Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = stomach oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1002 KiB  
Article
Preparing O/W/O Emulsion for Curcumin (Curcuma longa) Delivery and In Vitro Digestibility Assay
by Kristýna Opustilová, Barbora Lapčíková, Daniela Sumczynski and Richard Adámek
Int. J. Mol. Sci. 2025, 26(12), 5639; https://doi.org/10.3390/ijms26125639 - 12 Jun 2025
Viewed by 379
Abstract
In this study, simple oil-in-water emulsions (O/W) and multiple O/W/O emulsions were employed as carriers for a curcumin delivery system. The stability of emulsions was evaluated using DSC (differential scanning calorimetry), accompanied by particle size measurement by DLS (dynamic light scattering) and rheological [...] Read more.
In this study, simple oil-in-water emulsions (O/W) and multiple O/W/O emulsions were employed as carriers for a curcumin delivery system. The stability of emulsions was evaluated using DSC (differential scanning calorimetry), accompanied by particle size measurement by DLS (dynamic light scattering) and rheological analysis. The amount of freezable water (Wfs) in O/W emulsion was determined to be 80.4%, while that in O/W/O emulsion was 23.7%. Multiple emulsions had a more complex structure than simple emulsions, being characterized by higher stability with predominant loss modulus over storage modulus (G” > G’). The mean surface diameter for O/W emulsion was 198.7 ± 9.8 nm, being approximately two times lower than that for multiple emulsions. Curcumin in vitro digestibility was observed for both emulsions and, additionally, the digestibility of fresh and dried curcuma root powders was investigated. Multiple emulsions were found to be a superior matrix for curcumin delivery, with higher stability and emulsion digestibility of 50.6% for the stomach and small intestine. In vitro digestion of dried curcuma powders and curcuma root samples was monitored by HPLC (high-performance liquid chromatography). The DMD (dry matter digestibility) for dried curcuma powders ranged between 52.9% to 78.8%, and for fresh curcuma (KF) was 95.5%. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

19 pages, 3455 KiB  
Article
Enhanced Oil Binding Potential of Procambarus clarkii Chitosan (PCC): A Study with Extra Virgin Olive Oil and Sunflower Oil Under Simulated Gastric Conditions
by Claudio Casella, Umberto Cornelli, Santiago Ballaz, Giuseppe Zanoni and Luis Ramos-Guerrero
Polymers 2025, 17(11), 1445; https://doi.org/10.3390/polym17111445 - 23 May 2025
Cited by 1 | Viewed by 2409
Abstract
Chitosan is recognized by its capacity to bind lipids based on the viscosity and degree of deacetylation. We analyzed the in vitro binding of Procambarus clarkii chitosan (PCC) with extra virgin olive oil and sunflower oil at temperatures and pH levels that approximate [...] Read more.
Chitosan is recognized by its capacity to bind lipids based on the viscosity and degree of deacetylation. We analyzed the in vitro binding of Procambarus clarkii chitosan (PCC) with extra virgin olive oil and sunflower oil at temperatures and pH levels that approximate gastric-like conditions. In the tube test, 4 mg of PCC and 0.3 g of either EVO or of SO oils were mixed by stirring in test tubes with 4 mL of water acidified with HCl to a pH of 3. The PCC binding capability was determined by measuring the differences between the suspension without PCC and the suspension with PCC added. A scanning electron microscope (SEM) was utilized to further observe the uniformity and morphology of the emulsified PCC/oil hydrogels. In the test tube, PCC was shown to have a 1:11 (w/w) binding capacity for EVO and 1:15 (w/w) for SO. The SEM-based examination demonstrated a smooth surface with fine porosity of the microstructure of either PCC/oil hydrogel, proving successful emulsification. Under conditions similar to those in the stomach after a meal, including acidity, mixed composition, and temperature, PCC efficiently binds and emulsifies EVO and SO. Full article
Show Figures

