Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = stress-dependent stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 875 KiB  
Review
Cardiorenal Syndrome in the Elderly: Challenges and Considerations
by Matthew Jarocki, Sophie Green, Henry H. L. Wu and Rajkumar Chinnadurai
Geriatrics 2025, 10(4), 104; https://doi.org/10.3390/geriatrics10040104 - 4 Aug 2025
Abstract
Cardiorenal syndrome (CRS) is a term used to describe the combined dysfunction of the heart and kidneys. This complex disorder is widely acknowledged to be challenging in both its diagnosis and management, and this is the case particularly in the elderly population, due [...] Read more.
Cardiorenal syndrome (CRS) is a term used to describe the combined dysfunction of the heart and kidneys. This complex disorder is widely acknowledged to be challenging in both its diagnosis and management, and this is the case particularly in the elderly population, due to multi-morbidity, polypharmacy, and age-related physiological changes. Given advancements in medicine and more prolonged cumulative exposure to risk factors in the elderly population, it is likely that the prevalence of chronic kidney disease (CKD) and heart failure (HF) will continue to rise going forward. Hence, understanding the mechanisms involved in the development of CRS is paramount. There are five different CRS types—they are categorised depending on the primary organ involved the acuity of disease. The pathophysiological process behind CRS is complex, involving the interplay of many processes including hemodynamic changes, neurohormonal activation, inflammation, oxidative stress, and endothelial dysfunction and vascular stiffness. The numerous diagnostic and management challenges associated with CRS are significantly further exacerbated in an elderly population. Biomarkers used to aid the diagnosis of CRS, such as serum creatinine and brain natriuretic peptide (BNP), can be challenging to interpret in the elderly population due to age-related renal senescence and multiple comorbidities. Polypharmacy can contribute to the development of CRS and therefore, before initiating treatment, coordinating a patient-centred, multi-speciality, holistic review to assess potential risks versus benefits of prescribed treatments is crucial. The overall prognosis of CRS in the elderly remains poor. Treatments are primarily directed at addressing the sequelae of the underlying aetiology, which often involves the removal of fluid through diuretics or ultrafiltration. Careful considerations when managing elderly patients with CRS is essential due to the high prevalence of frailty and functional decline. As such, in these patients, early discussions around advance care planning should be prioritised. Full article
Show Figures

Figure 1

25 pages, 5388 KiB  
Article
Numerical and Experimental Evaluation of Axial Load Transfer in Deep Foundations Within Stratified Cohesive Soils
by Şahin Çaglar Tuna
Buildings 2025, 15(15), 2723; https://doi.org/10.3390/buildings15152723 - 1 Aug 2025
Viewed by 155
Abstract
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent [...] Read more.
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent mobilization of shaft resistance. A finite element model was developed and calibrated using field-observed load–settlement and strain data to replicate the pile–soil interaction and deformation behavior. The analysis revealed a shaft-dominated load transfer behavior, with progressive mobilization concentrated in intermediate-depth cohesive layers. Sensitivity analysis identified the undrained stiffness (Eu) as the most influential parameter governing pile settlement. A strong polynomial correlation was established between calibrated Eu values and SPT N60, offering a practical tool for preliminary design. Additionally, strain energy distribution was evaluated as a supplementary metric, enhancing the interpretation of mobilization zones beyond conventional stress-based methods. The integrated approach provides valuable insights for performance-based foundation design in layered cohesive ground, supporting the development of site-calibrated numerical models informed by full-scale testing data. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 6326 KiB  
Article
Dynamic Stress Wave Response of Thin-Walled Circular Cylindrical Shell Under Thermal Effects and Axial Harmonic Compression Boundary Condition
by Desejo Filipeson Sozinando, Patrick Nziu, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Appl. Mech. 2025, 6(3), 55; https://doi.org/10.3390/applmech6030055 - 28 Jul 2025
Viewed by 391
Abstract
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent [...] Read more.
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent harmonic compression. A semi-analytical model based on Donnell–Mushtari–Vlasov (DMV) shells theory is developed to derive the governing equations, incorporating elastic, inertial, and thermal expansion effects. Modal solutions are obtained to evaluate displacement and stress distributions across varying thermal and mechanical excitation conditions. Empirical Mode Decomposition (EMD) and Instantaneous Frequency (IF) analysis are employed to extract time–frequency characteristics of the dynamic response. Complementary Finite Element Analysis (FEA) is conducted to assess modal deformations, stress wave amplification, and the influence of thermal softening on resonance frequencies. Results reveal that increasing thermal gradients leads to significant reductions in natural frequencies and amplifies stress responses at critical excitation frequencies. The combination of analytical and numerical approaches captures the coupled thermomechanical effects on shell dynamics, providing an understanding of resonance amplification, modal energy distribution, and thermal-induced stiffness variation under axial harmonic excitation across thin-walled cylindrical structures. Full article
Show Figures

Figure 1

12 pages, 732 KiB  
Article
Umbilical Cord Tensile Strength Under Varying Strain Rates
by Maria Antonietta Castaldi, Pietro Villa, Alfredo Castaldi and Salvatore Giovanni Castaldi
Bioengineering 2025, 12(8), 789; https://doi.org/10.3390/bioengineering12080789 - 22 Jul 2025
Viewed by 248
Abstract
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic [...] Read more.
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic response. Twenty-nine UC specimens, each 40 mm in length, were subjected to uniaxial tensile testing and randomly assigned to three traction speed groups: Group A (n = 10) at 8 mm/min, Group B (n = 7) at 12 mm/min, and Group C (n = 12) at 16 mm/min. Four different parameters were analyzed: the ultimate tensile strength and its corresponding elongation, the elastic modulus defined as the slope of the linear initial portion of the stress–strain plot, and the elongation at the end of the test (at break). While elongation and elongation at break did not differ significantly between groups (one-way ANOVA), Group C showed a significantly higher ultimate tensile strength (p = 0.047). A linear relationship was observed between test speed and stiffness (elastic modulus), with the following regression equation: y = 0.3078e4.425x. These findings confirm that the UC exhibits nonlinear viscoelastic properties and strain-rate-dependent stiffening, resembling non-Newtonian behavior. This novel insight may have clinical relevance during operative deliveries, where traction speed is often overlooked but may play a role in preserving cord integrity and improving neonatal outcomes. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

13 pages, 1746 KiB  
Article
Calibration of DEM Parameters and Microscopic Deformation Characteristics During Compression Process of Lateritic Soil with Different Moisture Contents
by Chao Ji, Wanru Liu, Yiguo Deng, Yeqin Wang, Peimin Chen and Bo Yan
Agriculture 2025, 15(14), 1548; https://doi.org/10.3390/agriculture15141548 - 18 Jul 2025
Viewed by 326
Abstract
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on [...] Read more.
Lateritic soils in tropical regions feature cohesive textures and high specific resistance, driving up energy demands for tillage and harvesting machinery. However, current equipment designs lack discrete element models that account for soil moisture variations, and the microscopic effects of water content on lateritic soil deformation remain poorly understood. This study aims to calibrate and validate discrete element method (DEM) models of lateritic soil at varying moisture contents of 20.51%, 22.39%, 24.53%, 26.28%, and 28.04% by integrating the Hertz–Mindlin contact mechanics with bonding and JKR cohesion models. Key parameters in the simulations were calibrated through systematic experimentation. Using Plackett–Burman design, critical factors significantly affecting axial compressive force—including surface energy, normal bond stiffness, and tangential bond stiffness—were identified. Subsequently, Box–Behnken response surface methodology was employed to optimize these parameters by minimizing deviations between simulated and experimental maximum axial compressive forces under each moisture condition. The calibrated models demonstrated high fidelity, with average relative errors of 4.53%, 3.36%, 3.05%, 3.32%, and 7.60% for uniaxial compression simulations across the five moisture levels. Stress–strain analysis under axial loading revealed that at a given surface displacement, both fracture dimensions and stress transfer rates decreased progressively with increasing moisture content. These findings elucidate the moisture-dependent micromechanical behavior of lateritic soil and provide critical data support for DEM-based design optimization of soil-engaging agricultural implements in tropical environments. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

