A Water-Resistant, Self-Healing Encapsulation Layer for a Stable, Implantable Wireless Antenna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of the SHFE Film
2.2. Mechanical Characteristics of the SHFE
2.3. Measurement of Water Vapor Transmission
2.4. Cell Viability Test of the SHFE
2.5. Design of an RFID Reader and Tag Antennas That Communicates via Magnetic Resonance in the Air
2.6. Implantable Wireless Antennas Packaging
2.7. Ex Vivo Experimental Method of Wireless Communication Using the Implantable Antenna
2.8. In Vivo Experimental Method of Wireless Communication Using the Implantable Antenna
2.9. H&E Staining
3. Results
3.1. Mechanical Properties of the SHFE
3.2. Measurement of the RFID Reader and Tag Antennas in the Air
3.3. Measurement of the RFID Tag Antenna Inserted under the Porcine Skin
3.4. Wireless Communication In Vivo Using SHFE-Encapsulated Implantable Antenna
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Koydemir, H.C.; Ozcan, A. Wearable and implantable sensors for biomedical applications. Annu. Rev. Anal. Chem. 2018, 11, 127–146. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Zeng, X.; Xia, F.; Jin, W.; Liu, Y.; Hu, Y. Recent advances in flexible and stretchable sensing systems: From the perspective of system integration. ACS Nano 2020, 14, 6449–6469. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mat. 2016, 28, 4203–4218. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Lee, Y.; Cho, K.W.; Koo, J.H.; Kim, D.-H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 2018, 52, 73–81. [Google Scholar]
- Choi, S.; Han, S.I.; Jung, D.; Hwang, H.J.; Lim, C.; Bae, S.; Park, O.K.; Tschabrunn, C.M.; Lee, M.; Bae, S.Y. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056. [Google Scholar]
- Jastrzebska-Perfect, P.; Spyropoulos, G.D.; Cea, C.; Zhao, Z.; Rauhala, O.J.; Viswanathan, A.; Sheth, S.A.; Gelinas, J.N.; Khodagholy, D. Mixed-conducting particulate composites for soft electronics. Sci. Adv. 2020, 6, eaaz6767. [Google Scholar]
- Choi, C.; Choi, M.K.; Hyeon, T.; Kim, D.H. Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2016, 2, 1006–1017. [Google Scholar] [CrossRef]
- Park, C.; Kim, M.S.; Kim, H.H.; Sunwoo, S.-H.; Jung, D.J.; Choi, M.K.; Kim, D.-H. Stretchable conductive nanocomposites and their applications in wearable devices. Appl. Phys. Rev. 2022, 9, 021312. [Google Scholar] [CrossRef]
- Kim, S.H.; Seo, H.; Kang, J.; Hong, J.; Seong, D.; Kim, H.-J.; Kim, J.; Mun, J.; Youn, I.; Kim, J. An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano 2019, 13, 6531–6539. [Google Scholar]
- Yeo, J.C.; Lim, C.T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2016, 2, 16043. [Google Scholar]
- Kim, S.H.; Kim, Y.; Choi, H.; Park, J.; Song, J.H.; Baac, H.W.; Shin, M.; Kwak, J.; Son, D. Mechanically and electrically durable, stretchable electronic textiles for robust wearable electronics. RSC Adv. 2021, 11, 22327–22333. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kang, K.; Son, D.; Shin, M. Molecular rationale for the design of instantaneous, strain-tolerant polymeric adhesive in a stretchable underwater human–machine interface. ACS Nano 2022, 16, 1368–1380. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-I.; Seo, H.; Seong, D.; Kim, S.; Yu, K.J.; Kim, Y.-C.; Kim, J.; Kwon, S.J.; Han, H.-S.; Youn, I. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 2020, 11, 4195. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Cheng, X.; Xiong, T.; Wang, X. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomed. Microdevices 2019, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Han, S.I.; Song, K.I.; Seong, D.; Lee, K.; Kim, S.H.; Park, T.; Koo, J.H.; Shin, M.; Baac, H.W. Durable and Fatigue-Resistant Soft Peripheral Neuroprosthetics for In Vivo Bidirectional Signaling. Adv. Mat. 2021, 33, 2007346. [Google Scholar] [CrossRef]
- Kim, S.H.; Baek, G.W.; Yoon, J.; Seo, S.; Park, J.; Hahm, D.; Chang, J.H.; Seong, D.; Seo, H.; Oh, S. A bioinspired stretchable sensory-neuromorphic system. Adv. Mat. 2021, 33, 2104690. [Google Scholar] [CrossRef]
- Yao, G.; Kang, L.; Li, J.; Long, Y.; Wei, H.; Ferreira, C.A.; Jeffery, J.J.; Lin, Y.; Cai, W.; Wang, X. Effective weight control via an implanted self-powered vagus nerve stimulation device. Nat. Commun. 2018, 9, 5349. [Google Scholar] [CrossRef] [Green Version]
- Park, K.; An, S.; Kim, J.; Yoon, S.; Song, J.; Jung, D.; Park, J.; Lee, Y.; Son, D.; Seo, J. Resealable Antithrombotic Artificial Vascular Graft Integrated with a Self-Healing Blood Flow Sensor. ACS Nano 2023, 17, 7296–7310. [Google Scholar] [CrossRef]
- Thie, J.; Klistorner, A.; Graham, S.L. Biomedical signal acquisition with streaming wireless communication for recording evoked potentials. Doc. Ophthalmol. 2012, 125, 149–159. [Google Scholar] [CrossRef]
- Won, S.M.; Cai, L.; Gutruf, P.; Rogers, J.A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 2023, 7, 405–423. [Google Scholar] [CrossRef]
- Koo, J.; MacEwan, M.R.; Kang, S.-K.; Won, S.M.; Stephen, M.; Gamble, P.; Xie, Z.; Yan, Y.; Chen, Y.-Y.; Shin, J. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830–1836. [Google Scholar] [CrossRef]
- Chen, J.C.; Kan, P.; Yu, Z.; Alrashdan, F.; Garcia, R.; Singer, A.; Lai, C.E.; Avants, B.; Crosby, S.; Li, Z. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Nat. Biomed. Eng. 2022, 6, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Das, R.; Zhao, J.; Mirzai, N.; Mercer, J.; Heidari, H. Battery-Free and Wireless Technologies for Cardiovascular Implantable Medical Devices. Adv. Mater. Technol. 2022, 7, 2101086. [Google Scholar] [CrossRef]
- Lu, D.; Yan, Y.; Deng, Y.; Yang, Q.; Zhao, J.; Seo, M.H.; Bai, W.; MacEwan, M.R.; Huang, Y.; Ray, W.Z. Bioresorbable wireless sensors as temporary implants for in vivo measurements of pressure. Adv. Funct. Mater. 2020, 30, 2003754. [Google Scholar] [CrossRef]
- Lu, D.; Yan, Y.; Avila, R.; Kandela, I.; Stepien, I.; Seo, M.H.; Bai, W.; Yang, Q.; Li, C.; Haney, C.R. Bioresorbable, wireless, passive sensors as temporary implants for monitoring regional body temperature. Adv. Healthc. Mater. 2020, 9, 2000942. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kampianakis, E.; Reynolds, M.S. A dual-band HF and UHF antenna system for implanted neural recording and stimulation devices. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 493–496. [Google Scholar] [CrossRef]
- Lodato, R.; Lopresto, V.; Pinto, R.; Marrocco, G. Numerical and experimental characterization of through-the-body UHF-RFID links for passive tags implanted into human limbs. IEEE Trans. 2014, 62, 5298–5306. [Google Scholar] [CrossRef]
- Ho, J.S.; Yeh, A.J.; Neofytou, E.; Kim, S.; Tanabe, Y.; Patlolla, B.; Beygui, R.E.; Poon, A.S. Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. USA 2014, 111, 7974–7979. [Google Scholar] [CrossRef]
- Liu, X.; Berger, J.L.; Ogirala, A.; Mickle, M.H. A touch probe method of operating an implantable RFID tag for orthopedic implant identification. IEEE Trans. Biomed. Circuits Syst. 2012, 7, 236–242. [Google Scholar]
- Karacolak, T.; Hood, A.Z.; Topsakal, E. Design of a dual-band implantable antenna and development of skin mimicking gels for continuous glucose monitoring. IEEE Trans. Microw. Theory Tech. 2008, 56, 1001–1008. [Google Scholar] [CrossRef]
- Beach, R.D.; Conlan, R.W.; Godwin, M.C.; Moussy, F. Towards a miniature implantable in vivo telemetry monitoring system dynamically configurable as a potentiostat or galvanostat for two-and three-electrode biosensors. IEEE Trans. Instrum. Meas. 2005, 54, 61–72. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J.C. Immune responses to implants–a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709. [Google Scholar] [CrossRef] [PubMed]
- Gutruf, P.; Yin, R.T.; Lee, K.B.; Ausra, J.; Brennan, J.A.; Qiao, Y.; Xie, Z.; Peralta, R.; Talarico, O.; Murillo, A. Wireless, battery-free, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat. Commun. 2019, 10, 5742. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.; Hong, I.; Park, S.U.; Chae, J.W.; Lee, S.; Baac, H.W.; Shin, C.; Lee, J.; Roh, Y.; Im, C. Functional Encapsulating Structure for Wireless and Immediate Monitoring of the Fluid Penetration. Adv. Funct. Mater. 2022, 32, 2201854. [Google Scholar] [CrossRef]
- Song, E.; Li, R.; Jin, X.; Du, H.; Huang, Y.; Zhang, J.; Xia, Y.; Fang, H.; Lee, Y.K.; Yu, K.J. Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano 2018, 12, 10317–10326. [Google Scholar] [CrossRef]
- Song, E.; Li, J.; Won, S.M.; Bai, W.; Rogers, J.A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 2020, 19, 590–603. [Google Scholar] [CrossRef]
- Jiang, Y.; Ji, S.; Sun, J.; Huang, J.; Li, Y.; Zou, G.; Salim, T.; Wang, C.; Li, W.; Jin, H. A universal interface for plug-and-play assembly of stretchable devices. Nature 2023, 614, 456–462. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Le, S.; Niu, L.; Tao, J.; Liang, J.; Zhang, L.; Kang, X. Parylene C as an Insulating Polymer for Implantable Neural Interfaces: Acute Electrochemical Impedance Behaviors in Saline and Pig Brain In Vitro. Polymers 2022, 14, 3033. [Google Scholar] [CrossRef]
- Coelho, B.J.; Pinto, J.V.; Martins, J.; Rovisco, A.; Barquinha, P.; Fortunato, E.; Baptista, P.V.; Martins, R.; Igreja, R. Parylene C as a Multipurpose Material for Electronics and Microfluidics. Polymers 2023, 15, 2277. [Google Scholar] [CrossRef]
- Tintelott, M.; Schander, A.; Lang, W. Understanding Electrical Failure of Polyimide-Based Flexible Neural Implants: The Role of Thin Film Adhesion. Polymers 2022, 14, 3702. [Google Scholar] [CrossRef] [PubMed]
- Shapero, A.; Tai, Y.-C. Parylene-oil-encapsulated low-drift implantable pressure sensors. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 47–50. [Google Scholar]
- Yang, Q.; Wei, T.; Yin, R.T.; Wu, M.; Xu, Y.; Koo, J.; Choi, Y.S.; Xie, Z.; Chen, S.W.; Kandela, I. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 2021, 20, 1559–1570. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Moon, J.-H.; Kim, J.H.; Jeong, S.M.; Lee, S.-H. Flexible, stretchable and implantable PDMS encapsulated cable for implantable medical device. Biomed. Eng. Lett. 2011, 1, 199–203. [Google Scholar] [CrossRef]
- Du, J.; Blanche, T.J.; Harrison, R.R.; Lester, H.A.; Masmanidis, S.C. Multiplexed, high density electrophysiology with nanofabricated neural probes. PLoS ONE 2011, 6, e26204. [Google Scholar] [CrossRef] [Green Version]
- Lancashire, H.T.; Habibollahi, M.; Jiang, D.; Demosthenous, A. Evaluation of commercial connectors for active neural implants. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual Event, 4–6 May 2021; pp. 973–976. [Google Scholar]
- Li, C.-H.; Wang, C.; Keplinger, C.; Zuo, J.-L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8, 618–624. [Google Scholar] [CrossRef]
- Kang, J.; Son, D.; Wang, G.J.N.; Liu, Y.; Lopez, J.; Kim, Y.; Oh, J.Y.; Katsumata, T.; Mun, J.; Lee, Y. Tough and water-insensitive self-healing elastomer for robust electronic skin. Adv. Mater. 2018, 30, 1706846. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wu, H.; Allec, S.I.; Wong, B.M.; Nguyen, D.S.; Wang, C. A highly stretchy, transparent elastomer with the capability to automatically self-heal underwater. Adv. Mater. 2018, 30, 1804602. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Y.J.; Li, S.; Lee, W.W.; Guo, H.; Cai, Y.; Wang, C.; Tee, B.C.-K. Self-healing electronic skins for aquatic environments. Nat. Electron. 2019, 2, 75–82. [Google Scholar] [CrossRef]
- Oh, J.Y.; Son, D.; Katsumata, T.; Lee, Y.; Kim, Y.; Lopez, J.; Wu, H.-C.; Kang, J.; Park, J.; Gu, X. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci. Adv. 2019, 5, eaav3097. [Google Scholar] [CrossRef] [Green Version]
- Deneris, Z.A.; Pe’a, D.E.; Furse, C.M. A layered pork model for subdermal antenna tests at 433 MHz. IEEE J. Electromagn. RF Microw. Med. Biol. 2019, 3, 171–176. [Google Scholar] [CrossRef]
- Gabriel, S.; Lau, R.; Gabriel, C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 1996, 41, 2251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Commercial Reader Antenna | Proposed Reader Antenna | |
---|---|---|
Commercial tag antenna | 75 mm | 50 mm |
Proposed tag antenna | 70 mm | 90 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, S.; Lyu, H.; Seong, D.; Yoon, H.; Kim, I.S.; Lee, H.; Shin, M.; Hwang, K.C.; Son, D. A Water-Resistant, Self-Healing Encapsulation Layer for a Stable, Implantable Wireless Antenna. Polymers 2023, 15, 3391. https://doi.org/10.3390/polym15163391
An S, Lyu H, Seong D, Yoon H, Kim IS, Lee H, Shin M, Hwang KC, Son D. A Water-Resistant, Self-Healing Encapsulation Layer for a Stable, Implantable Wireless Antenna. Polymers. 2023; 15(16):3391. https://doi.org/10.3390/polym15163391
Chicago/Turabian StyleAn, Soojung, Hyunsang Lyu, Duhwan Seong, Hyun Yoon, In Soo Kim, Hyojin Lee, Mikyung Shin, Keum Cheol Hwang, and Donghee Son. 2023. "A Water-Resistant, Self-Healing Encapsulation Layer for a Stable, Implantable Wireless Antenna" Polymers 15, no. 16: 3391. https://doi.org/10.3390/polym15163391
APA StyleAn, S., Lyu, H., Seong, D., Yoon, H., Kim, I. S., Lee, H., Shin, M., Hwang, K. C., & Son, D. (2023). A Water-Resistant, Self-Healing Encapsulation Layer for a Stable, Implantable Wireless Antenna. Polymers, 15(16), 3391. https://doi.org/10.3390/polym15163391