Graphical abstract

20 pages, 3919 KiB  
Article
Effects of Cannabidiol Oil on Anesthetic Requirements in Cats: MAC Determination and Serum Profiling via Nanoscale Liquid Chromatography–Tandem Mass Spectrometry
by Panisara Suriyawongpongsa, Sirirat Niyom, Kannika Wanapinit, Monchanok Vijarnsorn, Sittiruk Roytrakul and Sekkarin Ploypetch
Animals 2025, 15(10), 1393; https://doi.org/10.3390/ani15101393 - 12 May 2025
Cited by 1 | Viewed by 981
Abstract
Cannabidiol (CBD), a non-psychotropic cannabinoid derived from Cannabis plants, is increasingly explored for its potential therapeutic applications in veterinary medicine. This study aimed to evaluate the impact of CBD oil on the minimum alveolar concentration of isoflurane (MACiso) in cats. Sixteen [...] Read more.
Cannabidiol (CBD), a non-psychotropic cannabinoid derived from Cannabis plants, is increasingly explored for its potential therapeutic applications in veterinary medicine. This study aimed to evaluate the impact of CBD oil on the minimum alveolar concentration of isoflurane (MACiso) in cats. Sixteen healthy cats underwent isoflurane anesthesia, and the MACiso was determined using the tail-clamping technique both at baseline and 30 min after the administration of CBD oil (2 mg/kg) via a stomach tube. CBD administration resulted in a significant 11% reduction in the MACiso, from 1.77 ± 0.14% to 1.62 ± 0.21% (p < 0.001). Following CBD administration, heart and respiratory rates were elevated at the time of MACiso determination compared to baseline whereas other physiological parameters remained unchanged. Serum biochemical analysis conducted two weeks post administration revealed a significant decrease in blood urea nitrogen (BUN) levels while one cat exhibited a mild increase in alanine aminotransferase (ALT). Proteomic analysis identified 12 CBD-associated proteins in feline serum 30 min post administration, with CBDA and THCA synthases demonstrating significant upregulation. These findings indicate that CBD oil reduces anesthetic requirements in cats without inducing significant physiological disturbances. Further research is warranted to elucidate the underlying mechanisms of CBD’s anesthetic-sparing effects and its implications in veterinary anesthesia. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

23 pages, 4328 KiB  
Article
Herbal Extracts Mixed with Essential Oils: A Network Approach for Gastric and Intestinal Motility Disorders
by Roberta Budriesi, Ivan Corazza, Simone Roncioni, Roberta Scanferlato, Dalila De Luca, Carla Marzetti, Roberto Gotti, Nicola Rizzardi, Christian Bergamini, Matteo Micucci, Davide Roncarati and Laura Beatrice Mattioli
Nutrients 2024, 16(24), 4357; https://doi.org/10.3390/nu16244357 - 17 Dec 2024
Cited by 3 | Viewed by 2457
Abstract
Background: Three herbal extracts (Asparagus racemosus Willd., Tabebuia avellanedae Lorentz, and Glycyrrhiza glabra L.) were mixed with three essential oils (Foeniculum vulgare Mill., Mentha piperita L., and Pimpinella anisum L.) to formulate a product (HEMEO) whose active compounds include saponins and [...] Read more.
Background: Three herbal extracts (Asparagus racemosus Willd., Tabebuia avellanedae Lorentz, and Glycyrrhiza glabra L.) were mixed with three essential oils (Foeniculum vulgare Mill., Mentha piperita L., and Pimpinella anisum L.) to formulate a product (HEMEO) whose active compounds include saponins and steroids in Asparagus racemosus, known for their anti-inflammatory properties; glycyrrhizin and flavonoids in Glycyrrhiza glabra, which exhibit gastroprotective and antispasmodic effects; menthol in Mentha piperita, contributing with antispasmodic and antimicrobial properties; and anethole and polyphenols in Pimpinella anisum, which modulate intestinal motility and offer antimicrobial activity. Objective: HEMEO was formulated for applications in intestinal motility disorders. Methods: HEMEO was evaluated for spontaneous and induced motility effects in isolated guinea pig ileum, colon, and stomach. Ex vivo experiments were conducted using LabChart software v7.0, and the product’s antibacterial action against Helicobacter pylori and its antioxidant effects were assessed through disc diffusion and FRAP assays. The presence of the volatile compounds in the formulation was confirmed by GC-MS analysis; the TPC of HEMEO, determined using the Folin–Ciocalteu method, was 9.925 ± 0.42 mg GAE/g. Conclusions: HEMEO showed a phenolic content correlated with its antioxidant potential and in addition inhibited H. pylori growth and demonstrated notable antioxidant properties, suggesting its role as a supportive agent in digestive processes and in managing motility disorders. Full article
Show Figures

