of the sensor onto the monitored surface, mainly attributable to the sensor’s fabrication process that comprises a solvent that limits its direct deployment through a painting process. Here, with the objective to produce a paintable cSEC, we study an improved solvent-free fabrication method by using a commercial room-temperature-vulcanizing silicone as the host matrix. The matrix is filled with titania particles to form the dielectric layer, yielding a permittivity of 4.05. Carbon black powder is brushed onto the dielectric and encapsulated with the same silicone to form the conductive stretchable electrodes. The sensor is deployed by directly painting a layer of the silicone onto the monitored surface and then depositing the parallel plate capacitor. The electromechanical behavior of the painted silicone-cSEC was characterized and exhibited good linearity, with an R2 value of 0.9901, a gauge factor of 1.58, and a resolution of 70 με. This resolution compared well with that of the epoxied SEBS-cSEC reported in previous work (25 με). Its performance was compared against that of its more mature version, the SEBS-cSEC, in a network configuration on a cantilever plate subjected to a step-deformation and to free vibrations. Results showed that the performance of the painted silicone-sCEC compared well with that of the SEBS-cSEC, but that the use of a silicone paint instead of an epoxy could be responsible for larger noise and the under-estimation of the dominating frequency by 6.7%, likely attributable to slippage. Full article
(This article belongs to the Special Issue Advanced Sensors Using Smart Materials)
Show Figures

Figure 1

9 pages, 1498 KiB  
Article
Preparation of a Vertical Graphene-Based Pressure Sensor Using PECVD at a Low Temperature
by Xin Cao, Kunpeng Zhang, Guang Feng, Quan Wang, Peihong Fu and Fengping Li
Micromachines 2022, 13(5), 681; https://doi.org/10.3390/mi13050681 - 27 Apr 2022
Cited by 6 | Viewed by 2755
Abstract
Flexible pressure sensors have received much attention due to their widespread potential applications in electronic skins, health monitoring, and human–machine interfaces. Graphene and its derivatives hold great promise for two-dimensional sensing materials, owing to their superior properties, such as atomically thin, transparent, and [...] Read more.
Flexible pressure sensors have received much attention due to their widespread potential applications in electronic skins, health monitoring, and human–machine interfaces. Graphene and its derivatives hold great promise for two-dimensional sensing materials, owing to their superior properties, such as atomically thin, transparent, and flexible structure. The high performance of most graphene-based pressure piezoresistive sensors relies excessively on the preparation of complex, post-growth transfer processes. However, the majority of dielectric substrates cannot hold in high temperatures, which can induce contamination and structural defects. Herein, a credibility strategy is reported for directly growing high-quality vertical graphene (VG) on a flexible and stretchable mica paper dielectric substrate with individual interdigital electrodes in plasma-enhanced chemical vapor deposition (PECVD), which assists in inducing electric field, resulting in a flexible, touchable pressure sensor with low power consumption and portability. Benefitting from its vertically directed graphene microstructure, the graphene-based sensor shows superior properties of high sensitivity (4.84 KPa−1) and a maximum pressure range of 120 KPa, as well as strong stability (5000 cycles), which makes it possible to detect small pulse pressure and provide options for preparation of pressure sensors in the future. Full article
Show Figures

Figure 1

17 pages, 4317 KiB  
Article
Electroplating and Ablative Laser Structuring of Elastomer Composites for Stretchable Multi-Layer and Multi-Material Electronic and Sensor Systems
by Simon P. Stier and Holger Böse
Micromachines 2021, 12(3), 255; https://doi.org/10.3390/mi12030255 - 3 Mar 2021
Cited by 3 | Viewed by 2904
Abstract
In this work we present the concept of electroplated conductive elastomers and ablative multi-layer and multi-material laser-assisted manufacturing to enable a largely automated, computer-aided manufacturing process of stretchable electronics and sensors. Therefore, the layers (conductive and non-conductive elastomers as well as metal layers [...] Read more.
In this work we present the concept of electroplated conductive elastomers and ablative multi-layer and multi-material laser-assisted manufacturing to enable a largely automated, computer-aided manufacturing process of stretchable electronics and sensors. Therefore, the layers (conductive and non-conductive elastomers as well as metal layers for contacting) are first coated over the entire surface (doctor blade coating and electroplating) and then selectively removed with a CO2 or a fiber laser. These steps are repeated several times to achieve a multi-layer-structured design. Is it not only possible to adjust and improve the work previously carried out manually, but also completely new concepts such as fine through-plating between the layers to enable much more compact structures become possible. In addition, metallized areas allow the direct soldering of electronic components and thus a direct connection between conventional and stretchable electronics. As an exemplary application, we have used the process for manufacturing a thin and surface solderable pressure sensor with a silicone foam dielectric and a stretchable circuit board. Full article
(This article belongs to the Special Issue nano FIS 2020—Integrated Functional nano Systems)
Show Figures

