Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = storm surge barriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 41871 KiB  
Article
Episodic vs. Sea Level Rise Coastal Flooding Scenarios at the Urban Scale: Extreme Event Analysis and Adaptation Strategies
by Sebastian Spadotto, Saverio Fracaros, Annelore Bezzi and Giorgio Fontolan
Water 2025, 17(13), 1991; https://doi.org/10.3390/w17131991 - 2 Jul 2025
Viewed by 509
Abstract
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. [...] Read more.
Sea level rise (SLR) and increased urbanisation of coastal areas have exacerbated coastal flood threats, making them even more severe in important cultural sites. In this context, the role of hard coastal defences such as promenades and embankments needs to be carefully assessed. Here, a thorough investigation is conducted in Grado, one of the most significant coastal and historical towns in the Friuli Venezia Giulia region of Italy. Grado is located on a barrier island of the homonymous lagoon, the northernmost of the Adriatic Sea, and is prone to flooding from both the sea and the back lagoon. The mean and maximum sea levels from the historical dataset of Venice (1950–2023) were analysed using the Gumbel-type distribution, allowing for the identification of annual extremes based on their respective return periods (RPs). Grado and Trieste sea level datasets (1991–2023) were used to calibrate the statistics of the extremes and to calculate the local component (subsidence) of relative SLR. The research examined the occurrence of annual exceedance of the minimum threshold water level of 110 cm, indicating Grado’s initial notable marine ingression. The study includes a detailed analysis of flood impacts on the urban fabric, categorised into sectors based on the promenade elevation on the lagoon side, the most vulnerable to flooding. Inundated areas were obtained using a high-resolution digital terrain model through a GIS-based technique, assessing both the magnitude and exposure of the urban environment to flood risk due to storm surges, also considering relative SLR projections for 2050 and 2100. Currently, approximately 42% of Grado’s inhabited area is inundated with a sea level threshold value of 151 cm, which occurs during surge episodes with a 30-year RP. By 2100, with an optimistic forecast (SSP1-2.6) of local SLR of around +53 cm, the same threshold will be met with a surge of ca. 100 cm, which occurs once a year. Thus, extreme levels linked with more catastrophic events with current secular RPs will be achieved with a multi-year frequency, inundating more than 60% of the urbanized area. Grado, like Venice, exemplifies trends that may impact other coastal regions and historically significant towns of national importance. As a result, the generated simulations, as well as detailed analyses of urban sectors where coastal flooding may occur, are critical for medium- to long-term urban planning aimed at adopting proper adaptation measures. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

13 pages, 1159 KiB  
Article
Material and Environmental Factors Impacting the Durability of Oak Mooring Piles in Venice, Italy
by Giorgio Pagella and Tiziana Urso
Sustainability 2025, 17(10), 4327; https://doi.org/10.3390/su17104327 - 9 May 2025
Viewed by 854
Abstract
This study examines the rapid degradation of oak mooring piles caused by shipworms in Venice, Italy. In the last few decades, this problem has raised significant safety and environmental concerns, as the piles often need to be replaced every 18–24 months. The sound [...] Read more.
This study examines the rapid degradation of oak mooring piles caused by shipworms in Venice, Italy. In the last few decades, this problem has raised significant safety and environmental concerns, as the piles often need to be replaced every 18–24 months. The sound basic density and diameter of 22 oak piles were analysed after being exposed to shipworm attacks for 18–240 months to determine whether denser piles or larger diameters influence the rate of decay. This was performed to assess whether larger cross sections or higher densities of the piles could imply an increased durability against marine borers. The impact of environmental factors such as temperature, salinity, pH, and dissolved oxygen levels was also assessed. The results highlighted that pile density and diameter do not significantly influence the resistance against shipworms, while rising temperatures (+2 °C in the past two decades) may contribute to accelerating shipworm activity. These phenomena are worsened by the arrival of warm-water shipworms since 2013, exhibiting greater aggressiveness in wood degradation. Furthermore, the potential impact of storm surge barriers on shipworm activity remains an open research topic. Alternative materials and protection techniques introduced since 2015, such as polyurethane piles or metal stapling, face environmental and logistical challenges. Despite these alternatives, many new oak mooring piles are still installed in Venice without protection and are vulnerable to rapid deterioration. Addressing these issues requires multidisciplinary research to develop sustainable materials and preservation techniques for maintaining infrastructure in Venice. Full article
Show Figures

Figure 1

20 pages, 886 KiB  
Article
Participatory Flood Risk Management and Environmental Sustainability: The Role of Communication Engagement, Severity Beliefs, Mitigation Barriers, and Social Efficacy
by Carolyn A. Lin
Sustainability 2025, 17(7), 2844; https://doi.org/10.3390/su17072844 - 23 Mar 2025
Viewed by 1061
Abstract
Climate change has continued to cause severe coastal flooding, erosion, and storm surge in the northeastern U.S. region. Compounding the coastal storm challenge, this region also experienced multiple 1-in-100-, 1-in-200-, and 1-in-500-year rainfall events in 2024. In recent years, community-based flood risk management [...] Read more.
Climate change has continued to cause severe coastal flooding, erosion, and storm surge in the northeastern U.S. region. Compounding the coastal storm challenge, this region also experienced multiple 1-in-100-, 1-in-200-, and 1-in-500-year rainfall events in 2024. In recent years, community-based flood risk management has become an important component for generating locally viable mitigation strategies to build environmental sustainability. At the heart of this community engagement paradigm is flood risk communication, which aims to bring together community stakeholders to strengthen their social resilience to collaborate in generating flood risk management solutions. Extant research has rarely examined the direct connection between theory-driven risk communication factors and community-based flood risk management. To better understand the role of risk communication in facilitating participatory flood risk management planning, this study integrated risk communication constructs with the relevant Health Belief Model components to propose and test a conceptual framework. Specifically, this study conducted a survey with 302 residents of a coastal community highly vulnerable to sea level rise, storm surge, and year-round flooding in the coastal region of northeastern U.S. Study results suggested that flood information exposure could drive greater perceived flood risk severity and mitigation barriers, in addition to furthering flood risk information-seeking behavior and affiliated community-engaged flood risk communication. Community-engaged communication was positively linked to perceived social efficacy beliefs in tackling flood risk management, aside from being linked to perceived flood risk mitigation response efficacy. Both perceived social efficacy and response efficacy in flood risk management positively predicted interest in participatory flood risk management planning. Full article
Show Figures

Figure 1

31 pages, 16655 KiB  
Article
An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment
by Clara Armaroli, Riccardo Brunetta and Paolo Ciavola
Remote Sens. 2025, 17(6), 1072; https://doi.org/10.3390/rs17061072 - 18 Mar 2025
Viewed by 636
Abstract
This paper examines the long-term morphological evolution of the Bevano River sand spit (Ravenna, Italy) after an artificial intervention carried out in 2006 that artificially relocated the river mouth to improve the hydraulic efficiency, preventing flooding and reconstructing a local dune system. Using [...] Read more.
This paper examines the long-term morphological evolution of the Bevano River sand spit (Ravenna, Italy) after an artificial intervention carried out in 2006 that artificially relocated the river mouth to improve the hydraulic efficiency, preventing flooding and reconstructing a local dune system. Using multitemporal Lidar data (2004–2019), combined with orthophotos and a storm dataset, this study analysed shoreline changes and morphological variations, highlighting the role of overwash processes in sediment transfer from the dunes to back-barrier areas. Based on the analysis, a set of washover fans was identified that began to form after a storm event in 2008 and accreted until 2015. These fans, which later coalesced into terraces and were colonised by vegetation, became stable after 2015. Despite an initial low resilience, due to insufficient nourishment and slow vegetation development, the barrier system eventually stabilised, with dunes growing higher and forming a continuous dune crest. The study illustrates the role of surge levels, waves, and low initial elevation in triggering and shaping overwash processes. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

28 pages, 29712 KiB  
Article
Multi-Temporal Relative Sea Level Rise Scenarios up to 2150 for the Venice Lagoon (Italy)
by Marco Anzidei, Cristiano Tolomei, Daniele Trippanera, Tommaso Alberti, Alessandro Bosman, Carlo Alberto Brunori, Enrico Serpelloni, Antonio Vecchio, Antonio Falciano and Giuliana Deli
Remote Sens. 2025, 17(5), 820; https://doi.org/10.3390/rs17050820 - 26 Feb 2025
Cited by 1 | Viewed by 4663
Abstract
The historical City of Venice, with its lagoon, has been severely exposed to repeated marine flooding since historical times due to the combined effects of sea level rise (SLR) and land subsidence (LS) by natural and anthropogenic causes. Although the sea level change [...] Read more.
The historical City of Venice, with its lagoon, has been severely exposed to repeated marine flooding since historical times due to the combined effects of sea level rise (SLR) and land subsidence (LS) by natural and anthropogenic causes. Although the sea level change in this area has been studied for several years, no detailed flooding scenarios have yet been realized to predict the effects of the expected SLR in the coming decades on the coasts and islands of the lagoon due to global warming. From the analysis of geodetic data and climatic projections for the Shared Socioeconomic Pathways (SSP1-2.6; SSP3-7.0 and SSP5-8.5) released in the Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC), we estimated the rates of LS, the projected local relative sea level rise (RSLR), and the expected extent of flooded surfaces for 11 selected areas of the Venice Lagoon for the years 2050, 2100, and 2150 AD. Vertical Land Movements (VLM) were obtained from the integrated analysis of Global Navigation Satellite System (GNSS) and Interferometry Synthetic Aperture Radar (InSAR) data in the time spans of 1996–2023 and 2017–2023, respectively. The spatial distribution of VLM at 1–3 mm/yr, with maximum values up to 7 mm/yr, is driving the observed variable trend in the RSLR across the lagoon, as also shown by the analysis of the tide gauge data. This is leading to different expected flooding scenarios in the emerging sectors of the investigated area. Scenarios were projected on accurate high-resolution Digital Surface Models (DSMs) derived from LiDAR data. By 2150, over 112 km2 is at risk of flooding for the SSP1-2.6 low-emission scenario, with critical values of 139 km2 for the SSP5-8.5 high-emission scenario. In the case of extreme events of high water levels caused by the joint effects of astronomical tides, seiches, and atmospheric forcing, the RSLR in 2150 may temporarily increase up to 3.47 m above the reference level of the Punta della Salute tide gauge station. This results in up to 65% of land flooding. This extreme scenario poses the question of the future durability and effectiveness of the MoSE (Modulo Sperimentale Elettromeccanico), an artificial barrier that protects the lagoon from high tides, SLR, flooding, and storm surges up to 3 m, which could be submerged by the sea around 2100 AD as a consequence of global warming. Finally, the expected scenarios highlight the need for the local communities to improve the flood resiliency plans to mitigate the consequences of the expected RSLR by 2150 in the UNESCO site of Venice and the unique environmental area of its lagoon. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

19 pages, 2112 KiB  
Article
Storm Surge Clusters, Multi-Peak Storms and Their Effect on the Performance of the Maeslant Storm Surge Barrier (The Netherlands)
by Alexander M. R. Bakker, Dion L. T. Rovers and Leslie F. Mooyaart
J. Mar. Sci. Eng. 2025, 13(2), 298; https://doi.org/10.3390/jmse13020298 - 6 Feb 2025
Cited by 1 | Viewed by 1206
Abstract
Storm surge barriers are crucial for the flood protection of the Netherlands and other deltas. In the Netherlands, the reliability of flood defenses is typically assessed based on extreme water levels and wave height statistics. Yet, in the case of operated flood defenses, [...] Read more.
Storm surge barriers are crucial for the flood protection of the Netherlands and other deltas. In the Netherlands, the reliability of flood defenses is typically assessed based on extreme water levels and wave height statistics. Yet, in the case of operated flood defenses, such as storm surge barriers, the temporal clustering of successive events may be just as important. This study investigates the evolution and associated flood risk of clusters of successive storm tide peaks at the Maeslant Storm Surge Barrier in the Netherlands. Two mechanisms are considered. Multi-peak storm surge events, as a consequence of tidal movement on top of the surge, are studied by means of stochastic storm tide events. Clusters of storm tides resulting from different, but related storms are investigated by means of time series analysis of a long sea-level record. We conclude that the tendency of extreme storm tide peaks to cluster is especially related to the seasonality in storm activity. In the current situation, the occurrence of clusters of storm tide peaks have only a minor influence of the flood risk in the area behind the Maeslant Storm Surge Barrier. We envision, however, that this influence is likely to increase with sea-level rise. The numbers are, however, uncertain due to the strong sensitivity to assumptions, model choices and the applied data set. More insight into the statistics of the time evolution of extreme sea water levels is needed to better understand and ultimately to reduce these uncertainties. Full article
(This article belongs to the Special Issue Movable Coastal Structures and Flood Protection)
Show Figures

Figure 1

19 pages, 10890 KiB  
Article
Insights into the Vibration Characteristics of Spatial Radial Gate Affected by Fluid–Structure Interaction
by Feng Liu, Chao Xu, Min Liu, Ruiji Yi and Yu Zhang
J. Mar. Sci. Eng. 2024, 12(10), 1804; https://doi.org/10.3390/jmse12101804 - 10 Oct 2024
Cited by 1 | Viewed by 1453
Abstract
Radial gate, a spatial frame structure, is the key factor to control water discharge in dam structure and storm surge barriers. However, the fluid-induced vibration (FIV) problem always occurs owing to fluctuation loads exerted on the gate, threatening the safety of hydropower stations. [...] Read more.
Radial gate, a spatial frame structure, is the key factor to control water discharge in dam structure and storm surge barriers. However, the fluid-induced vibration (FIV) problem always occurs owing to fluctuation loads exerted on the gate, threatening the safety of hydropower stations. In this work, two fluid–structure interaction (FSI) modal analysis methods—the coupled acoustics–structure method and the added-mass method—are provided. Further, a comprehensive investigation on the vibration characteristics of the spatial radial gate, considering spatial structural characteristics and the FSI effect, is conducted. The numerical results revealed that the feasibility of the proposed coupled acoustics–structure method in analyzing FSI modal analysis was demonstrated; moreover, a reasonable length of the fluid domain in front of the skinplate existed for efficient computation. Meanwhile, through the added-mass method, the rational added-mass discount factor of hydrodynamic loads obtained from the Westergaard formula was provided. The FSI effect induced whole-gate rotation vibration streamwise around trunnion pins, significantly reducing the gate’s fundamental vibration frequency. In addition, three typical dynamic-instability vibration patterns of radial gates were presented. These patterns were affected by spatial structural characteristics and FSI. It was demonstrated that the struts and skinplate coupled bending–torsional vibration would cause the radial gate frame structure to fail catastrophically. The proposed insights can provide guidelines of vibration characteristics analysis of the radial gate submerged in flow water in reservoir and storm surge barriers. Full article
Show Figures

Figure 1

14 pages, 1976 KiB  
Article
Overcoming Barriers and Fostering Adoption: Evaluating the Institutional Mainstreaming of Nature-Based Solutions in the Emilia-Romagna Region’s Socio-Ecological System
by Teresa Carlone and Matteo Mannocchi
Land 2024, 13(8), 1175; https://doi.org/10.3390/land13081175 - 30 Jul 2024
Cited by 2 | Viewed by 1304
Abstract
International organizations like the EU and IUCN are advocating for nature-based solutions (NBSs) as green alternatives for climate change adaptation and mitigation, especially in disaster risk reduction and urban planning. The H2020 OPERANDUM project was designed to address the major hydro-meteorological risks (floods, [...] Read more.
International organizations like the EU and IUCN are advocating for nature-based solutions (NBSs) as green alternatives for climate change adaptation and mitigation, especially in disaster risk reduction and urban planning. The H2020 OPERANDUM project was designed to address the major hydro-meteorological risks (floods, droughts, landslides, storm surge, and coastal erosions) through the deployment and assessment of NBSs in different contexts and areas affected by specific hazards. Despite growing research and funding, NBSs are still in the early stages of mainstream adoption and face challenges in acceptance and dissemination. Although designed to benefit both social and ecological systems, they remain a niche area with low perceived effectiveness among technicians and decision-makers. Their uptake requires a paradigm shift that includes a change in cultural-cognitive institutions, a different and wider set of knowledge than traditional engineering (ecological, social), and an adaptive management approach, missing within the current governance system. Using a qualitative case study research method, this paper aims to identify barriers in mainstreaming NBSs for DRR (disaster risk reduction) in the Emilia-Romagna region—influenced not only by individual beliefs but also by variables tied to technical culture and local procedural norms—and emphasizing the importance of combining social and ecological indicators in socio-ecological system analysis. Full article
Show Figures

Figure 1

19 pages, 14083 KiB  
Article
Inundation Hazard Assessment in a Chinese Lagoon Area under the Influence of Extreme Storm Surge
by Cifu Fu, Tao Li, Kaikai Cheng and Yi Gao
Water 2024, 16(14), 1967; https://doi.org/10.3390/w16141967 - 11 Jul 2024
Viewed by 1266
Abstract
Assessing the hazard of inundation due to extreme storm surges in low-lying coastal areas and fragile ecosystems has become necessary and important. In this study, Xincun Lagoon and Li’an Lagoon in the Lingshui area of Hainan, China, were selected as the study areas, [...] Read more.
Assessing the hazard of inundation due to extreme storm surges in low-lying coastal areas and fragile ecosystems has become necessary and important. In this study, Xincun Lagoon and Li’an Lagoon in the Lingshui area of Hainan, China, were selected as the study areas, a high-resolution storm surge inundation numerical model was established, and the model reliability was tested. Based on data on typhoons affecting the study area from 1949 to 2022, the typhoon parameters for the extreme storm surge scenario were set and used for model numerical simulation and hazard assessment. The results revealed that in the extreme storm surge scenario, the average maximum tidal level, average maximum flow velocity, maximum inundation area, and average maximum inundation depth in the lagoon area were 2.29 m, 1.03 m/s, 14.8124 km2, and 1.20 m, respectively. Under the extreme storm surge scenario, a flow velocity of 2.0 m/s off the coasts of the lagoons could damage coastal aquaculture facilities, harbors, and ecosystems, while an inundation depth exceeding 1 m along the coasts of the lagoons could lead to the salinization of inundated land and severely affect the safety of residents. The hazard analysis of storm surge inundation in the land area of the lagoons revealed that hydrographic nets and coastal wetlands are the major land types inundated by storm surges, with the two accounting for approximately 70% of the total inundation area. According to China’s technical guidelines, the hazard levels of the inundated land area of the lagoons are mostly level 3 (moderate hazard) and level 2 (high hazard), together accounting for approximately 90% of the total inundation area. If the government deems the measures feasible based on strict estimation and scientific evaluation of economic benefits and disaster prevention, planting mangroves in coastal wetlands and/or establishing adjustable tidal barriers at narrow entrances to lagoons could minimize disaster losses. Full article
Show Figures

Figure 1

12 pages, 3151 KiB  
Article
Insights on the Extreme Storm Surge Event of the 22 November 2022 in the Venice Lagoon
by Riccardo Alvise Mel, Elisa Coraci, Sara Morucci, Franco Crosato, Michele Cornello, Marco Casaioli, Stefano Mariani, Luca Carniello, Alvise Papa, Andrea Bonometto and Maurizio Ferla
J. Mar. Sci. Eng. 2023, 11(9), 1750; https://doi.org/10.3390/jmse11091750 - 7 Sep 2023
Cited by 7 | Viewed by 2625
Abstract
The Italian Institute for Environmental Protection and Research (ISPRA) manages the national sea state real time monitoring system for Italy, which consists of the National Sea Level Network (RMN), the North Adriatic and Venice Lagoon Sea Level Network (RMLV), the National Wave Networks [...] Read more.
The Italian Institute for Environmental Protection and Research (ISPRA) manages the national sea state real time monitoring system for Italy, which consists of the National Sea Level Network (RMN), the North Adriatic and Venice Lagoon Sea Level Network (RMLV), the National Wave Networks (RON), and a marine weather forecasting system. These systems are particularly deployed to monitor and predict storm surges that affect the northern part of the Adriatic Sea and the Venice Lagoon, usually causing damages and morphological impacts over the highly anthropized coastal areas. On 22 November 2022, an extreme storm surge event occurred in the northern Adriatic Sea, producing severe damages on its coastline. Venice and the surrounding urban settlements have been protected from flooding thanks to the operation of the Mo.S.E. (Modulo Sperimentale Elettromeccanico) system, a set of artificial barriers built to isolate the lagoon from the sea in case of extreme high tides. Coastal flooding prevention measures, such as storm-surge barriers, are indeed being widely adopted globally because of the accelerating rise in sea levels. An analysis of this extreme event is presented here to highlight the functionality and the usefulness of the ISPRA sea state monitoring system. In particular, the analysis of the as-if scenario reproducing the natural tide propagation within the lagoon, neglecting the operation of the Mo.S.E. system, can only be pursued by using hydrodynamic models forced using extensive observed data. Results highlight that the “not-regulated” sea level would have exceeded 200 cm above the reference datum at Chioggia, a threshold never recorded in the Venice Lagoon since sea level monitoring systems have been operational. Full article
Show Figures

Figure 1

26 pages, 30355 KiB  
Article
Long-Term Evolution of an Urban Barrier Island: The Case of Venice Lido (Northern Adriatic Sea, Italy)
by Emanuela Molinaroli, Mirco Peschiutta and Federica Rizzetto
Water 2023, 15(10), 1927; https://doi.org/10.3390/w15101927 - 19 May 2023
Cited by 6 | Viewed by 3823
Abstract
The aim of this study was to investigate the long-term changes in the coastal stretch of the Lido barrier island, a 12 km sandy coast bordering the Lagoon of Venice, and to assess the impacts of human interventions in the system. Coastal modifications [...] Read more.
The aim of this study was to investigate the long-term changes in the coastal stretch of the Lido barrier island, a 12 km sandy coast bordering the Lagoon of Venice, and to assess the impacts of human interventions in the system. Coastal modifications were examined in a GIS environment through the analysis of aerial photographs covering the period 1955–2019. To achieve our goal, the study area was divided into three cells (i.e., from north to south, A, B, and C), and the rates of shoreline change were calculated over five subsequent periods (i.e., 1955–1978, 1978–1987, 1987–1996, 1996–2006, and 2006–2019). The results mainly showed a positive trend in the long-term (cell A avg. 2.0 m/year; cell C avg. 1.2 m/year) and moderate erosion (cell A and C avg. 0.9 m/year) in the periods 1996–2006 and 2006–2019, probably due to an increase in the frequency of storm surges. However, major effects on beach erosion and progradation were produced by human interventions. In particular, positive impacts were derived from the shore-normal engineering structures intercepting longshore currents, whereas negative effects were from works functional to the realisation of the MoSE system at the Lido and Malamocco inlets, which reduced the amount of available sediment, thus contributing to the worsening conditions of cells A and C. In view of the expected sea-level rise, this area merits higher consideration for correct spatial planning in the framework of integrated coastal zone management. We suggest that a monitoring program of shoreline evolution must be set up to better manage its future development. Full article
Show Figures

Figure 1

20 pages, 3488 KiB  
Article
Quantifying Transgressive Coastal Changes Using UAVs: Dune Migration, Overwash Recovery, and Barrier Flooding Assessment and Interferences with Human and Natural Assets
by Giulia Casagrande, Annelore Bezzi, Saverio Fracaros, Davide Martinucci, Simone Pillon, Paolo Salvador, Stefano Sponza and Giorgio Fontolan
J. Mar. Sci. Eng. 2023, 11(5), 1044; https://doi.org/10.3390/jmse11051044 - 13 May 2023
Cited by 10 | Viewed by 2195
Abstract
The advantages derived from the use of Uncrewed Aerial Vehicles (UAVs) are well-established: they are cost-effective and easy to use. There are numerous environmental applications, particularly when monitoring contexts characterized by rapid morphological changes and high rates of sediment transport, such as coastal [...] Read more.
The advantages derived from the use of Uncrewed Aerial Vehicles (UAVs) are well-established: they are cost-effective and easy to use. There are numerous environmental applications, particularly when monitoring contexts characterized by rapid morphological changes and high rates of sediment transport, such as coastal areas. In this paper, three different case studies of survey and monitoring with high resolution and accuracy obtained through the use of UAVs are presented; these concern transgressive coastal sites. Results allow for the definition and quantification of coastal landforms and processes, including: (i) The anatomy of a parabolic dune and the rate of landward migration that could interfere with a tourist settlement; (ii) The mode and timing of morphological recovery and realignment of a barrier island overwashed by storm surge episodes; and (iii) The potential flood risk of a progradational spit that is a nesting site of a species of migratory breeding birds of conservation concern. The results demonstrate and confirm that, through a good coupling of drone-sensed quality data and accurate topographic control, quantitative estimates that are useful in assessing the impacts of natural processes involving both human and natural assets can be obtained. Full article
(This article belongs to the Special Issue Remote Sensing for Coastal Management)
Show Figures

Figure 1

20 pages, 6922 KiB  
Article
Tuning the Model Winds in Perspective of Operational Storm Surge Prediction in the Adriatic Sea
by Francesco De Biasio and Stefano Zecchetto
J. Mar. Sci. Eng. 2023, 11(3), 544; https://doi.org/10.3390/jmse11030544 - 3 Mar 2023
Cited by 1 | Viewed by 2015
Abstract
In the Adriatic Sea, the sea surface wind forecasts are often underestimated, with detrimental effects on the accuracy of sea level and storm surge predictions. Among the various causes, this mainly depends on the meteorological forcing of the wind. In this paper, we [...] Read more.
In the Adriatic Sea, the sea surface wind forecasts are often underestimated, with detrimental effects on the accuracy of sea level and storm surge predictions. Among the various causes, this mainly depends on the meteorological forcing of the wind. In this paper, we try to improve an existing numerical method, called “wind bias mitigation”, which relies on scatterometer wind observations to determine a multiplicative factor Δw, whose application to the model wind reduces its inaccuracy with respect to the scatterometer wind. Following four different mathematical approaches, we formulate and discuss seven new expressions of the multiplicative factor. The eight different expressions of the bias mitigation factor, the original one and the seven formulated in this study, are assessed with the aid of four datasets of real sea surface wind events in a variety of sea level conditions in the northern Adriatic Sea, several of which gave rise to high water events in the Venice Lagoon. The statistical analysis shows that some of the seven new formulations of the wind bias mitigation factor are able to lower the model-scatterometer bias with respect to the original formulation. For some other of the seven new formulations, the absolute bias, with respect to scatterometer, of the mitigated model wind field, results lower than that supplied by the unmodified model wind field in 81% of the considered storm surge events in the area of interest, against the 73% of the original formulation of the wind bias mitigation. This represents an 11% improvement in the bias mitigation process, with respect to the original formulation. The best performing of the seven new wind bias mitigation factors, that based on the linear least square regression of the squared wind speed (LLSRE), has been implemented in the operational sea level forecast chain of the Tide Forecast and Early Warning Centre of the Venice Municipality (CPSM), to provide support to the operation of the MO.SE. barriers in Venice. Full article
(This article belongs to the Special Issue Latest Advances in Physical Oceanography)
Show Figures

Figure 1

18 pages, 4489 KiB  
Article
Assessment of Tropical Cyclone Risk to Coral Reefs: Case Study for Australia
by Cameron Do, Georgia Elizabeth Saunders and Yuriy Kuleshov
Remote Sens. 2022, 14(23), 6150; https://doi.org/10.3390/rs14236150 - 4 Dec 2022
Cited by 7 | Viewed by 3357
Abstract
In this study, we attempt to expand tropical cyclone (TC) risk assessment methodology and build an understanding of TC risk to Australia’s natural environment by focusing on coral reefs. TCs are natural hazards known to have the potential to bring destruction due to [...] Read more.
In this study, we attempt to expand tropical cyclone (TC) risk assessment methodology and build an understanding of TC risk to Australia’s natural environment by focusing on coral reefs. TCs are natural hazards known to have the potential to bring destruction due to associated gale-force winds, torrential rain, and storm surge. The focus of TC risk assessment studies has commonly centred around impacts on human livelihoods and infrastructure exposed to TC events. In our earlier study, we created a framework for assessing multi-hazard TC risk to the Australian population and infrastructure at the Local Government Area level. This methodology is used in this study with coral reefs as the focus. TC hazard, exposure, and vulnerability indices were created from selected coral-related datasets to calculate an overall TC risk index for the Ningaloo Reef (NR) and the Great Barrier Reef (GBR) regions. The obtained results demonstrate that the northern NR and the southern GBR had the highest risk values within the study area; however, limitations in data quality have meant that results are estimates at best. The study has shown the potential benefits of such a TC risk assessment framework that can be improved upon, as coral data collection becomes more readily available. Full article
Show Figures

Figure 1

25 pages, 16250 KiB  
Article
Morphodynamic Behaviour of a Mediterranean Intermittent Estuary with Opening Phases Primarily Dominated by Offshore Winds
by Pierre Feyssat, Raphaël Certain, Nicolas Robin, Olivier Raynal, Nicolas Aleman, Bertil Hebert, Antoine Lamy and Jean-Paul Barusseau
J. Mar. Sci. Eng. 2022, 10(12), 1817; https://doi.org/10.3390/jmse10121817 - 25 Nov 2022
Cited by 5 | Viewed by 2143
Abstract
This study focuses on the dynamics of an intermittent estuary in a wave-dominated (microtidal) area, with low fluvial discharges and strong dominant offshore wind regimes. The aims are to understand the effect of these particular environmental factors in the dynamics of such estuaries. [...] Read more.
This study focuses on the dynamics of an intermittent estuary in a wave-dominated (microtidal) area, with low fluvial discharges and strong dominant offshore wind regimes. The aims are to understand the effect of these particular environmental factors in the dynamics of such estuaries. The results allow us to propose a synthetic morphodynamic model of evolution whereby opening phases are predominantly controlled by offshore winds, which have a significant influence in the northern Mediterranean. Inputs from rainfall/karst discharge and the overtopping of storm waves cause the lagoon to fill. Closing phases are controlled by the slight easterly swell which forms a berm at the inlet entrance. On occasion, major storms can also contribute to barrier opening. Nevertheless, offshore wind remains the main controlling factor allowing the surge of lagoon waters behind the beach barrier and the lowering of the berm by wind deflation. This leads to opening of the barrier due to the overflow of lagoon waters at the beach megacusp horns, thus connecting the sub-aerial beach with the inner bar system that is developed on topographically low sectors of the barrier. To the best of the authors’ knowledge, this type of estuary is not described in the literature. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

Back to TopTop