Figure 1

20 pages, 2916 KiB  
Article
Enhanced Bioaccessibility and Antioxidant Activity of Curcumin from Transglutaminase Cross-Linked Mulberry Leaf Protein-Stabilized High-Internal-Phase Pickering Emulsion: In Vivo and In Vitro Studies
by Yingshan Xie, Hongyan Li, Zeyuan Deng, Yanfang Yu and Bing Zhang
Foods 2024, 13(23), 3939; https://doi.org/10.3390/foods13233939 - 6 Dec 2024
Cited by 3 | Viewed by 1460
Abstract
The objective of this study was to formulate Pickering emulsions stabilized by transglutaminase cross-linked mulberry leaf protein (TG-MLP) nanoparticles as a delivery system for curcumin (Cur) and to assess its bioaccessibility both in vivo and in vitro. The encapsulation efficiency of curcumin in [...] Read more.
The objective of this study was to formulate Pickering emulsions stabilized by transglutaminase cross-linked mulberry leaf protein (TG-MLP) nanoparticles as a delivery system for curcumin (Cur) and to assess its bioaccessibility both in vivo and in vitro. The encapsulation efficiency of curcumin in high-internal-phase Pickering emulsions (HIPEs) prepared at pH 10 with a 20 mg/mL concentration of TG-MLP reached 93%. Compared to Oil-Cur, Cur-HIPEs exhibited superior antioxidant activity. Furthermore, Cur-HIPEs demonstrated enhanced stability against ultraviolet irradiation, storage under dark and visible light, and heating, in contrast to Oil-Cur. Among the various conditions tested, HIPEs stabilized by TG-MLP nanoparticles at an ionic strength of 1000 mM offered the most effective protection for curcumin. Moreover, TG-MLP nanoparticles at pH 8 provided better stability for the formulated HIPEs compared to those at pH 6 and 10. During simulated gastrointestinal digestion, the bioaccessibility of curcumin in Cur-HIPEs was significantly increased to 30.1% compared to Oil-Cur. In murine studies, higher levels of curcumin were detected in the stomach, small intestine, rectum, ileum, and feces following administration of Cur-HIPEs, indicating improved protection, absorption, and potential biological activity during digestion. Consequently, HIPEs offer excellent protection and delivery for curcumin during digestion. Full article
Show Figures

Figure 1

15 pages, 2474 KiB  
Article
Analysis of the Effects of Organic and Synthetic Mulching Films on the Weed, Root Yield, Essential Oil Yield, and Chemical Composition of Angelica archangelica L.
by Jovan Lazarević, Sava Vrbničanin, Ana Dragumilo, Tatjana Marković, Rada Đurović Pejčev, Svetlana Roljević Nikolić and Dragana Božić
Horticulturae 2024, 10(11), 1199; https://doi.org/10.3390/horticulturae10111199 - 14 Nov 2024
Cited by 1 | Viewed by 1267
Abstract
Angelica archangelica L. (Garden angelica) is a medicinal and aromatic plant from the Apiaceae family, originating from North Europe (Iceland, Greenland, and Scandinavian countries). A. archangelica is commonly used in traditional medicine to treat anxiety, insomnia, stomach and intestinal disorders, skin conditions, respiratory [...] Read more.
Angelica archangelica L. (Garden angelica) is a medicinal and aromatic plant from the Apiaceae family, originating from North Europe (Iceland, Greenland, and Scandinavian countries). A. archangelica is commonly used in traditional medicine to treat anxiety, insomnia, stomach and intestinal disorders, skin conditions, respiratory problems, and arthritis. This plant is generally cultivated for its root and seed where the essential oil (EO) is concentrated the most. Angelica archangelica cultivation has a lot of challenges but the main one is weed control; so, the aim of this study was to investigate the influence of four different mulch types as non-chemical weed control measures on weediness, fresh root yield, and EO chemical composition and yield from A. archangelica roots. A field trial was conducted with the following six treatments: two organic mulches, two synthetic mulches, and two controls (regular hand-weeded and weeded). The results show that the most present weeds were Ambrosia artemisiifolia, Chenopodium album, Polygonum aviculare, and Polygonum lapathyfolium, but synthetic mulch foils achieved the best weed suppression (100%). These fields also achieved the highest fresh root yield in both of the experimental seasons. The highest EO yield was detected with agrotextile mulch foil at season I (0.41%, v/w) and with the weeded control (0.51%, v/w) at season II, but dominant components at both seasons were α-pinene and β-phellandrene. The results suggest that the agrotextile black and silver–brown mulch foils achieved complete weed suppression, but the agrotextile black mulch foil had a better effect on fresh root yield, EO yield, and its chemical composition. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