Graphical abstract

17 pages, 2860 KiB  
Article
Cationic Cellulose Nanocrystals-Based Nanocomposite Hydrogels: Achieving 3D Printable Capacitive Sensors with High Transparency and Mechanical Strength
by Po-Cheng Lai and Sheng-Sheng Yu
Polymers 2021, 13(5), 688; https://doi.org/10.3390/polym13050688 - 25 Feb 2021
Cited by 43 | Viewed by 5525
Abstract
Hydrogel ionotronics are intriguing soft materials that have been applied in wearable electronics and artificial muscles. These applications often require the hydrogels to be tough, transparent, and 3D printable. Renewable materials like cellulose nanocrystals (CNCs) with tunable surface chemistry provide a means to [...] Read more.
Hydrogel ionotronics are intriguing soft materials that have been applied in wearable electronics and artificial muscles. These applications often require the hydrogels to be tough, transparent, and 3D printable. Renewable materials like cellulose nanocrystals (CNCs) with tunable surface chemistry provide a means to prepare tough nanocomposite hydrogels. Here, we designed ink for 3D printable sensors with cationic cellulose nanocrystals (CCNCs) and zwitterionic hydrogels. CCNCs were first dispersed in an aqueous solution of monomers to prepare the ink with a reversible physical network. Subsequent photopolymerization and the introduction of Al3+ ion led to strong hydrogels with multiple physical cross-links. When compared to the hydrogels using conventional CNCs, CCNCs formed a stronger physical network in water that greatly reduced the concentration of nanocrystals needed for reinforcing and 3D printing. In addition, the low concentration of nanofillers enhanced the transparency of the hydrogels for wearable electronics. We then assembled the CCNC-reinforced nanocomposite hydrogels with stretchable dielectrics into capacitive sensors for the monitoring of various human activities. 3D printing further enabled a facile design of tactile sensors with enhanced sensitivity. By harnessing the surface chemistry of the nanocrystals, our nanocomposite hydrogels simultaneously achieved good mechanical strength, high transparency, and 3D printability. Full article
(This article belongs to the Special Issue Polymer Micro/Nanofabrication and Manufacturing)
Show Figures

Graphical abstract

15 pages, 2423 KiB  
Article
Preparation and Application of Organic-Inorganic Nanocomposite Materials in Stretched Organic Thin Film Transistors
by Yang-Yen Yu and Cheng-Huai Yang
Polymers 2020, 12(5), 1058; https://doi.org/10.3390/polym12051058 - 5 May 2020
Cited by 10 | Viewed by 3628
Abstract
High-transparency soluble polyimide with COOH and fluorine functional groups and TiO2-SiO2 composite inorganic nanoparticles with high dielectric constants were synthesized in this study. The polyimide and inorganic composite nanoparticles were further applied in the preparation of organic-inorganic hybrid high dielectric [...] Read more.
High-transparency soluble polyimide with COOH and fluorine functional groups and TiO2-SiO2 composite inorganic nanoparticles with high dielectric constants were synthesized in this study. The polyimide and inorganic composite nanoparticles were further applied in the preparation of organic-inorganic hybrid high dielectric materials as the gate dielectric for a stretchable transistor. The optimal ratio of organic and inorganic components in the hybrid films was investigated. In addition, Jeffamine D2000 and polyurethane were added to the gate dielectric to improve the tensile properties of the organic thin film transistor (OTFT) device. PffBT4T-2OD was used as the semiconductor layer material and indium gallium liquid alloy as the upper electrode. Electrical property analysis demonstrated that the mobility could reach 0.242 cm2·V−1·s−1 at an inorganic content of 30 wt.%, and the switching current ratio was 9.04 × 103. After Jeffamine D2000 and polyurethane additives were added, the mobility and switching current could be increased to 0.817 cm2·V−1·s−1 and 4.27 × 105 for Jeffamine D2000 and 0.562 cm2·V−1·s−1 and 2.04 × 105 for polyurethane, respectively. Additives also improved the respective mechanical properties. The stretching test indicated that the addition of polyurethane allowed the OTFT device to be stretched to 50%, and the electrical properties could be maintained after stretching 150 cycles. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop