Can Reuse of Stormwater Detention Pond Water Meet Community Urban Agriculture Needs?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Procedure
2.3. Analytical Procedures
2.3.1. Heavy Metals Analysis
2.3.2. Nutrient Analysis
2.3.3. Microbial Water Quality Analysis
2.3.4. Synthetic Organic Compounds Analysis
3. Results and Discussion
3.1. Physicochemical Parameters
3.2. Heavy Metals
3.3. Nutrients: Nitrogen and Phosphorus
3.4. Synthetic Organic Compounds
3.5. Microbial Quality
4. Conclusions
5. Recommendations and Future Actions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dieter, C.A.; Maupin, M.A.; Caldwell, R.R.; Harris, M.A.; Ivahnenko, T.I.; Lovelace, J.K.; Barber, N.L.; Linsey, K.S. Estimated Use of the Water in the United States in 2015; U.S. Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Southwest Florida Water Management District 2022 Estimated Water Use Report. Available online: https://www.swfwmd.state.fl.us/sites/default/files/medias/documents/2022%20EWU%20Report.pdf (accessed on 1 November 2024).
- Langemeyer, J.; Madrid-Lopez, C.; Mendoza Beltran, A.; Villalba Mendez, G. Urban Agriculture—A Necessary Pathway Towards Urban Resilience and Global Sustainability? Landsc. Urban Plan. 2021, 210, 104055. [Google Scholar] [CrossRef]
- Capnerhurst, H.; Quigley, H.; Hawes, J.K. Sustainable Agriculture Impacts in Urban Settings Make the Case for Federal Investments. J. Agric. Food Syst. Community Dev. 2024, 14, 1–13. [Google Scholar] [CrossRef]
- Artmann, M.; Sartison, K. The Role of Urban Agriculture as a Nature-based Solution: A Review for Developing a Systemic Assessment Framework. Sustainability 2018, 10, 1937. [Google Scholar] [CrossRef]
- What Percentage of the American Population Lives Near the Coast? Available online: https://oceanservice.noaa.gov/facts/population.html (accessed on 1 November 2024).
- Beckingham, B.; Callahan, T.; Vulava, V. Stormwater Ponds in the Southeastern U.S. Coastal Plain: Hydrogeology, Contaminant Fate, and the Need for a Social-ecological Framework. Front. Environ. Sci. 2019, 7, 117. [Google Scholar] [CrossRef]
- Deksissa, T.; Trobman, H.; Zendehdel, K.; Azam, H. Integrating Urban Agriculture and Stormwater Management in a Circular Economy to Enhance Ecosystem Services: Connecting the Dots. Sustainability 2021, 13, 8293. [Google Scholar] [CrossRef]
- Alberti, M.A.; Blanco, I.; Vox, G.; Scarascia-Mugnozza, G.; Schettini, E.; Pimentel da Silva, L. The Challenge of Urban Food Production and Sustainable Water Use: Current Situation and Future Perspectives of the Urban Agriculture in Brazil and Italy. Sustain. Cities Soc. 2022, 83, 103961. [Google Scholar] [CrossRef]
- Cooper, C.M.; Troutman, J.P.; Awal, R.; Habibi, H.; Fares, A. Climate Change-induced Variations in Blue and Green Water Usage in U.S. Urban Agriculture. J. Clean. Prod. 2022, 348, 131326. [Google Scholar] [CrossRef]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Bradley, P.M.; Arnall, B.B.; Forshay, K.J.; Gray, J.L.; Groves, J.F.; Hladik, M.L.; Hubbard, L.E.; et al. Contaminant Exposure and Transport from Three Potential Reuse Waters with a Single Watershed. Environ. Sci. Technol. 2023, 57, 1353–1365. [Google Scholar] [CrossRef]
- Florida Department of Environmental Protection. Florida’s Reuse Activities. Available online: https://floridadep.gov/water/domestic-wastewater/content/floridas-reuse-activities (accessed on 12 November 2024).
- Southwest Florida Water Management District Reclaimed Water, a Reliable, Safe Alternative Water Supply. Available online: https://www.swfwmd.state.fl.us/sites/default/files/medias/documents/reclaimed_water_lev2_08.09.pdf (accessed on 1 November 2024).
- Here’s a Look at Tampa Bay’s Reclaimed Water, and the Future of Reuse. Available online: https://www.tampabay.com/news/environment/2024/03/28/reclaimed-water-definition-pinellas-hillsborough-pasco-direct-potable-reuse/ (accessed on 1 November 2024).
- Feng, W.; Liu, Y.; Gao, L. Stormwater Treatment for Reuse: Current Practice and Future Development—A Review. J. Environ. Manag. 2022, 301, 113830. [Google Scholar] [CrossRef] [PubMed]
- Valencia, A.; Zhang, W.; Gu, L.; Chang, N.B.; Wanielista, M.P. Synergies of Green Building Retrofit Strategies for Improving Sustainability and Resilience via a Building-scale Food-Energy-Water Nexus. Resour. Conserv. Recycl. 2022, 176, 105939. [Google Scholar] [CrossRef]
- Hatt, B. Irrigating Food Crops with Stormwater. Available online: https://www.clearwatervic.com.au/user-data/resource-files/irrigating-food-crops-with-stormwater_report_final.pdf (accessed on 12 November 2024).
- Florida Department of Environmental Protection. Stormwater Quality Applicant’s Handbook. Available online: https://www.fdot.gov/docs/default-source/roadway/drainage/files/StormwaterQualityAppHB-DRAFT.pdf (accessed on 12 November 2024).
- Devo Engineering. The Stormwater Harvesting BMP—An Overview & Its Enhanced Importance in the Forthcoming Statewide Stormwater Treatment Rule. Available online: https://www.devoeng.com/workshops/OCU_Dec-10-09/OCU_Dec-10-09.pdf (accessed on 12 November 2024).
- Kannan, N.; Jeong, J.; Arnold, J.; Gosselink, L.; Glick, R.; Srinivasan, R. Hydrologic Modeling of a Retention Irrigation System. J. Hydrol. Eng. 2014, 19, 1036–1041. [Google Scholar] [CrossRef]
- Orange County Environmental Protection Division. 2019 FSA Awards Program Submittal Form-Lake Lawne Stormwater Reuse Facility. Available online: https://www.florida-stormwater.org/assets/MemberServices/AwardsProgram/2019/OA%20-%20Orange%20County.pdf (accessed on 12 November 2024).
- St. Johns River Water Management District. Stormwater Harvesting. Available online: https://www.sjrwmd.com/data/stormwater-harvesting/#willows (accessed on 12 November 2024).
- FDEP. CCUA Stormwater Harvesting Project—Florida GSI. Available online: https://gsi.floridadep.gov/ccua-stormwater-harvesting-project/ (accessed on 12 November 2024).
- Oakley, S.M. Integrated Wastewater Management for Health and Valorization: A Design Manual for Resource Challenged Cities; IWA Publishing: Dorset, UK, 2022. [Google Scholar]
- Hess, K.M.; Sinclair, J.S.; Reisinger, A.J.; Bean, E.Z.; Iannone, B.V., III. Are Stormwater Detention Ponds Protecting Urban Aquatic Ecosystems? A Case Study Using Depressional Wetlands. Urban Ecosyst. 2022, 25, 1155–1168. [Google Scholar] [CrossRef]
- Lehigh, G.R.; Wells, E.C.; Diaz, D. Evidence-Informed Strategies for Promoting Equitability in Brownfields Redevelopment. J. Environ. Manag. 2020, 261, 110150. [Google Scholar] [CrossRef]
- Adams, L.W.; Dove, L.E.; Leedy, D.L. Public Attitudes Toward Urban Wetlands for Stormwater Control and Wildlife Enhancement. Wildl. Soc. Bull. 1987, 15, 372–380. [Google Scholar]
- Campbell, K.R. Concentrations of Heavy Metals Associated with Urban Runoff in Fish Living in Stormwater Treatment Ponds. Arch. Environ. Contam. Toxicol. 1994, 27, 352–356. [Google Scholar] [CrossRef]
- Brown, A.S.; Yun, X.; McKenzie, E.R.; Heron, C.G.; Field, J.A.; Salice, C.J. Spatial and Temporal Variability of Per- and Polyfluoroalkyl substances (PFAS) in Environmental Media of a Small Pond: Toward an Improved Understanding of PFAS Bioaccumulation in Fish. Sci. Total Environ. 2023, 880, 163149. [Google Scholar] [CrossRef] [PubMed]
- U.S. Census. Available online: https://data.census.gov/profile?q=Tampa,%20Florida (accessed on 1 November 2024).
- Garcia, L.; Anastasiou, C.; Robinson, D. Tampa Bay Surface Water Improvement and Management (SWIM) Plan Update. Available online: https://www.swfwmd.state.fl.us/sites/default/files/medias/documents/tampa_bay_swim_plan_finalforgb_10242023_0.pdf (accessed on 4 January 2025).
- SWFWMD. Rainfall Cycle. Available online: https://www.swfwmd.state.fl.us/about/newsroom/rainfall-cycle#:~:text=The%20rainy%20season%20typically%20results,around%203%20inches%20per%20month (accessed on 4 January 2025).
- UF/IFAS. General Soils Map of Florida. Available online: https://soils.ifas.ufl.edu/extension/soil-and-water-resources/general-soils-map-of-florida/ (accessed on 4 January 2025).
- Rice, E.W.; Baird, R.B.; Eaton, A.D. Standard Methods for the Examination of Water & Wastewater, 23rd ed.; American Water Works Association: Washington, DC, USA, 2017; pp. 410–412. [Google Scholar]
- DEP SOPs. Available online: https://floridadep.gov/dear/quality-assurance/content/dep-sops (accessed on 1 November 2024).
- Florida LAKEWATCH. Available online: https://lakewatch.ifas.ufl.edu/for-volunteers/ (accessed on 1 November 2024).
- City of Tampa. Preliminary Report Phase II 29th Street Outfall Drainage System. Available online: https://www.tampa.gov/sites/default/files/content/files/migrated/Prelim_Rpt_PH2_29th_13300601.pdf (accessed on 4 January 2025).
- EPA Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry. Available online: https://www.epa.gov/esam/epa-method-2008-determination-trace-elements-waters-and-wastes-inductively-coupled-plasma-mass (accessed on 1 November 2024).
- Wilschefski, S.C.; Baxter, M.R. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Masoner, J.R.; Kolpin, D.W.; Cozzarelli, I.M.; Barber, L.B.; Burden, D.S.; Foreman, W.T.; Forshay, K.J.; Furlong, E.T.; Groves, J.F.; Hladik, M.L.; et al. Urban Stormwater: An Overlooked Pathway of Extensive Mixed Contaminants to Surface and Groundwaters in the United States. Environ. Sci. Technol. 2019, 53, 10070–10081. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Method 8270E (SW-846): Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Available online: https://www.epa.gov/esam/epa-method-8270e-sw-846-semivolatile-organic-compounds-gas-chromatographymass-spectrometry-gc (accessed on 19 November 2024).
- U.S. EPA. Method 8260D (SW-846): Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Available online: https://www.epa.gov/esam/epa-method-8260d-sw-846-volatile-organic-compounds-gas-chromatography-mass-spectrometry-gcms (accessed on 19 November 2024).
- U.S. EPA. Guidelines for Water Reuse. Available online: https://www.epa.gov/sites/default/files/2019-08/documents/2012-guidelines-water-reuse.pdf (accessed on 12 November 2024).
- Lusk, M.G.; Chapman, K. Chemical Fractionation of Sediment Phosphorus in Residential Urban Stormwater Ponds in Florida, USA. Urban Sci. 2021, 5, 81. [Google Scholar] [CrossRef]
- Rushton, B.; Huneycutt, D.; Teague, K. Characterization of Three Stormwater Ponds; Southwest Florida Water Management District: Brooksville, FL, USA, 2004. [Google Scholar]
- U.S. EPA. Conductivity. Available online: https://archive.epa.gov/water/archive/web/html/vms59.html#:~:text=Studies%20of%20inland%20fresh%20waters,high%20as%2010%2C000%20µmhos%2Fcm (accessed on 4 January 2025).
- National Recommended Water Quality Criteria—Aquatic Life Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 1 November 2024).
- Conrad, S.R.; Santos, I.R.; White, S.A.; Hessey, S.; Sanders, C.J. Elevated dissolved heavy metal discharge following rainfall downstream of intensive horticulture. Appl. Geochem. 2020, 113, 104490. [Google Scholar] [CrossRef]
- Stoker, Y.E. Effectiveness of a Stormwater Collection and Detention System for Reducing Constituent Loads from Bridge Runoff in Pinellas County, Florida. Available online: https://pubs.usgs.gov/of/1996/0484/report.pdf (accessed on 4 January 2025).
- Lusk, M.G.; Chapman, K. Copper Concentration Data for Water, Sediments, and Vegetation of Urban Stormwater Ponds Treated with Copper Sulfate Algaecide. Data Brief 2020, 31, 105982. [Google Scholar] [CrossRef]
- Karlsson, F. Urban Stormwater Ponds: Evaluation of Heavy Metals and Organic Pollutants in Stormwater and Stormwater Sediments. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2021; 48p. [Google Scholar]
- Maiga, Y.; Tidiane Compaore, C.O.; Diallo/Kone, M.; Kossi Sossou, S.; YempalaSome, H.; Sawadogo, M.; Nagalo, I.; Mihelcic, J.R.; Sidiki Ouattara, A. Development of a Constructed Wetland for Greywater Treatment for Reuse in Arid Regions: Case Study in Rural Burkina Faso. Water 2024, 16, 1927. [Google Scholar] [CrossRef]
- Shober, A.L.; Reisinger, A.J. Soils and Fertilizers for Master Gardeners: The Florida Gardener’s Guide to Landscape Fertilizers. Available online: https://edis.ifas.ufl.edu/publication/MG448 (accessed on 19 November 2024).
- National Recommended Water Quality Criteria—Human Health Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table (accessed on 21 November 2024).
- Wright, J.D.; Hunt, W.F.; Burchell, M.R.; Perrin, C.A.; McCoy, E.R. Implementation and Performance of Stormwater Best Management Practices Retrofits in Wilmington, NC. In World Environmental and Water Resources Congress 2009; ASCE: Reston, VA, USA, 2009; Volume 342, pp. 5293–5530. [Google Scholar]
- Garrett, C.L. Priority Substances of Interest in the Georgia Basin: Profiles and Background Information on Current Toxics Issues: Report of the Canadian Toxics Work Group; Environment Canada: Vancouver, BC, Canada, 2004. [Google Scholar]
- DeLorenzo, M.E.; Thompson, B.; Cooper, E.; Moore, J.; Fulton, M.H. A Long-term Monitoring Study of Chlorophyll, Microbial Contaminants, and Pesticides in a Coastal Residential Stormwater Pond and its Adjacent Tidal Creek. Environ. Monit. Assess. 2011, 184, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.; Hargiss, C.L.M.; Norland, J. Escherichia coli Levels and Microbial Source Tracking in Stormwater Retention Ponds and Detention Basins. Water Environ. Res. 2021, 94, e1675. [Google Scholar] [CrossRef] [PubMed]
- Verbyla, M.E.; Symonds, E.M.; Kafle, R.C.; Cairns, M.R.; Iriarte, M.; Mercado Guzman, A.; Coronado, O.; Breitbart, M.; Ledo, C.; Mihelcic, J.R. Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing Watersheds. Environ. Sci. Technol. 2016, 50, 6803–6813. [Google Scholar] [CrossRef] [PubMed]
Date | Total Rainfall for the Month (in) |
---|---|
July 2023 | 3.88 |
August 2023 | 7.81 |
October 2023 | 1.28 |
November 2023 | 1.76 |
December 2023 | 5.78 |
January 2024 | 4.39 |
March 2024 | 4.35 |
April 2024 | 3.47 |
May 2024 | 1.43 |
June 2024 | 20.23 |
July 2024 | 18.1 |
August 2024 | 17.55 |
Parameter | Range | Average | Restriction on Irrigation [43] | National Recommended Aquatic Life Criteria—Freshwater Chronic |
---|---|---|---|---|
pH [-] | 6.58–8.79 | 7.28 ± 0.48 | Normal range 6.5–8.4 | 6.5–9 |
Conductivity (µS/cm) | 133.1–1027.0 | 384.4 ± 225.0 | <700 | - |
DO (mg/L) | 0.27–9.1 | 2.54 ± 1.95 | - | - |
Temperature (°C) | 12.7–23.7 | 22.1 ± 5.9 | - | Criteria are species dependent |
Constituent | Total Heavy Metals Range (µg/L) | Total Heavy Metals Average (µg/L) | Dissolved Heavy Metals Concentration Range (µg/L) | Dissolved Heavy Metals Average (µg/L) | Maximum Concentration for Irrigation (µg/L) [43] | National Recommended Aquatic Life Criteria for Freshwater Chronic Effects (µg/L) [47] |
---|---|---|---|---|---|---|
Arsenic | 0.07–2.16 | 1.19 ± 0.57 | 0.5–2.63 | 1.35 ± 0.55 | 100 | 150 |
Cadmium | 0.006–0.81 | 0.11 ± 0.18 | 0.002–0.31 | 0.045 ± 0.08 | 10 | 1.8 (acute) |
Copper | 1.75–50.1 | 6.67 ± 8.74 | 0.44–6.4 | 1.78 ± 1.55 | 200 | - |
Lead | 0.34–44.2 | 6.27 ± 10.8 | 0.16–6.19 | 0.99 ± 1.60 | 5000 | 2.5 |
Mercury | 0.03–0.23 | 0.09 ± 0.06 | 0.005 ± 0.096 | 0.028 ± 0.025 | - | 0.77 |
Zinc | 4.88–382.7 | 43.6 ± 73.9 | 0.45–89.4 | 15.1 ± 29.1 | 2000 | 120 |
Constituent | Range (mg/L) | Average (mg/L) |
---|---|---|
NOX-N | BDL–0.64 | 0.14 ± 0.17 |
Total Ammonia Nitrogen | BDL–1.29 | 0.23 ± 0.32 |
Total Phosphorus as P | 0.04–0.29 | 0.13 ± 0.06 |
Orthophosphate as P | 0.01–0.19 | 0.09 ± 0.05 |
Synthetic Organic Compound | Maximum Concentration Detected in Samples (µg/L) | Human Health for the Consumption of Organism Only (µg/L) |
---|---|---|
Benzo[a]anthracene | 1.0 | 0.0013 |
Benzo[a]pyrene | 2.1 | 0.00013 |
Benzo[b]fluoranthene | 3.6 | 0.0013 |
Benzo[k]fluoranthene | 0.033 | 0.013 |
Chrysene | 2.2 | 0.13 |
Dibenzo[a,h]anthracene | 0.12 | 0.00013 |
Fluoranthene | 2.7 | 20 |
Indeno(1,2,3-cd)pyrene | 2.1 | 0.0013 |
Pyrene | 2.5 | 30 |
Date | Total Coliforms (MPN/100 mL) | E. coli (MPN/100 mL) | ||||
---|---|---|---|---|---|---|
S1 | S2 | S3 | S1 | S2 | S3 | |
December 2023 | 18,900 ± 2040 | 20,050 ± 0.00 | >20,050 | 3390 ± 577 | 1200 ± 193 | 310 ± 110 |
January 2024 | 16,700 ± 6950 | 64,100 ± 16,500 | 35,700 ± 2310 | 2430 ± 2480 | <1000 | 1000 ± 0.00 |
April 2024 | 10,400 ± 3130 | 17,100 ± 6240 | 16,900 ± 3930 | <1000 | 1000 | <1000 |
May 2024 | 21,300 ± 3840 | 6470 ± 3020 | 16,900 ± 3530 | <1000 | 2050 ± 1490 | <1000 |
June 2024 | >200,500 | 117,000 ± 14,300 | 165,000 ± 41,200 | 3470 ± 2540 | 3470 ± 635 | 2030 ± 1050 |
July 2024 | 163,000 ± 32,300 | 22,600 ± 7280 | 130,000 ± 24,900 | 5300 ± 2200 | <1000 | 2400 ± 1640 |
August 2024 | 63,200 ± 17,500 | 50,200 ± 10,600 | 34,400 ± 19,800 | 2400 ± 1640 | 1700 ± 1210 | 1000 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, E.; Mayr Mejia, A.; Borely, E.; Schauer, L.; Young Green, L.; Trotz, M. Can Reuse of Stormwater Detention Pond Water Meet Community Urban Agriculture Needs? Sustainability 2025, 17, 523. https://doi.org/10.3390/su17020523
Ortiz E, Mayr Mejia A, Borely E, Schauer L, Young Green L, Trotz M. Can Reuse of Stormwater Detention Pond Water Meet Community Urban Agriculture Needs? Sustainability. 2025; 17(2):523. https://doi.org/10.3390/su17020523
Chicago/Turabian StyleOrtiz, Estenia, Adriana Mayr Mejia, Emma Borely, Liam Schauer, Lena Young Green, and Maya Trotz. 2025. "Can Reuse of Stormwater Detention Pond Water Meet Community Urban Agriculture Needs?" Sustainability 17, no. 2: 523. https://doi.org/10.3390/su17020523
APA StyleOrtiz, E., Mayr Mejia, A., Borely, E., Schauer, L., Young Green, L., & Trotz, M. (2025). Can Reuse of Stormwater Detention Pond Water Meet Community Urban Agriculture Needs? Sustainability, 17(2), 523. https://doi.org/10.3390/su17020523