14 pages, 1694 KiB  
Article
Elastic to Plastic Lattice Structure Homogenization via Finite Element Limit Analysis
by Renato Zona and Vincenzo Minutolo
Symmetry 2025, 17(7), 1120; https://doi.org/10.3390/sym17071120 - 12 Jul 2025
Viewed by 248
Abstract
This work focuses on characterizing structured metamaterials by assessing their elastic law and ultimate strength using finite elements and limit analysis applied to a representative volume element. The elastic and plastic behavior of a reference geometry—the octet truss lattice—is obtained by calculating the [...] Read more.
This work focuses on characterizing structured metamaterials by assessing their elastic law and ultimate strength using finite elements and limit analysis applied to a representative volume element. The elastic and plastic behavior of a reference geometry—the octet truss lattice—is obtained by calculating the response of the representative volume element subjected to prescribed tensor strain bases, namely pure normal strain and pure shear, along the cube symmetry directions. The geometry of the body centered cubic and pure cubic phases of the representative volume element has been analyzed, highlighting that the elastic isotropic behavior depends on the ratio between the stiffnesses of the two phases. The ultimate behavior of the structure has been analyzed through the direct application of the lower bound method of limit analysis. The method has been implemented in a direct finite element environment using the limit analysis procedure developed by the authors. The method was already used and described in previous publications and is briefly recalled. It is based on the identification of the linear operator linking the self-equilibrated stress set to a discrete parameter manifold, accounting for the piecewise continuous distribution of the permanent strain. In the paper, it is highlighted that for different aspect ratios between the body-centered cubic and the pure cubic phase geometry, different ratios between limit shear stress and normal stress arise, the isotropic one assumed to coincide with the von Mises result, where σ0τ0=3. Full article
Show Figures

Figure 1

15 pages, 3437 KiB  
Article
Unveiling State-of-Charge Effects on Elastic Properties of LiCoO2 via Deep Learning and Empirical Models
by Ijaz Ul Haq and Seungjun Lee
Appl. Sci. 2025, 15(14), 7809; https://doi.org/10.3390/app15147809 - 11 Jul 2025
Viewed by 351
Abstract
This study investigates the mechanical properties of LiCoO2 (LCO) cathode materials under varying states of charge (SOCs) using both an empirical Buckingham potential model and a machine learning-based Deep Potential (DP) model. The results reveal a substantial decrease in Young’s modulus with [...] Read more.
This study investigates the mechanical properties of LiCoO2 (LCO) cathode materials under varying states of charge (SOCs) using both an empirical Buckingham potential model and a machine learning-based Deep Potential (DP) model. The results reveal a substantial decrease in Young’s modulus with decreasing SOC. Analysis of stress factors identified pairwise interactions, particularly those involving Co3+ and Co4+, as key drivers of this mechanical evolution. The DP model demonstrated superior performance by providing consistent and reliable predictions reflected in a smooth and monotonic stiffness decrease with SOC, in contrast to the large fluctuations observed in the classical Buckingham potential results. The study further identifies the increasing dominance of Co4+ interactions at low SOCs as a contributor to localized stress concentrations, which may accelerate crack initiation and mechanical degradation. These findings underscore the DP model’s capability to capture SOC-dependent mechanical behavior accurately, establishing it as a robust tool for modeling battery materials. Moreover, the calculated SOC-dependent mechanical properties can serve as critical input for continuum-scale models, improving their predictive capability for chemo-mechanical behavior and degradation processes. This integrated multiscale modeling approach can offer valuable insights for developing strategies to enhance the durability and performance of lithium-ion battery materials. Full article
Show Figures

Figure 1

28 pages, 7820 KiB  
Review
Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review
by Khishigdorj Davaasambuu, Yu Dong, Alokesh Pramanik and Animesh Kumar Basak
J. Compos. Sci. 2025, 9(7), 359; https://doi.org/10.3390/jcs9070359 - 10 Jul 2025
Viewed by 864
Abstract
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their [...] Read more.
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their geometries and mechanical properties of bonded materials. As such, joint geometry and material properties play a critical role in determining the capability of the joints to withstand high loads, resist fatigue, and absorb energy under impact loading. This paper investigates the effects of geometry and material dissimilarity on the performance of both conventional bonded and interlocking joints under tensile loading based on the information available in the literature. In addition, bonding and load transfer mechanisms were analysed in detail. It was found that stress concentration often occurs at free edges of the adhesive layer due to geometric discontinuities, while most of the load is carried by these regions rather than its centre. Sharp corners further intensify resulting stresses, thereby increasing the risk of joint failure. Adhesives typically resist shear loads better than peel loads, and stiffness mismatches between adherents induce an asymmetric stress distribution. Nonetheless, similar materials promote symmetric load sharing. Among conventional joints, scarf joints provide the most uniform load distribution. In interlocking joints such as dovetail, T-slot, gooseneck, and elliptical types, the outward bending of the female component under tension can lead to mechanical failure. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

22 pages, 5806 KiB  
Article
Sustainable Design and Wall Thickness Optimization for Enhanced Lifetime of Ultra-High Temperature Ceramic Matrix Composite Thruster for Use in Green Propulsion Systems
by Tamim Doozandeh, Prakhar Jindal and Jyoti Botchu
Materials 2025, 18(13), 3196; https://doi.org/10.3390/ma18133196 - 7 Jul 2025
Cited by 1 | Viewed by 336
Abstract
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two [...] Read more.
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two geometries, a simplified and a complex full-featured model, were evaluated to assess the impact of geometric fidelity on stress prediction. The complex thruster model (CTM) offered improved resolution of temperature gradients and stress concentrations, especially near flange and convergent regions, and was adopted for optimization. A parametric study with nine wall thickness profiles identified a 2 mm tapered configuration in both convergent and divergent sections that minimized mass while maintaining structural integrity. This optimized profile reduced peak thermal stress and overall mass without compromising safety margins. Transient thermal and strain analyses showed that thermal stress dominates initially (≤3 s), while thermal strain becomes critical later due to stiffness degradation. Damage risk was evaluated using temperature-dependent stress margins at four critical locations. Time-dependent failure maps revealed throat degradation for short burns and flange cracking for longer durations. All analyses were conducted under hot-fire conditions without cooling. The validated methodology supports durable, lightweight nozzle designs for future green propulsion missions. Full article
Show Figures

Figure 1

20 pages, 16120 KiB  
Article
Lateral Performance of Steel–Concrete Anchors Embedded in RC Columns Subjected to Fire Scenario
by Amer Alkloub, Mahmoud Dwaikat, Ahmed Ashteyat, Farouq Sammour and Asala Jaradat
Infrastructures 2025, 10(7), 173; https://doi.org/10.3390/infrastructures10070173 - 5 Jul 2025
Viewed by 326
Abstract
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research [...] Read more.
The use of both structural steel and reinforced concrete is common in civil and military infrastructure projects. Anchorage plays a crucial role in these systems, serving as the key element that connects structural components and secures attachments within complex composite structures. This research focuses on evaluating the performance of steel–concrete column connections under the combined effects of lateral loading and fire exposure. Additionally, the study investigates the use of carbon fiber-reinforced polymers (CFRP) for strengthening and repairing these connections. The research methodology combines experimental testing and finite-element modeling to achieve its objectives. First, experimental investigation was carried out to test two groups of steel-reinforced concrete column specimens, each group made of three specimens. The first group specimens were designed based on special moment frame (SMF) detailing, and the other group specimens were designed based on intermediate moment frame (IMF) detailing. These two types of design were selected based on seismic demands, with SMFs offering high ductility and resilience for severe earthquakes and IMFs providing a cost-effective solution for moderate seismic zones, both benefiting from ongoing innovations in connection detailing and design approaches. Then, finite-element analysis was conducted to model the test specimens. High-fidelity finite-element modeling was conducted using ANSYS program, which included three-dimensional coupled thermal-stress analyses for the six tested specimens and incorporated nonlinear temperature-dependent materials characteristics of each component and the interfaces. Both the experimental and numerical results of this study show that fire has a more noticeable effect on displacement compared to the peak capacities of both types of specimens. Fire exposure results in a larger reduction in the initial residual lateral stiffness of the SMF specimens when compared to IMF specimens. While the effect of CFRP wraps on initial residual lateral stiffness was consistent for all specimens, it caused more improvement for the IMF specimen in terms of post-fire ductility when compared to SMF specimens. This exploratory study confirms the need for further research on the effect of fire on the concrete–steel anchorage zones. Full article
Show Figures

Figure 1

18 pages, 3861 KiB  
Article
Investigating the Rheological Impact of USP Warm Mix Modifier on Asphalt Binder
by Yali Liu, Jingfei Ping, Hao Guo, Yikai Kang and Yali Ye
Coatings 2025, 15(7), 784; https://doi.org/10.3390/coatings15070784 - 3 Jul 2025
Viewed by 443
Abstract
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway [...] Read more.
USP (usual temperature pitch)-modified asphalt optimizes its rheological properties through reactions between the modifier and the asphalt. This significantly enhances the high- and low-temperature adaptability and environmental friendliness of asphalt. It has now become an important research direction in the field of highway engineering. This article systematically investigates the impact of different dosages of USP warm mix modifier on asphalt binders through rheological and microstructural analysis. Base asphalt and SBS-modified asphalt were blended with USP at varying ratios. Conventional tests (penetration, softening point, ductility) were combined with dynamic shear rheometry (DSR, AASHTO T315) and bending beam rheometry (BBR, AASHTO T313) to characterize temperature/frequency-dependent viscoelasticity. High-temperature performance was quantified via multiple stress creep recovery (MSCR, ASTM D7405), while fluorescence microscopy and FTIR spectroscopy elucidated modification mechanisms. Key findings reveal that (1) optimal USP thresholds exist at 4.0% for base asphalt and 4.5% for SBS modified asphalt, beyond which the rutting resistance factor (G*/sin δ) decreases by 20–31% due to plasticization effects; (2) USP significantly improves low-temperature flexibility, reducing creep stiffness at −12 °C by 38% (USP-modified) and 35% (USP/SBS composite) versus controls; (3) infrared spectroscopy displays that no new characteristic peaks appeared in the functional group region of 4000–1300 cm−1 for the two types of modified asphalt after the incorporation of USP, indicating that no chemical changes occurred in the asphalt; and (4) fluorescence imaging confirmed that the incorporation of USP led to disintegration of the spatial network structure of the control asphalt, explaining the reason for the deterioration of high-temperature performance. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

26 pages, 3269 KiB  
Article
Dynamic Characteristics of Additive Manufacturing Based on Dual Materials of Heterogeneity
by Hsien-Hsiu Hung, Shih-Han Chang and Yu-Hsi Huang
Polymers 2025, 17(13), 1793; https://doi.org/10.3390/polym17131793 - 27 Jun 2025
Viewed by 326
Abstract
This study aims to establish a methodology that integrates experimental measurements with finite element analysis (FEA) to investigate the mechanical behavior and dynamic characteristics of soft–hard laminated composites fabricated via additive manufacturing (AM) under dynamic excitation. A hybrid AM technique was employed, using [...] Read more.
This study aims to establish a methodology that integrates experimental measurements with finite element analysis (FEA) to investigate the mechanical behavior and dynamic characteristics of soft–hard laminated composites fabricated via additive manufacturing (AM) under dynamic excitation. A hybrid AM technique was employed, using the PolyJet process based on stereolithography (SLA) to fabricate composite beam structures composed of alternating soft and hard materials. Initially, impact tests using a steel ball on cantilever beams made of hard material were conducted to inversely calculate the first natural frequency via time–frequency analysis, thereby identifying Young’s modulus and Poisson’s ratio. For the viscoelastic soft material, tensile and stress relaxation tests were performed to construct a Generalized Maxwell Model, from which the Prony series parameters were derived. Subsequently, symmetric and asymmetric multilayer composite beams were fabricated and subjected to impact testing. The experimental results were compared with FEA simulations to evaluate the accuracy and validity of the identified material parameters of different structural configurations under vibration modes. The research focuses on the time- and frequency-dependent stiffness response of the composite by hard and soft materials and integrating this behavior into structural dynamic simulations. The specific objectives of the study include (1) establishing the Prony series parameters for the soft material integrated with hard material and implementing them in the FE model, (2) validating the accuracy of resonant frequencies and dynamic responses through combined experimental and simulation, (3) analyzing the influence of composite material symmetry and thickness ratio on dynamic modals, and (4) comparing simulation results with experimental measurements to assess the reliability and accuracy of the proposed modeling framework. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

16 pages, 1205 KiB  
Article
Theoretical Prediction of the Impact of Phosphorus Doping on the Elastic Constants of Silicon
by Azadeh Jafari and Behraad Bahreyni
Micromachines 2025, 16(7), 748; https://doi.org/10.3390/mi16070748 - 25 Jun 2025
Viewed by 1200
Abstract
Accurately controlling the mechanical properties of silicon is essential for developing high-performance micro-devices and systems. In this study, we investigate the influence of phosphorus doping on the elastic constants of silicon across a wide temperature range using a combination of tight-binding simulations and [...] Read more.
Accurately controlling the mechanical properties of silicon is essential for developing high-performance micro-devices and systems. In this study, we investigate the influence of phosphorus doping on the elastic constants of silicon across a wide temperature range using a combination of tight-binding simulations and deformation potential theory. The mechanical properties were derived using Keyes’s framework integrated with Fermi–Dirac statistics. The Goodwin–Skinner–Pettifor functional form was applied to estimate dopant-induced stress potentials and their effect on lattice stiffness. In particular, we investigated the change in elastic constants and their temperature dependence under ultra-high doping concentrations. The results show a monotonic decrease in c11 and a non-monotonic increase in c12 with both temperature and doping, while c44 remains relatively unaffected, consistent with experimental and theoretical studies. These changes are attributed to anisotropic carrier redistribution among conduction band valleys and strain-modulated interactions between valleys. The novelty of this work lies in the explicit, atomistically informed calculation of deformation potential constants using tight-binding parameters specific to phosphorus doping in silicon, enabling the accurate prediction of temperature-dependent elastic constants and anisotropic mechanical behaviour in emerging microsystem applications. Full article
(This article belongs to the Collection Women in Micromachines)
Show Figures

Figure 1

23 pages, 6238 KiB  
Article
The Semi-Penalized Updated Properties Model and Its Algorithm to Impose the Volume Fraction
by Amin Alibakhshi and Luis Saucedo-Mora
Materials 2025, 18(13), 2972; https://doi.org/10.3390/ma18132972 - 23 Jun 2025
Viewed by 390
Abstract
Intricate structures with minimal weight and maximum stiffness are demanded in many practical engineering applications. Topology optimization is a method for designing these structures, and the rise of additive manufacturing technologies has opened the door to their production. In a recently published paper, [...] Read more.
Intricate structures with minimal weight and maximum stiffness are demanded in many practical engineering applications. Topology optimization is a method for designing these structures, and the rise of additive manufacturing technologies has opened the door to their production. In a recently published paper, a novel topology optimization algorithm, named the Updated Properties Model (UPM), was developed with the homogenization of strain level as an objective function and an updating Young modulus as the design variable. The UPM method optimizes mechanical structures without applying any constraints. However, including constraints such as volume, mass, and/or stress in topology optimization is prevalent. This paper uses the density-dependent Young modulus concept to incorporate the volume fraction in the UPM method. We address the critical problem of constraint-aware design without the complexity of constraint-handling formulations. We show the proposed methodology’s success and functionality by plotting the algorithm’s results in two- and three-dimensional benchmark structures. Key results present that adjusting algorithmic parameters can yield both binary (single-material) and graded-material solutions, offering flexibility for different applications. These findings suggest that the UPM can effectively replicate constraint-driven outcomes without explicitly enforcing constraints. The main novelty of this work lies in extending the constraint-free UPM framework to allow for controlled material distribution using a physically meaningful update rule. This extends the applicability of the UPM beyond previous efforts in the literature. We have also created a Julia package for our proposal. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

17 pages, 4159 KiB  
Article
Analysis of Regional Differences in Asphalt Binder Under All-Weather Aging Based on Rheological and Chemical Properties
by Meng Guo, Yixiang Dong, Xu Yin, Mingyang Guan, Meichen Liang, Xudong Wang and Xiuli Du
Materials 2025, 18(12), 2829; https://doi.org/10.3390/ma18122829 - 16 Jun 2025
Viewed by 359
Abstract
Asphalt binder aging under natural exposure critically determines pavement durability, though current research inadequately captured performance evolution across diverse regional climates. This study investigated climate-driven degradation mechanisms through 12-month all-weather aging (AWA) tests in Gansu, Shandong, and Beijing via rheological (G-R parameter, [...] Read more.
Asphalt binder aging under natural exposure critically determines pavement durability, though current research inadequately captured performance evolution across diverse regional climates. This study investigated climate-driven degradation mechanisms through 12-month all-weather aging (AWA) tests in Gansu, Shandong, and Beijing via rheological (G-R parameter, stiffness modulus S-value) and chemical analyses (carbonyl index IC=O, sulfoxide index IS=O). The results demonstrated significant region-dependent aging disparities beyond laboratory simulation. In Gansu, extreme thermal fluctuations and UV radiation accelerated hardening via thermal stress cycles and photo-oxidation, yielding 52.4% higher G-R parameter than PAV. In Shandong, humid saline environments triggered sulfur oxidation-driven electrochemical corrosion, increasing IS=O by 4.2% compared to PAV. In Beijing, synergistic UV–thermal oxidation elevated IC=O and S-value by 8% and 40.7%, respectively versus PAV. Critically, IC=O exhibited strong positive correlations with rheological degradation across regions (r > 0.90, p < 0.01). Based on IC=O, the 12-month all-weather aging rate in Beijing exceeded Gansu and Shandong by 18.5% and 68%, revealing UV–thermal coupling as the most severe degradation pattern. Novelty lies in quantifying region-specific multi-factor coupling effects (UV–thermal, hygrothermal–salt, etc.) and demonstrating their superior severity over PAV (Beijing > Gansu > Shandong). Dominant environmental factors showed distinct regional variations: UV radiation and temperature difference dominated in Gansu (IC=O, r = 0.76) and Beijing (0.74), while precipitation—IC=O correlation prevailed in Shandong (0.76), yet multi-factor coupling ultimately governed aging. These findings provide theoretical foundations for region-tailored and climate-resilient asphalt pavement design. Full article
Show Figures

Figure 1

Back to TopTop