Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (170)

Search Parameters:
Keywords = stormwater monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 942 KiB  
Review
The Role of Water as a Reservoir for Antibiotic-Resistant Bacteria
by Sameh Meradji, Nosiba S. Basher, Asma Sassi, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 763; https://doi.org/10.3390/antibiotics14080763 - 29 Jul 2025
Viewed by 380
Abstract
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, [...] Read more.
Water systems serve as multifaceted environmental pools for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs), influencing human, animal, and ecosystem health. This review synthesizes current understanding of how antibiotics, ARB, and ARGs enter surface, ground, and drinking waters via wastewater discharge, agricultural runoff, hospital effluents, and urban stormwater. We highlight key mechanisms of biofilm formation, horizontal gene transfer, and co-selection by chemical stressors that facilitate persistence and spread. Case studies illustrate widespread detection of clinically meaningful ARB (e.g., Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and mobile ARGs (e.g., sul1/2, tet, bla variants) in treated effluents, recycled water, and irrigation return flows. The interplay between treatment inefficiencies and environmental processes underscores the need for advanced treatment technologies, integrated monitoring, and policy interventions. Addressing these challenges is critical to curbing the environmental dissemination of resistance and protecting human and ecosystem health. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

22 pages, 1882 KiB  
Article
Assessing Pharmaceuticals in Bivalves and Microbial Sewage Contamination in Hout Bay, Cape Town: Identifying Impact Zones in Coastal and Riverine Environments
by Cecilia Y. Ojemaye, Amy Beukes, Justin Moser, Faith Gara, Jo Barnes, Lesley Petrik and Lesley Green
Environments 2025, 12(8), 257; https://doi.org/10.3390/environments12080257 - 28 Jul 2025
Viewed by 951
Abstract
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms [...] Read more.
This study investigates the implications of sewage contamination in the coastal and riverine environments of Hout Bay, Cape Town, South Africa. Chemical analyses were applied to quantify the presence of pollutants such as pharmaceutical and personal care products (PPCPs) in sentinel marine organisms such as mussels, as well as microbial indicators of faecal contamination in river water and seawater, for estimating the extent of impact zones in the coastal environment of Hout Bay. This research investigated the persistent pharmaceuticals found in marine outfall wastewater effluent samples in Hout Bay, examining whether these substances were also detectable in marine biota, specifically focusing on Mytilus galloprovincialis mussels. The findings reveal significant levels of sewage-related pollutants in the sampled environments, with concentrations ranging from 32.74 to 43.02 ng/g dry weight (dw) for acetaminophen, up to 384.96 ng/g for bezafibrate, and as high as 338.56 ng/g for triclosan. These results highlight persistent PPCP contamination in marine organisms, with increasing concentrations observed over time, suggesting a rise in population and pharmaceutical use. Additionally, microbial analysis revealed high levels of E. coli in the Hout Bay River, particularly near stormwater from the Imizamo Yethu settlement, with counts exceeding 8.3 million cfu/100 mL. These findings underscore the significant impact of untreated sewage on the environment. This study concludes that current sewage treatment is insufficient to mitigate pollution, urging the implementation of more effective wastewater management practices and long-term monitoring of pharmaceutical levels in marine biota to protect both the environment and public health. Full article
Show Figures

Figure 1

16 pages, 1889 KiB  
Article
Experimental Evaluation of the Sustainable Performance of Filtering Geotextiles in Green Roof Systems: Tensile Properties and Surface Morphology After Long-Term Use
by Olga Szlachetka, Joanna Witkowska-Dobrev, Anna Baryła and Marek Dohojda
Sustainability 2025, 17(14), 6242; https://doi.org/10.3390/su17146242 - 8 Jul 2025
Viewed by 318
Abstract
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system [...] Read more.
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system functionality. The filter layer, responsible for preventing clogging of the drainage layer with fine substrate particles, directly affects the hydrological performance and service life of green roofs. While most existing studies focus on the initial material properties, there is a clear gap in understanding how geotextile filters behave after prolonged exposure to real-world environmental conditions. This study addresses this gap by assessing the mechanical and structural integrity of geotextile filters after five years of use in both extensive and intensive green roof systems. By analyzing changes in surface morphology, microstructure, and porosity through tensile strength tests, digital imaging, and scanning electron microscopy, this research offers new insights into the long-term performance of geotextiles. Results showed significant retention of tensile strength, particularly in the machine direction (MD), and a 56% reduction in porosity, which may affect filtration efficiency. Although material degradation occurs, some geotextiles retain their structural integrity over time, highlighting their potential for long-term use in green infrastructure applications. This research emphasizes the importance of material selection, long-term monitoring, and standardized evaluation techniques to ensure the ecological and functional resilience of green roofs. Furthermore, the findings contribute to advancing knowledge on the durability and life-cycle performance of filter materials, promoting sustainability and longevity in urban green infrastructure. Full article
Show Figures