16 pages, 992 KiB  
Article
Bioactive Properties of Campomanesia lineatifolia: Correlation Between Anti-Helicobacter pylori Activity, Antioxidant Potential and Chemical Composition
by Nívea Cristina Vieira Neves, Morgana Pinheiro de Mello, Sinéad Marian Smith, Fabio Boylan, Marcelo Vidigal Caliari and Rachel Oliveira Castilho
Plants 2024, 13(22), 3117; https://doi.org/10.3390/plants13223117 - 5 Nov 2024
Viewed by 1336
Abstract
Helicobacter pylori is found in the stomach of patients with chronic gastritis and peptic ulcers, infecting approximately half of the world’s population. Current treatment for H. pylori infection involves a multi-drug therapeutic regime with various adverse effects, which leads to treatment abandonment and [...] Read more.
Helicobacter pylori is found in the stomach of patients with chronic gastritis and peptic ulcers, infecting approximately half of the world’s population. Current treatment for H. pylori infection involves a multi-drug therapeutic regime with various adverse effects, which leads to treatment abandonment and contributes to the emergence of resistant strains of H. pylori. Previously, we demonstrated that the essential oil of Campomanesia lineatifolia leaves exhibited an anti-H. pylori activity. In this study, we aimed to evaluate the phenolic content of the phenolic-rich ethanol extract (PEE) from C. lineatifolia and its anti-H. pylori and antioxidant properties. Additionally, the anti-H. pylori activity was assessed in polar and non-polar fractions from PEE, isolated myricitrin (MYR) and a mixture of myricitrin and quercitrin (MYR/QUER) from polar fractions, and aqueous extract (tea) to correlate the responsible fractions or compounds with the observed activity. Broth microdilution assays were performed to assess the anti-H. pylori activity using type cultures (ATCC 49503, NCTC 11638, both clarithromycin-sensitive) and clinical isolate strains (SSR359, clarithromycin-sensitive, and SSR366, clarithromycin-resistant). The antioxidant activity was evaluated using the DPPH assay. The total tannin and flavonoid contents were determined using the hide-powder method, the Folin-Ciocalteu reagent, and the aluminium chloride colourimetric assay, respectively. The tea (MIC 1:100), PEE, polar and non-polar fractions, MYR, and MYR/QUER inhibited the growth of H. pylori strains tested (MIC values ranging from 0.49 to 250 μg/mL). The antioxidant assays revealed that PEE exhibited a higher antioxidant activity (EC50 = 18.47 μg/mL), which correlated to the high phenolic content (tannin and flavonoid, 22.31 and 0.15% w/w, respectively). These findings support the traditional use of C. lineatifolia as a multitarget medicinal plant for treating gastric ulcers and reinforce the potential use of the species as a coadjuvant in therapeutic regimes involving patients with resistant H. pylori infection. Full article
Show Figures

Figure 1

6 pages, 1609 KiB  
Proceeding Paper
In Vitro Digestion of Chia Seed Oil Nanoemulsions
by Luciana Julio, Greilis Quintero-Gamero, Estefanía Guiotto and Vanesa Ixtaina
Biol. Life Sci. Forum 2024, 37(1), 3; https://doi.org/10.3390/blsf2024037003 - 31 Oct 2024
Viewed by 688
Abstract
Oil-in-water (O/W) nanoemulsions offer significant potential for protecting and delivering sensitive ingredients such as chia seed oil, which is rich in ω-3 fatty acids (approximately 64% α-linolenic acid, ALA). This research work aimed to study the in vitro fat digestibility of chia [...] Read more.
Oil-in-water (O/W) nanoemulsions offer significant potential for protecting and delivering sensitive ingredients such as chia seed oil, which is rich in ω-3 fatty acids (approximately 64% α-linolenic acid, ALA). This research work aimed to study the in vitro fat digestibility of chia O/W nanoemulsions (Cas1000) with 10% (w/w) of chia oil and 2% (w/w) of sodium caseinate prepared by microfluidization (1000 bar, 3 passes) and characterized through their droplet size, superficial droplet charge, and global stability. In terms of the in vitro fat digestibility, three different matrices were studied: a water solution of sodium caseinate, a chia O/W nanoemulsion, and a bulk chia oil. The particle size distribution, mean diameter, and microstructure were evaluated after in vitro stomach and small intestine simulation according to the INFOGEST method. Free fatty acids (% FFA) produced during lipolysis were quantified at the end of digestion through their neutralization by acid-base volumetric assay. The droplet size of the Cas1000 had slight changes during the gastric phase while a significant variation of this parameter was observed at the end of the intestinal phase. A higher %FFA was obtained in Cas1000 compared to bulk chia oil with values of 58.26 and 38.13%, respectively. The ALA content in the lipid phase was quantified at the end of the gastrointestinal digestion process. The results indicated no significant changes compared to the initial oil, suggesting no losses of active compounds during digestion. Full article
(This article belongs to the Proceedings of VI International Congress la ValSe-Food)
Show Figures

Figure 1

12 pages, 1996 KiB  
Article
Chemical Composition, Antibacterial and Antibiotic-Modifying Activity of Croton grewioides Baill Essential Oil
by José Jonas Ferreira Viturino, Cicera Janaine Camilo, Natália Kelly Gomes de Carvalho, Joice Barbosa do Nascimento, Maria Inacio da Silva, Mariana Pereira da Silva, José Walber Gonçalves Castro, Geane Gabriele de Oliveira Souza, Fabíola Fernandes Galvão Rodrigues and José Galberto Martins da Costa
Future Pharmacol. 2024, 4(4), 731-742; https://doi.org/10.3390/futurepharmacol4040039 - 18 Oct 2024
Cited by 1 | Viewed by 1245
Abstract
Background: Croton grewioides Baill., a species native to the Caatinga, popularly known as canela de cunhã, is used in traditional medicine to treat gastrointestinal diseases such as diarrhea, gastritis and stomach ulcers. The combination of essential oils with antibiotics reveals several beneficial [...] Read more.
Background: Croton grewioides Baill., a species native to the Caatinga, popularly known as canela de cunhã, is used in traditional medicine to treat gastrointestinal diseases such as diarrhea, gastritis and stomach ulcers. The combination of essential oils with antibiotics reveals several beneficial effects associated with the increased efficacy of these drugs against pathogenic agents. Through this perspective, this study aimed to identify the chemical composition of the essential oil of C. grewioides (OECG) and evaluate its antibacterial and antibiotic-modifying activities against standard and multiresistant bacteria. Methods: To analyze the compounds present in the oil, the techniques of gas chromatography coupled with mass spectrometry (GC/MS) and gas chromatography with a flame ionization detector (GC/FID) were used. In the bacteriological tests, the Minimum Inhibitory Concentration (MIC) was obtained by the broth microdilution technique. The modulating effect of the essential oil was determined by calculating the subinhibitory concentration, followed by a serial microdilution of the antibiotics. The MIC reduction factor (CRF) was calculated, and its data were expressed as a percentage. Results: The analysis of the chemical composition identified the presence of the major compound estragole with a relative abundance of 50.34%. The MIC values obtained demonstrated efficacy in K. pneumoniae isolated from urine with MIC values of 512 µg/mL. OECG potentiated the effects of all antibiotics tested on the strains S. aureus ATCC 29213, K. pneumoniae Carbapnemase, E. coli ATCC 25922 and S. aureus ATCC 29213 with their CRF of 97.65%, 99.80%, 99.85% and 99.88%, respectively. Conclusions: Thus, the essential oil of C. grewioides presents synergistic effects when combined with the antibiotics tested, in addition to acting in the fight against bacterial resistance to antibiotics. Full article
Show Figures

Figure 1

21 pages, 301 KiB  
Article
Deciphering Hyperammonia-Producing Bacteria (HAB) in the Rumen of Water Buffaloes (Bubalus bubalis) and Their Inhibition through Plant Extracts and Essential Oils
by Yendrembam Mery Chanu, Shyam Sundar Paul, Avijit Dey and Jerome Andonissamy
Microorganisms 2024, 12(10), 2040; https://doi.org/10.3390/microorganisms12102040 - 9 Oct 2024
Cited by 1 | Viewed by 1404
Abstract
Hyperammonia-producing bacteria (HAB) are a class of microbes present in the stomach of ruminants, responsible for the rapid rate of ammonia production from protein degradation beyond the capacity of these animals for their utilization. Thus, ruminant nutritionists are interested in decreasing ruminal protein [...] Read more.
Hyperammonia-producing bacteria (HAB) are a class of microbes present in the stomach of ruminants, responsible for the rapid rate of ammonia production from protein degradation beyond the capacity of these animals for their utilization. Thus, ruminant nutritionists are interested in decreasing ruminal protein degradation and ammonia genesis by focusing on controlling the activity of HAB. The investigations of the present study were carried out to determine predominant hyperammonia-producing bacteria in the rumen of buffaloes, their isolation and characterization, as well as the inhibition of these isolates with various sources of plant secondary compounds (tannins, saponins, and essential oils). Studies employing high-throughput sequencing of amplicons of the 16S rRNA gene from genomic DNA recovered from enrichment culture of HAB of buffalo rumina indicated that, at the phylum level, Proteobacteria (61.1 to 68.2%) was the most predominant HAB. Acidaminococcus was most predominant among the identified genera. In vitro experiments were conducted with enrichment culture of buffalo rumen contents incubated with different types of feed additives such as essential oils (eucalyptus oil, lemon grass oil, and clove oil) and extracts of plants (Sapindus mukorossi fruits and Ficus bengalensis leaves), each at graded dose levels. The reduction in ammonia production by clove and lemon grass oils was evident due to the presence of major bioactive compounds, especially eugenol and limonene, which have strong antimicrobial activity. However, clove oil and Indian soapberry/reetha (Sapindus mukorossi) fruit were found to be promising and effective in reducing the growth, protease production, and ammonia production of HAB culture. Full article
(This article belongs to the Special Issue Microbiome Research for Animal, Plant and Environmental Health)
16 pages, 2240 KiB  
Article
Early Growth and Developmental Characteristics of Chinese Bahaba (Bahaba taipingensis)
by Lin Yan, Yuanhao Ren, Tongxi Ai, Jianshe Shi, Junjie Wang, Kuoqiu Yan and Keji Jiang
Fishes 2024, 9(8), 329; https://doi.org/10.3390/fishes9080329 - 21 Aug 2024
Viewed by 1527
Abstract
The Chinese bahaba (Bahaba taipingensis), belonging to the Sciaenidae family, is one of the largest croakers with a limited geographical distribution. It is a critically endangered fish species according to the IUCN and a protected animal in China. In this study, [...] Read more.
The Chinese bahaba (Bahaba taipingensis), belonging to the Sciaenidae family, is one of the largest croakers with a limited geographical distribution. It is a critically endangered fish species according to the IUCN and a protected animal in China. In this study, the morphological characteristics of Chinese bahaba were observed and analyzed across different developmental stages, namely, the embryonic, larval, juvenile, and young fish stages. The results demonstrated that the mature eggs had a terminal yolk and a single oil globule. The eggs remained floating, and the mean diameters of the fertilized egg and oil globules were 1.14 ± 0.09 mm and 0.35 ± 0.07 mm, respectively. The findings revealed that the embryonic development of Chinese bahaba occurs broadly in seven stages, including the blastogenesis, cleavage, blastocyst, gastrula, neuro embryonic, organ differentiation, and membrane emergence stages, which lasted approximately 27 h and 10 min until hatching under 22.5 ± 0.5 °C. After 70 d, the larvae developed into young fish with a mean total length and body length of 97.75 ± 12.61 and 75.27 ± 13.27 mm, respectively. The digestive organs and the swim bladder began to differentiate, and the swim bladder, bladder duct, intestine, stomach, and mouth gradually formed at 2 d after hatching. Juvenile development occurred via six stages and there were certain differences in the morphological characteristics of Chinese bahaba across the different stages of growth and development. This study provides a theoretical reference for studying the growth, development, and artificial breeding of Chinese bahaba. Full article
(This article belongs to the Special Issue Reproductive Biology and Breeding of Fish)
Show Figures

Figure 1

16 pages, 2855 KiB  
Article
Brain Perception of Different Oils on Appetite Regulation: An Anorectic Gene Expression Pattern in the Hypothalamus Dependent on the Vagus Nerve
by Gele de Carvalho Araújo Lopes, Brenda Caroline Rodrigues Miranda, João Orlando Piauilino Ferreira Lima, Jorddam Almondes Martins, Athanara Alves de Sousa, Taline Alves Nobre, Juliana Soares Severo, Tiago Eugênio Oliveira da Silva, Milessa da Silva Afonso, Joana Darc Carola Correia Lima, Emidio Marques de Matos Neto, Lucillia Rabelo de Oliveira Torres, Dennys Esper Cintra, Ana Maria Lottenberg, Marília Seelaender, Moisés Tolentino Bento da Silva and Francisco Leonardo Torres-Leal
Nutrients 2024, 16(15), 2397; https://doi.org/10.3390/nu16152397 - 24 Jul 2024
Cited by 1 | Viewed by 2721
Abstract
(1) Background: We examined the effect of the acute administration of olive oil (EVOO), linseed oil (GLO), soybean oil (SO), and palm oil (PO) on gastric motility and appetite in rats. (2) Methods: We assessed food intake, gastric retention (GR), and gene expression [...] Read more.
(1) Background: We examined the effect of the acute administration of olive oil (EVOO), linseed oil (GLO), soybean oil (SO), and palm oil (PO) on gastric motility and appetite in rats. (2) Methods: We assessed food intake, gastric retention (GR), and gene expression in all groups. (3) Results: Both EVOO and GLO were found to enhance the rate of stomach retention, leading to a decrease in hunger. On the other hand, the reduction in food intake caused by SO was accompanied by delayed effects on stomach retention. PO caused an alteration in the mRNA expression of NPY, POMC, and CART. Although PO increased stomach retention after 180 min, it did not affect food intake. It was subsequently verified that the absence of an autonomic reaction did not nullify the influence of EVOO in reducing food consumption. Moreover, in the absence of parasympathetic responses, animals that received PO exhibited a significant decrease in food consumption, probably mediated by lower NPY expression. (4) Conclusions: This study discovered that different oils induce various effects on parameters related to food consumption. Specifically, EVOO reduces food consumption primarily through its impact on the gastrointestinal tract, making it a recommended adjunct for weight loss. Conversely, the intake of PO limits food consumption in the absence of an autonomic reaction, but it is not advised due to its contribution to the development of cardiometabolic disorders. Full article
Show Figures

Graphical abstract

20 pages, 3649 KiB  
Article
Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines
by Jurga Andreja Kazlauskaite, Inga Matulyte, Mindaugas Marksa and Jurga Bernatoniene
Pharmaceutics 2024, 16(4), 530; https://doi.org/10.3390/pharmaceutics16040530 - 12 Apr 2024
Cited by 1 | Viewed by 1318
Abstract
Encapsulating antioxidant-rich plant extracts, such as those found in red clover, within microcapsules helps protect them from degradation, thus improving stability, shelf life, and effectiveness. This study aimed to develop a microencapsulation delivery system using chitosan and alginate for microcapsules that dissolve in [...] Read more.
Encapsulating antioxidant-rich plant extracts, such as those found in red clover, within microcapsules helps protect them from degradation, thus improving stability, shelf life, and effectiveness. This study aimed to develop a microencapsulation delivery system using chitosan and alginate for microcapsules that dissolve in both the stomach and intestines, with the use of natural and synthetic emulsifiers. The microcapsules were formed using the extrusion method and employing alginate or chitosan as shell-forming material. In this study, all selected emulsifiers formed Pickering (β-CD) and traditional (white mustard extract, polysorbate 80) stable emulsions. Alginate-based emulsions resulted in microemulsions, while chitosan-based emulsions formed macroemulsions, distinguishable by oil droplet size. Although chitosan formulations with higher red clover extract (C1) concentrations showed potential, they exhibited slightly reduced firmness compared to other formulations (C2). Additionally, both alginate and chitosan formulations containing β-CD released bioactive compounds more effectively. The combined use of alginate and chitosan microcapsules in a single pill offers an innovative way to ensure dual solubility in both stomach and intestinal environments, increasing versatility for biomedical and pharmaceutical applications. Full article
(This article belongs to the Special Issue Natural Product Pharmaceuticals)
Show Figures

Figure 1

13 pages, 1797 KiB  
Review
Antimicrobial Activity of Syzygium aromaticum Essential Oil in Human Health Treatment
by Valentina Maggini, Giulia Semenzato, Eugenia Gallo, Alessia Nunziata, Renato Fani and Fabio Firenzuoli
Molecules 2024, 29(5), 999; https://doi.org/10.3390/molecules29050999 - 25 Feb 2024
Cited by 20 | Viewed by 7906
Abstract
The use of natural compounds to prevent and treat infective diseases is increasing its importance, especially in the case of multidrug-resistant (MDR) microorganisms-mediated infections. The drug resistance phenomenon is today a global problem, so it is important to have available substances able to [...] Read more.
The use of natural compounds to prevent and treat infective diseases is increasing its importance, especially in the case of multidrug-resistant (MDR) microorganisms-mediated infections. The drug resistance phenomenon is today a global problem, so it is important to have available substances able to counteract MDR infections. Syzygium aromaticum (L.) Merr. & L.M. Perry (commonly called clove) is a spice characterized by several biological properties. Clove essential oil (EO) consists of numerous active molecules, being eugenol as the principal component; however, other compounds that synergize with each other are responsible for the biological properties of the EO. S. aromaticum is traditionally used for bowel and stomach disorders, cold and flu, oral hygiene, tooth decay, and for its analgesic action. Its EO has shown antioxidant, antimicrobial, anti-inflammatory, neuro-protective, anti-stress, anticancer, and anti-nociceptive activities. This review aims to investigate the role of E. S. aromaticum EO in the counteraction of MDR microorganisms responsible for human disorders, diseases, or infections, such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi, Candida albicans, Giardia lamblia, Streptococcus mutans, Porphyromonas gingivalis, and Klebsiella pneumoniae. This study might orient clinical researchers on future therapeutic uses of S. aromaticum EO in the prevention and treatment of infectious diseases. Full article
(This article belongs to the Special Issue Essential Oils in Human Health)
Show Figures

Figure 1

10 pages, 253 KiB  
Entry
Understanding Rumen Microbiology: An Overview
by Hunter G. Perez, Claire K. Stevenson, Jeferson M. Lourenco and Todd R. Callaway
Encyclopedia 2024, 4(1), 148-157; https://doi.org/10.3390/encyclopedia4010013 - 26 Jan 2024
Cited by 7 | Viewed by 16034
Definition
The rumen is the largest of the four chambers of the “stomach” in ruminant animals, which harbors an incredibly dense, diverse, and dynamic microbial community crucial for feedstuff degradation, animal health, and production. The primary objective of this article is to enhance knowledge [...] Read more.
The rumen is the largest of the four chambers of the “stomach” in ruminant animals, which harbors an incredibly dense, diverse, and dynamic microbial community crucial for feedstuff degradation, animal health, and production. The primary objective of this article is to enhance knowledge and comprehension of rumen microbiology by providing an introductory-level overview of the field of rumen microbiology. Ruminants possess a distinctive digestive system optimized for the microbial breakdown of complex plant materials. The ruminant ”stomach” consists of four chambers (e.g., reticulum, rumen, omasum, and abomasum), which is home to a microbial population that degrades feedstuffs consumed by ruminant animals. Dr. Robert Hungate and Dr. Marvin Bryant’s groundbreaking research in the 1960s laid the foundation for understanding the function of the ruminal microbial ecosystem. Recent advancements (e.g., next-generation sequencing) have provided the field with deeper insight into populations, boosting our understanding of how the microbial population of the rumen functions in a variety of conditions. The ruminal microbial ecosystem is comprised of bacteria, along with archaea, protozoa, bacteriophage, and fungi, each contributing to the symbiotic relationship between the microbial ecosystem and the host animal that is essential for optimal animal health and efficient animal production. Traditional anaerobic growth techniques have facilitated the study of individual anaerobic bacteria but have been limited by dependence on growth in laboratory conditions. The development of 16S rRNA sequencing allows the identification of microbial populations that cannot be grown and allows an unbiased view of microbial diversity. Diet shapes the rumen microbial population composition, influencing animal production metrics such as feed efficiency, methane emissions, and immunological functions. Feed additives (e.g., essential oils, eubiotics) hold promise by manipulating and unraveling the microbial biochemical potential for improving animal health, feed efficiency, environmental impacts, and overall production sustainability. Future research impacts include the development of probiotics, prebiotics, and genetic strategies for optimizing the rumen microbiome’s multifaceted impacts. Full article
(This article belongs to the Section Biology & Life Sciences)
Back to TopTop