Figure 1

23 pages, 12120 KiB  
Article
Estimating Macroplastic Mass Transport from Urban Runoff in a Data-Scarce Watershed: A Case Study from Cordoba, Argentina
by María Fernanda Funes, Teresa María Reyna, Carlos Marcelo García, María Lábaque, Sebastián López, Ingrid Strusberg and Susana Vanoni
Sustainability 2025, 17(13), 6177; https://doi.org/10.3390/su17136177 - 5 Jul 2025
Viewed by 485
Abstract
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby [...] Read more.
Urban growth has intensified the generation of solid waste, particularly in densely populated and vulnerable neighborhoods, leading to environmental degradation and public health risks. This study presents a multidisciplinary methodology to estimate the mass of macroplastic litter mobilized from urban surfaces into nearby watercourses during storm events. Focusing on the Villa Páez neighborhood in Cordoba, Argentina—a data-scarce and flood-prone urban basin—the approach integrates socio-environmental surveys, field observations, Google Street View analysis, and hydrologic modeling using EPA SWMM 5.2. Macroplastic accumulation on streets was estimated based on observed waste density, and its transport under varying garbage collection intervals and rainfall intensities was simulated using a conceptual pollutant model. Results indicate that plastic mobilization increases substantially with storm intensity and accumulation duration, with the majority of macroplastic mass transported during high-return-period rainfall events. The study highlights the need for frequent waste collection, improved monitoring in vulnerable urban areas, and scenario-based modeling tools to support more effective waste and stormwater management. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

12 pages, 1675 KiB  
Project Report
Tree Infiltration Trenches in the City of Leipzig—Experiences from Four Years of Operation
by Lucie Moeller, Katy Bernhard, Sabine Kruckow, Sabine Wolf, Anett Georgi, Jan Friesen, Katrin Mackenzie and Roland A. Müller
Land 2025, 14(7), 1315; https://doi.org/10.3390/land14071315 - 20 Jun 2025
Viewed by 380
Abstract
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot [...] Read more.
Increasing climate change requires cities to adapt to changing weather conditions. New elements for decentralized stormwater management must be installed to protect the sewer system from overloading during heavy rainfall events and to keep water in the city for irrigation use. A pilot project was implemented in Leipzig in 2020, in which infiltration tree trench systems with three different designs were installed and equipped with measuring technology during a road renovation project. The catchment areas of these three tree trenches are between 215 and 300 m² each. In two of the systems, water retention was included to supply the tree with water during drought periods. The retention elements are sealed with clay in tree trench TT1 and bentonite in tree trench TT3. For tree trench TT2, no retention capacity was provided. This article presents the design, construction, and scientific monitoring of the three tree infiltration trenches. The conclusions after four years of operation from the perspective of two departments of the City of Leipzig are summarized. The tree trench TT1 with the clay pan for water storage shows the best performance in terms of water retention and tree fitness. For the next generation of such infiltration systems, improvements in the design of the street runoff inlets and the surface of the tree trench system’s interior are discussed. Full article
(This article belongs to the Special Issue Potential for Nature-Based Solutions in Urban Green Infrastructure)
Show Figures

Graphical abstract

18 pages, 3573 KiB  
Article
A Field-Scale Assessment of the Impact of Conventional and Permeable Concrete Pavements on Surface and Air Temperatures
by Lu-Ming Chen, Jui-Wen Chen, Timothy J. Lecher and Paul C. Davidson
Environments 2025, 12(6), 192; https://doi.org/10.3390/environments12060192 - 7 Jun 2025
Viewed by 712
Abstract
Environmental impacts, such as elevated temperatures due to urban heat islands (UHIs), associated with land cover change due to urbanization, should not be ignored. In contrast to conventional impermeable concrete, permeable pavements have been implemented as green infrastructure strategies for achieving environmental benefits, [...] Read more.
Environmental impacts, such as elevated temperatures due to urban heat islands (UHIs), associated with land cover change due to urbanization, should not be ignored. In contrast to conventional impermeable concrete, permeable pavements have been implemented as green infrastructure strategies for achieving environmental benefits, such as stormwater management. Their impacts and benefits on other environmental aspects should not be ignored, especially for those with limited discussion in the literature. Therefore, this study monitored the surface and air temperatures of three types of pavements: conventional impermeable concrete (IC), pervious concrete (PC), and the patented JW Eco-technology (JW). As UHIs are more intense in the summer, temperature profiles during targeted periods when surface temperatures exceeded 40 °C for consecutive days were examined. In addition, as an available option at the study site, shade was created to evaluate its effect on surface temperatures across the pavement systems. Overall, the annual average surface and air temperatures of the three pavements were similar. However, seasonal and diurnal variations in temperatures were both observed, suggesting summer was the season when the differences in temperatures among pavements were most noticeable. Investigation during the targeted periods revealed that the average surface temperatures of PC were 2.4–2.7 °C and 3.2–3.3 °C higher than those observed on IC and JW, and the average air temperature of PC was 1.8 °C greater than that of IC and JW between 12:00 and 16:00. On the contrary, the average surface temperatures of PC were significantly lower than those on IC (1.3–1.4 °C) and JW (1.5 °C) between 21:00 and 5:00. Results also indicate that shade was an effective way to alleviate the high surface temperatures during the warm hours by lowering surface temperatures 21.0 °C, 15.4 °C, and 15.0 °C, for PC, IC, and JW, respectively. Finally, temperatures associated with the aqueducts of JW Eco-technology and the impacts on overall surface temperatures will be discussed. Full article
Show Figures

Figure 1

20 pages, 3135 KiB  
Article
Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland
by Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2025, 12(6), 141; https://doi.org/10.3390/hydrology12060141 - 6 Jun 2025
Viewed by 1027
Abstract
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved [...] Read more.
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved urban resilience, sustainability, and community well-being. However, the implementation of NbS can be hindered by gaps in performance assessment. This paper introduces a physically based dynamic modeling approach to assess the performance of a nature-based storage facility designed to capture excess runoff from an urbanizing catchment (Armstrong Creek catchment) in Geelong, Australia. The study adopts a numerical modelling approach, supported by extensive field monitoring of water levels over a 2.5-year period. The model provides a decision support tool for Geelong local government in managing stormwater runoff to protect Lake Connewarre, a Ramsar-listed wetland under the Port Phillip Bay (Western Shoreline) and Bellarine Peninsula. Runoff is currently managed via a set of operating rules governing gate operations that prevents flows into the ecological sensitive downstream waterbody from December to April (drier periods in summer and most of autumn). Comparison with observed water level data at three monitoring stations for a continuous simulation period of May 2022 to October 2024 demonstrates satisfactory to excellent model performance (NSE: 0.55–0.79, R2: 0.80–0.89, ISE rating: excellent). Between 1670 × 103 m3 and 2770 × 103 m3 of runoff was intercepted by the nature-based storage facility, representing a 56–70% reduction in stormwater discharge into Lake Connewarre. Our model development underscores the importance of understanding and incorporating user interventions (gate operations and emergency pumping) from the standard operation plan to better manage catchment runoff. As revealed by the seasonal flow analysis for consecutive years, adaptive runoff management practices, capable of responding to rainfall variability, should be incorporated. Full article
Show Figures

Figure 1

27 pages, 1827 KiB  
Review
Stormwater Pollution of Non-Urban Areas—A Review
by Antonia Potreck and Jens Tränckner
Water 2025, 17(11), 1704; https://doi.org/10.3390/w17111704 - 4 Jun 2025
Viewed by 553
Abstract
Stormwater runoff from areas with specific industrial, agricultural or logistic land use comprises a significant source of water pollution, yet research on its specific composition remains limited compared to urban stormwater pollution. This review synthesizes findings from different studies to analyze sampling methods, [...] Read more.
Stormwater runoff from areas with specific industrial, agricultural or logistic land use comprises a significant source of water pollution, yet research on its specific composition remains limited compared to urban stormwater pollution. This review synthesizes findings from different studies to analyze sampling methods, types of pollution parameters and their associated concentration ranges across various non-urban land use types, including industrial and commercial zones, transportation infrastructure (ports, airports, highways, railways) and agricultural areas. Studies differed in sample strategy, investigated phase (water, sediment) and analyzed chemical parameters. The latter can be grouped into sum parameters (e.g., total suspended solids (TSS), chemical oxygen demand (COD)), metals (e.g., nickel, copper, zinc, lead), nutrients (e.g., nitrogen, phosphorus), organic micropollutants (e.g., polycyclic aromatic hydrocarbons (PAH), perfluoroalkyl acids (PFAA)) and microbial contaminants. Results indicate that pollutant loads vary widely depending on land use, with industrial and railway areas showing the highest metal contamination, while agricultural and livestock farming areas exhibit elevated nutrient and microbial concentrations. The heterogeneity of the sampling, analysis and subsequent data processing hindered the statistical condensation of data from different studies. The findings underscore the need for standardized monitoring methods and tailored stormwater treatment strategies to mitigate pollution impact effectively. Full article
(This article belongs to the Special Issue Advances in Sustainable Management of Contaminated Stormwater)
Show Figures

Figure 1

20 pages, 7282 KiB  
Article
Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA
by Neal D. Mundahl and John Howard
Hydrology 2025, 12(4), 76; https://doi.org/10.3390/hydrology12040076 - 28 Mar 2025
Cited by 1 | Viewed by 717
Abstract
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and [...] Read more.
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and rainfall events flowing into an urban Minnesota, USA, lake during two different years, predicting that specific stormwater drainages with greater concentrations of roadways and parking lots would produce higher chloride loads during runoff than other drainages with fewer impervious surfaces. Chloride levels were measured in runoff draining into Lake Winona via 11 stormwater outfalls, a single channelized creek inlet, and two in-lake locations during each snowmelt or rainfall event from mid-February through early April in 2021 and 2023. In total, 33% of outfall runoff samples entering the lake collected over two years had chloride concentrations exceeding the 230 ppm chronic standard for aquatic life in USA surface waters, but no sample exceeded the 860 ppm acute standard. Chloride concentrations in outfall runoff (mean ± SD; 190 ± 191 ppm, n = 143) were significantly higher than in-lake concentrations (43 ± 14 ppm, n = 25), but chloride levels did not differ significantly between snowmelt and rainfall runoff events. Runoff from highway locations had higher chloride concentrations than runoff from residential areas. Site-specific chloride levels were highly variable both within and between years, with only a single monitored outfall displaying high chloride levels in both years. There are several possible avenues available within the city to reduce deicer use, capture and treat salt-laden runoff, and prevent or reduce the delivery of chlorides to the lake. Full article
Show Figures

Figure 1

3 pages, 146 KiB  
Opinion
Challenges and Opportunities for Urban Water That Is Fit to Play in
by David Werner
Hydrology 2025, 12(4), 75; https://doi.org/10.3390/hydrology12040075 - 28 Mar 2025
Viewed by 589
Abstract
As cities in Europe and beyond recognize the flood protection, recreational, and biodiversity benefits of blue-green spaces, human interaction with urban water is increasing. This trend raises public health concerns that must be addressed by the scientific community, regulators, and the water industry. [...] Read more.
As cities in Europe and beyond recognize the flood protection, recreational, and biodiversity benefits of blue-green spaces, human interaction with urban water is increasing. This trend raises public health concerns that must be addressed by the scientific community, regulators, and the water industry. Advances in measurement and modelling have made continuous city-scale water quality monitoring for real-time risk communication a realistic goal. Achieving this goal requires quality-assured data on hydrology, water quality, drainage infrastructure, and land use, along with robust mechanistic models and a deeper understanding of human behaviour. Full article
25 pages, 5384 KiB  
Article
Three Complementary Sampling Approaches Provide Comprehensive Characterization of Pesticide Contamination in Urban Stormwater
by Gab Izma, Melanie Raby, Justin B. Renaud, Mark Sumarah, Paul Helm, Daniel McIsaac, Ryan Prosser and Rebecca Rooney
Urban Sci. 2025, 9(2), 43; https://doi.org/10.3390/urbansci9020043 - 12 Feb 2025
Cited by 2 | Viewed by 942
Abstract
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types [...] Read more.
Urban areas are expanding rapidly and experience diverse and complex contamination of their surface waters. Addressing these issues requires different tools to describe exposures and predict toxicological risk to exposed biota. We surveyed 21 stormwater management ponds in Brampton, Ontario using three types of sampling methods deployed concurrently: time-integrated water sampling, biofilms cultured on artificial substrates, and organic-diffusive gradients in thin films (o-DGT) passive samplers. Our objective was to compare pesticide occurrences and concentrations to inform monitoring in stormwater ponds, which reflect pesticide pollution in urban areas. We detected 82 pesticides across the three sampling matrices, with most detections occurring in o-DGT samplers. The in situ accumulation of pesticides in o-DGTs during deployment and the high analytical sensitivity achieved establishes o-DGTs as excellent tools for capturing the mixtures of pesticides present. Water and biofilm sampling demonstrated that pesticide concentrations available for uptake are relatively low, with most below toxicological thresholds. Yet our results demonstrate that urban areas are subject to a wide range of pesticides, including herbicides, insecticides, and fungicides, and underscores the urgency of research to quantify the risks of chronic exposure to this chemical mixture. Full article
Show Figures

Figure 1

24 pages, 1967 KiB  
Review
Research Status and Trends of Hydrodynamic Separation (HDS) for Stormwater Pollution Control: A Review
by Yah Loo Wong, Yixiao Chen, Anurita Selvarajoo, Chung Lim Law and Fang Yenn Teo
Water 2025, 17(4), 498; https://doi.org/10.3390/w17040498 - 10 Feb 2025
Viewed by 1382
Abstract
Growing urbanization has increased impermeable surfaces, raising and polluting stormwater runoff, and exacerbating the risk of urban flooding. Effective stormwater management is essential to curb sedimentation, minimize pollution, and mitigate urban flooding. This systematic literature review from the Web of Science and Scopus [...] Read more.
Growing urbanization has increased impermeable surfaces, raising and polluting stormwater runoff, and exacerbating the risk of urban flooding. Effective stormwater management is essential to curb sedimentation, minimize pollution, and mitigate urban flooding. This systematic literature review from the Web of Science and Scopus between January 2000 and June 2024 presents hydrodynamic separation (HDS) technologies. It sheds light on the significant issues that urban water management faces. HDS is classified into four categories: screening, filtration, settling, and flotation, based on the treatment mechanisms. The results show a shift from traditional standalone physical separations to multi-stage hybrid treatment processes with nature-based solutions. The great advantage of these approaches is that they combine different separation mechanisms and integrate ecological sustainability to manage urban stormwater better. The findings showed that future research will examine hybrid AI-assisted separation technologies, biochar-enhanced filtration, and green infrastructure systems. When adopting an integrated approach, the treatment system will perform like natural processes to remove pollutants effectively with better monitoring and controls. These technologies are intended to fill existing research voids, especially in removing biological contaminants and new pollutants (e.g., microplastics and pharmaceutical substances). In the long term, these technologies will help to enforce Sustainable Development Goals (SDGs) and orient urban areas in developing countries towards meeting the circular economy objective. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

18 pages, 2079 KiB  
Article
Surveying Community Environmental Justice: Urban Runoff Patterns in Eastern Tijuana, México
by Carolina Prado, Guillermo Douglass-Jaimes and Colectivo Salud y Justicia Ambiental
Soc. Sci. 2025, 14(2), 63; https://doi.org/10.3390/socsci14020063 - 26 Jan 2025
Cited by 1 | Viewed by 1420
Abstract
In an urban region of eastern Tijuana, there are long-standing water runoff sites which community members have identified as having an impact on residents, including contributing to flooding. This community-based participatory research (CBPR) project in collaboration with the Colectivo Salud y Justicia Ambiental [...] Read more.
In an urban region of eastern Tijuana, there are long-standing water runoff sites which community members have identified as having an impact on residents, including contributing to flooding. This community-based participatory research (CBPR) project in collaboration with the Colectivo Salud y Justicia Ambiental (CSJA) used the geospatial surveying tool Survey 123 to conduct community-based monitoring of five runoff sites. Results from 170 completed surveys showed that water runoff was present at these sites on forty-five percent of the days surveyed, although there was no significant relationship between the temporal factors studied and the water quality characteristics surveyed. These findings contribute to the field of border environmental justice by focusing on the understudied issues of runoff and urban flooding as environmental exposures that some communities experience disproportionately. Moreover, while there was a significant relationship between water runoff volume and precipitation events at the water runoff sites, there were sixty-five surveys collected that showed water present when there had been no precipitation event at the site. This finding supports the CSJA members’ assertions that the runoff experienced in the study area is not always connected to precipitation events or pluvial flooding. This project’s results contribute to policy advocacy by countering the policy narrative that this issue is simply a stormwater issue, and by identifying the specific runoff sites to be prioritized in this region. Full article
(This article belongs to the Special Issue Community-Engaged Research for Environmental Justice)
Show Figures

Figure 1

15 pages, 1243 KiB  
Article
Can Reuse of Stormwater Detention Pond Water Meet Community Urban Agriculture Needs?
by Estenia Ortiz, Adriana Mayr Mejia, Emma Borely, Liam Schauer, Lena Young Green and Maya Trotz
Sustainability 2025, 17(2), 523; https://doi.org/10.3390/su17020523 - 11 Jan 2025
Viewed by 1468
Abstract
Urbanization and population growth in coastal communities increase demands on local food and water sectors. Due to this, urban communities are reimagining stormwater pond infrastructure, asking whether the stormwater can be used to irrigate food and grow fish for local consumption. Studies exploring [...] Read more.
Urbanization and population growth in coastal communities increase demands on local food and water sectors. Due to this, urban communities are reimagining stormwater pond infrastructure, asking whether the stormwater can be used to irrigate food and grow fish for local consumption. Studies exploring this feasibility are limited in the literature. Driven by a community’s desire to co-locate community gardens with stormwater pond spaces, this research monitored the water quality of a 23.4-hectare stormwater pond located in East Tampa, Florida over one year using the grab sample technique and compared the results with U.S. Environmental Protection Agency (EPA) reuse recommendations, EPA national recommended water quality criteria for aquatic life, and human health. pH and conductivity levels were acceptable for irrigating crops. Heavy metal (arsenic, cadmium, copper, lead, and zinc) concentrations were below the maximum recommended reuse levels (100, 10, 200, 5000 and 2000 µg/L, respectively), while zinc and lead were above the criteria for aquatic life (120 and 2.5 µg/L, respectively). E. coli concentrations ranged from 310 to greater than 200,000 MPN/100 mL, above the 0 CFU/100 mL irrigation requirements for raw food consumption and 200 CFU/100 mL requirements for commercial food processing. Synthetic organic compounds also exceeded criteria for human health. Full article
Show Figures

Figure 1

17 pages, 2848 KiB  
Article
Monitoring Coastal Water Turbidity Using Sentinel2—A Case Study in Los Angeles
by Yuwei Kong, Karina Jimenez, Christine M. Lee, Sophia Winter, Jasmine Summers-Evans, Albert Cao, Massimiliano Menczer, Rachel Han, Cade Mills, Savannah McCarthy, Kierstin Blatzheim and Jennifer A. Jay
Remote Sens. 2025, 17(2), 201; https://doi.org/10.3390/rs17020201 - 8 Jan 2025
Cited by 1 | Viewed by 2368
Abstract
Los Angeles coastal waters are an ecologically important marine habitat and a famed recreational area for tourists. Constant surveillance is essential to ensure compliance with established health standards and to address the persistent water quality challenges in the region. Remotely sensed datasets are [...] Read more.
Los Angeles coastal waters are an ecologically important marine habitat and a famed recreational area for tourists. Constant surveillance is essential to ensure compliance with established health standards and to address the persistent water quality challenges in the region. Remotely sensed datasets are increasingly being applied toward improved detection of water quality by augmenting monitoring programs with spatially intensive and accessible data. This study evaluates the potential of satellite remote sensing to augment traditional monitoring by analyzing the relationship between in situ and satellite-derived turbidity data. Field measurements were performed from July 2021 to March 2024 to build synchronous matchup datasets consisting of satellite and field data. Correlation analysis indicated a positive relationship between satellite-derived and field-measured turbidity (R2 = 0.451). Machine learning models were assessed for predictive accuracy, with the random forest model achieving the highest performance (R2 = 0.632), indicating its robustness in modeling complex turbidity patterns. Seasonal trends revealed higher turbidity during wet months, likely due to stormwater runoff from the Ballona Creek watershed. Despite limitations from cloud cover and spatial resolution, the findings suggest that integrating satellite data with machine learning can enhance large-scale, efficient turbidity monitoring in coastal waters. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop