Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (297)

Search Parameters:
Keywords = stock market network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1152 KiB  
Article
PortRSMs: Learning Regime Shifts for Portfolio Policy
by Bingde Liu and Ryutaro Ichise
J. Risk Financial Manag. 2025, 18(8), 434; https://doi.org/10.3390/jrfm18080434 - 5 Aug 2025
Viewed by 63
Abstract
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties [...] Read more.
This study proposes a novel Deep Reinforcement Learning (DRL) policy network structure for portfolio management called PortRSMs. PortRSMs employs stacked State-Space Models (SSMs) for the modeling of multi-scale continuous regime shifts in financial time series, striking a balance between exploring consistent distribution properties over short periods and maintaining sensitivity to sudden shocks in price sequences. PortRSMs also performs cross-asset regime fusion through hypergraph attention mechanisms, providing a more comprehensive state space for describing changes in asset correlations and co-integration. Experiments conducted on two different trading frequencies in the stock markets of the United States and Hong Kong show the superiority of PortRSMs compared to other approaches in terms of profitability, risk–return balancing, robustness, and the ability to handle sudden market shocks. Specifically, PortRSMs achieves up to a 0.03 improvement in the annual Sharpe ratio in the U.S. market, and up to a 0.12 improvement for the Hong Kong market compared to baseline methods. Full article
(This article belongs to the Special Issue Machine Learning Applications in Finance, 2nd Edition)
Show Figures

Figure 1

12 pages, 1066 KiB  
Article
Prediction of the Maximum and Minimum Prices of Stocks in the Stock Market Using a Hybrid Model Based on Stacking
by Sebastian Tuesta, Nahum Flores and David Mauricio
Algorithms 2025, 18(8), 471; https://doi.org/10.3390/a18080471 - 28 Jul 2025
Viewed by 325
Abstract
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method [...] Read more.
Predicting stock prices on stock markets is challenging due to the nonlinear and nonstationary nature of financial markets. This study presents a hybrid model based on integrated machine learning (ML) techniques—neural networks, support vector regression (SVR), and decision trees—that uses the stacking method to estimate the next day’s maximum and minimum stock prices. The model’s performance was evaluated using three data sets: Brazil’s São Paulo Stock Exchange (iBovespa)—Companhia Energética do Rio Grande do Norte (CSRN) and CPFL Energia (CPFE)—and one from the New York Stock Exchange (NYSE), the Dow Jones Industrial Average (DJI). The datasets covered the following time periods: CSRN and CPFE from 1 January 2008 to 30 September 2013, and DJI from 3 December 2018 to 31 August 2024. For the CSRN ensemble, the hybrid model achieved a mean absolute percentage error (MAPE) of 0.197% for maximum price and 0.224% for minimum price, outperforming results from the literature. For the CPFE set, the model showed a MAPE of 0.834% for the maximum price and 0.937% for the minimum price, demonstrating comparable accuracy. The model obtained a MAPE of 0.439% for the DJI set for maximum price and 0.474% for minimum price, evidencing its applicability across different market contexts. These results suggest that the proposed hybrid approach offers a robust alternative for stock price prediction by overcoming the limitations of using a single ML technique. Full article
Show Figures

Figure 1

30 pages, 1477 KiB  
Article
Algebraic Combinatorics in Financial Data Analysis: Modeling Sovereign Credit Ratings for Greece and the Athens Stock Exchange General Index
by Georgios Angelidis and Vasilios Margaris
AppliedMath 2025, 5(3), 90; https://doi.org/10.3390/appliedmath5030090 - 15 Jul 2025
Viewed by 212
Abstract
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a [...] Read more.
This study investigates the relationship between sovereign credit rating transitions and domestic equity market performance, focusing on Greece from 2004 to 2024. Although credit ratings are central to sovereign risk assessment, their immediate influence on financial markets remains contested. This research adopts a multi-method analytical framework combining algebraic combinatorics and time-series econometrics. The methodology incorporates the construction of a directed credit rating transition graph, the partially ordered set representation of rating hierarchies, rolling-window correlation analysis, Granger causality testing, event study evaluation, and the formulation of a reward matrix with optimal rating path optimization. Empirical results indicate that credit rating announcements in Greece exert only modest short-term effects on the Athens Stock Exchange General Index, implying that markets often anticipate these changes. In contrast, sequential downgrade trajectories elicit more pronounced and persistent market responses. The reward matrix and path optimization approach reveal structured investor behavior that is sensitive to the cumulative pattern of rating changes. These findings offer a more nuanced interpretation of how sovereign credit risk is processed and priced in transparent and fiscally disciplined environments. By bridging network-based algebraic structures and economic data science, the study contributes a novel methodology for understanding systemic financial signals within sovereign credit systems. Full article
(This article belongs to the Special Issue Algebraic Combinatorics in Data Science and Optimisation)
Show Figures

Figure 1

20 pages, 1840 KiB  
Article
A Hybrid Long Short-Term Memory with a Sentiment Analysis System for Stock Market Forecasting
by Konstantinos Liagkouras and Konstantinos Metaxiotis
Electronics 2025, 14(14), 2753; https://doi.org/10.3390/electronics14142753 - 8 Jul 2025
Viewed by 500
Abstract
Addressing the stock market forecasting as a classification problem, where the model predicts the direction of stock price movement, is crucial for both traders and investors, as it can help them to allocate limited resources to the most promising investment opportunities. In this [...] Read more.
Addressing the stock market forecasting as a classification problem, where the model predicts the direction of stock price movement, is crucial for both traders and investors, as it can help them to allocate limited resources to the most promising investment opportunities. In this study, we propose a hybrid system that uses a Long Short-Term Memory (LSTM) network and sentiment analysis for predicting the direction of the movement of the stock price. The proposed hybrid system is fed with historical stock data and regulatory news announcements for producing more reliable responses. LSTM networks are well suited to handling time series data with long-term dependencies, while the sentiment analyser provides insights into how news impacts stock price movements by classifying business news into classes. By integrating both the LSTM network and the sentiment classifier, the proposed hybrid system delivers more accurate forecasts. Our experiments demonstrate that the proposed hybrid system outperforms other competing configurations. Full article
Show Figures

Figure 1

16 pages, 808 KiB  
Article
Enhancing Stock Price Forecasting with CNN-BiGRU-Attention: A Case Study on INDY
by Madilyn Louisa, Gumgum Darmawan and Bertho Tantular
Mathematics 2025, 13(13), 2148; https://doi.org/10.3390/math13132148 - 30 Jun 2025
Viewed by 414
Abstract
The stock price of PT Indika Energy Tbk (INDY) reflects the dynamics of Indonesia’s energy sector, which is heavily influenced by global coal price fluctuations, national energy policies, and geopolitical conditions. This study aimed to develop an accurate forecasting model to predict the [...] Read more.
The stock price of PT Indika Energy Tbk (INDY) reflects the dynamics of Indonesia’s energy sector, which is heavily influenced by global coal price fluctuations, national energy policies, and geopolitical conditions. This study aimed to develop an accurate forecasting model to predict the movement of INDY stock prices using a hybrid machine learning approach called CNN-BiGRU-AM. The objective was to generate future forecasts of INDY stock prices based on historical data from 28 August 2019 to 24 February 2025. The method applied a hybrid model combining a Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU), and an Attention Mechanism (AM) to address the nonlinear, volatile, and noisy characteristics of stock data. The results showed that the CNN-BiGRU-AM model achieved high accuracy with a Mean Absolute Percentage Error (MAPE) below 3%, indicating its effectiveness in capturing long-term patterns. The CNN helped extract local features and reduce noise, the BiGRU captured bidirectional temporal dependencies, and the Attention Mechanism allocated weights to the most relevant historical information. The model remained robust even when stock prices were sensitive to external factors such as global commodity trends and geopolitical events. This study contributes to providing more accurate forecasting solutions for companies, investors, and stakeholders in making strategic decisions. It also enriches the academic literature on the application of deep learning techniques in financial data analysis and stock market forecasting within a complex and dynamic environment. Full article
Show Figures

Figure 1

23 pages, 3993 KiB  
Article
MSGformer: A Hybrid Multi-Scale Graph–Transformer Architecture for Unified Short- and Long-Term Financial Time Series Forecasting
by Mingfu Zhu, Haoran Qi, Shuiping Ni and Yaxing Liu
Electronics 2025, 14(12), 2457; https://doi.org/10.3390/electronics14122457 - 17 Jun 2025
Viewed by 680
Abstract
Forecasting financial time series is challenging due to their intrinsic nonlinearity, high volatility, and complex dependencies across temporal scales. This study introduces MSGformer, a novel hybrid architecture that integrates multi-scale graph neural networks (MSGNet) with Transformer encoders to capture both local temporal fluctuations [...] Read more.
Forecasting financial time series is challenging due to their intrinsic nonlinearity, high volatility, and complex dependencies across temporal scales. This study introduces MSGformer, a novel hybrid architecture that integrates multi-scale graph neural networks (MSGNet) with Transformer encoders to capture both local temporal fluctuations and long-term global trends in high-frequency financial data. The MSGNet module constructs multi-scale representations using adaptive graph convolutions and intra-sequence attention, while the Transformer component enhances long-range dependency modeling via multi-head self-attention. We evaluate MSGformer on minute-level stock index data from the Chinese A-share market, including CSI 300, SSE 50, CSI 500, and SSE Composite indices. Extensive experiments demonstrate that MSGformer significantly outperforms state-of-the-art baselines (e.g., Transformer, PatchTST, Autoformer) in terms of MAE, RMSE, MAPE, and R2. The results confirm that the proposed hybrid model achieves superior prediction accuracy, robustness, and generalization across various forecasting horizons, providing an effective solution for real-world financial decision-making and risk assessment. Full article
Show Figures

Figure 1

6 pages, 362 KiB  
Proceeding Paper
An Integrated Fuzzy Convolutional Neural Network Model for Stock Price Prediction
by Jia-Wen Wang and Jr-Shian Chen
Eng. Proc. 2025, 98(1), 3; https://doi.org/10.3390/engproc2025098003 - 30 May 2025
Viewed by 349
Abstract
Stock market forecasting has always been researched extensively in Social Sciences. In this research, Fuzzy time series with deep learning is widely adopted to create a fuzzy convolutional neural network integration model as this model enhances the fuzzification of values to enhance feature [...] Read more.
Stock market forecasting has always been researched extensively in Social Sciences. In this research, Fuzzy time series with deep learning is widely adopted to create a fuzzy convolutional neural network integration model as this model enhances the fuzzification of values to enhance feature characteristics using two-dimensional input data in convolutional neural networks (CNNs). This allows the model to retain complete feature information. The fuzzy convolutional neural network (FCNN) model autonomously learns and extracts crucial features by integrating stock market data, resulting in improved forecasting accuracy. In this study, the model was tested for forecasting the Taiwan Weighted Stock Index and metrics such as the mean squared error (MSE) and mean absolute error (MAE), and the results were compared with the real data. The results showed that the model provided accurate predictions. Full article
Show Figures

Figure 1

27 pages, 78121 KiB  
Article
Graph-Based Stock Volatility Forecasting with Effective Transfer Entropy and Hurst-Based Regime Adaptation
by Sangheon Lee and Poongjin Cho
Fractal Fract. 2025, 9(6), 339; https://doi.org/10.3390/fractalfract9060339 - 24 May 2025
Viewed by 1020
Abstract
This study proposes a novel hybrid model for stock volatility forecasting by integrating directional and temporal dependencies among financial time series and market regime changes into a unified modeling framework. Specifically, we design a novel Hurst Exponent Effective Transfer Entropy Graph Neural Network [...] Read more.
This study proposes a novel hybrid model for stock volatility forecasting by integrating directional and temporal dependencies among financial time series and market regime changes into a unified modeling framework. Specifically, we design a novel Hurst Exponent Effective Transfer Entropy Graph Neural Network (H-ETE-GNN) model that captures directional and asymmetric interactions based on Effective Transfer Entropy (ETE), and incorporates regime change detection using the Hurst exponent to reflect evolving global market conditions. To assess the effectiveness of the proposed approach, we compared the forecast performance of the hybrid GNN model with GNN models constructed using Transfer Entropy (TE), Granger causality, and Pearson correlation—each representing different measures of causality and correlation among time series. The empirical analysis was based on daily price data of 10 major country-level ETFs over a 19-year period (2006–2024), collected via Yahoo Finance. Additionally, we implemented recurrent neural network (RNN)-based models such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) under the same experimental conditions to evaluate their performance relative to the GNN-based models. The effect of incorporating regime changes was further examined by comparing the model performance with and without Hurst-exponent-based detection. The experimental results demonstrated that the hybrid GNN-based approach effectively captured the structure of information flow between time series, leading to substantial improvements in the forecast performance for one-day-ahead realized volatility. Furthermore, incorporating regime change detection via the Hurst exponent enhanced the model’s adaptability to structural shifts in the market. This study highlights the potential of H-ETE-GNN in jointly modeling interactions between time series and market regimes, offering a promising direction for more accurate and robust volatility forecasting in complex financial environments. Full article
Show Figures

Figure 1

22 pages, 1775 KiB  
Article
A Hybrid Forecasting Model for Stock Price Prediction: The Case of Iranian Listed Companies
by Fatemeh Keyvani, Farzaneh Nassirzadeh, Davood Askarany and Ehsan Khansalar
J. Risk Financial Manag. 2025, 18(5), 281; https://doi.org/10.3390/jrfm18050281 - 19 May 2025
Viewed by 1284
Abstract
This paper introduces advanced computational methods for stock price prediction, integrating Fast Recurrent Neural Networks (FastRNN) with meta-heuristic algorithms such as the Horse Herd Optimization Algorithm (HOA) and the Spotted Hyena Optimizer (SHO). By challenging the Efficient Market Hypothesis (EMH) and Random Walk [...] Read more.
This paper introduces advanced computational methods for stock price prediction, integrating Fast Recurrent Neural Networks (FastRNN) with meta-heuristic algorithms such as the Horse Herd Optimization Algorithm (HOA) and the Spotted Hyena Optimizer (SHO). By challenging the Efficient Market Hypothesis (EMH) and Random Walk Hypothesis, our research demonstrates the effectiveness of these hybrid models in semi-strong or weak-form efficient markets. The study leverages data from five listed Iranian companies (2011–2021) and 25 factors encompassing technical, fundamental, and economic considerations. Our findings highlight the superior accuracy of the FastRNN optimised by HOA, SHO, and a Generative Adversarial Network (GAN) in forecasting stock prices compared to conventional FastRNN models. This research contributes to the multidisciplinary field of computational economics, emphasising advanced computing capabilities to address complex economic problems through innovative econometrics, optimisation, and machine learning approaches. Full article
(This article belongs to the Special Issue Innovations and Challenges in Management Accounting)
Show Figures

Figure 1

24 pages, 4341 KiB  
Article
Intraday and Post-Market Investor Sentiment for Stock Price Prediction: A Deep Learning Framework with Explainability and Quantitative Trading Strategy
by Guowei Sun and Yong Li
Systems 2025, 13(5), 390; https://doi.org/10.3390/systems13050390 - 18 May 2025
Cited by 1 | Viewed by 3589
Abstract
The inherent uncertainty and information asymmetry in financial markets create significant challenges for accurate price forecasting. Although investor sentiment analysis has gained traction in recent research, the temporal dimension of sentiment dynamics remains underexplored. This study develops a novel framework that enhances stock [...] Read more.
The inherent uncertainty and information asymmetry in financial markets create significant challenges for accurate price forecasting. Although investor sentiment analysis has gained traction in recent research, the temporal dimension of sentiment dynamics remains underexplored. This study develops a novel framework that enhances stock price prediction by integrating time-partitioned investor sentiment, while improving model interpretability via Shapley additive explanations (SHAP) analysis. Employing the ERNIE (enhanced representation through knowledge integration) 3.0 model for sentiment extraction from China’s Eastmoney Guba stock forum, we quantitatively distinguish intraday and post-market investor sentiment then integrate these temporal components with technical indicators through neural network architecture. Our results indicate that temporal sentiment partitioning effectively reduces uncertainty. Empirical evidence demonstrates that our long short-term memory (LSTM) model integrating intraday and post-market sentiment indicators achieves better prediction accuracy, and SHAP analysis reveals the importance of intraday and post-market investor sentiment to stock price prediction models. Implementing quantitative trading strategies based on these insights generates significantly more annualized returns for representative stocks with controlled risk, outperforming sentiment-agnostic and non-temporal sentiment models. This research provides methodological innovations for processing temporal unstructured data in finance, while the SHAP framework offers regulators and investors actionable insights into sentiment-driven market dynamics. Full article
Show Figures

Figure 1

36 pages, 7110 KiB  
Article
Stock Market Bubble Warning: A Restricted Boltzmann Machine Approach Using Volatility–Return Sequences
by Mauricio A. Valle, Jaime Lavín and Felipe Urbina
Appl. Sci. 2025, 15(10), 5613; https://doi.org/10.3390/app15105613 - 17 May 2025
Viewed by 670
Abstract
Combining unsupervised learning with Restricted Boltzmann Machines and supervised learning with Balanced Random Forest and Feedforward Neural Networks, we propose a warning system for the early detection of stock bubbles by analyzing daily returns and the volatility of a market index. We complement [...] Read more.
Combining unsupervised learning with Restricted Boltzmann Machines and supervised learning with Balanced Random Forest and Feedforward Neural Networks, we propose a warning system for the early detection of stock bubbles by analyzing daily returns and the volatility of a market index. We complement our method by detecting states of high volatility and very low returns, which are market states that immediately follow a stock market’s bubble-bursting point. We trained our detection model using the S&P500 as an empirical case study, using successive samples of well-known crises from 1987 to 2022. Our results achieve area-under-the-curve (AUC) rates of over 70% and false-positive rates of less than 20%. Our model’s generative nature enables the creation of synthetic samples to analyze market periods prone to forming a bubble. The model successfully alerts periods of bubbles and instability in the stock market. Capital markets’ interconnectedness enables the model to be trained with various shocks from other stock markets, providing further detection learning possibilities and improved detection rates. Our work helps investors, regulators, and practitioners in their stock market investment, supervision, and monitoring tasks. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

19 pages, 2005 KiB  
Article
Network Risk Diffusion and Resilience in Emerging Stock Markets
by Jiang-Cheng Li, Yi-Zhen Xu and Chen Tao
Entropy 2025, 27(5), 533; https://doi.org/10.3390/e27050533 - 16 May 2025
Viewed by 496
Abstract
With the acceleration of globalization, the connections between emerging market economies are becoming increasingly intricate, making it crucial to understand the mechanisms of risk transmission. This study employs the transfer entropy model to analyze risk diffusion and network resilience across ten emerging market [...] Read more.
With the acceleration of globalization, the connections between emerging market economies are becoming increasingly intricate, making it crucial to understand the mechanisms of risk transmission. This study employs the transfer entropy model to analyze risk diffusion and network resilience across ten emerging market countries. The findings reveal that Brazil, Mexico, and Saudi Arabia are the primary risk exporters, while countries such as India, South Africa, and Indonesia predominantly act as risk receivers. The research highlights the profound impact of major events such as the 2008 global financial crisis and the 2020 COVID-19 pandemic on risk diffusion, with risk diffusion peaking during the pandemic. Additionally, the study underscores the importance of network resilience, suggesting that certain levels of noise and shocks can enhance resilience and improve network stability. While the global economy gradually recovered following the 2008 financial crisis, the post-pandemic recovery has been slower, with external shocks and noise presenting long-term challenges to network resilience. This study emphasizes the importance of understanding network resilience and risk diffusion mechanisms, offering new insights for managing risk transmission in future global economic crises. Full article
(This article belongs to the Special Issue Complexity in Financial Networks)
Show Figures

Figure 1

25 pages, 2225 KiB  
Article
MambaLLM: Integrating Macro-Index and Micro-Stock Data for Enhanced Stock Price Prediction
by Jin Yan and Yuling Huang
Mathematics 2025, 13(10), 1599; https://doi.org/10.3390/math13101599 - 13 May 2025
Viewed by 1547
Abstract
Accurate stock price prediction requires the integration of heterogeneous data streams, yet conventional techniques struggle to simultaneously leverage fine-grained micro-stock features and broader macroeconomic indicators. To address this gap, we propose MambaLLM, a novel framework that fuses macro-index and micro-stock inputs through the [...] Read more.
Accurate stock price prediction requires the integration of heterogeneous data streams, yet conventional techniques struggle to simultaneously leverage fine-grained micro-stock features and broader macroeconomic indicators. To address this gap, we propose MambaLLM, a novel framework that fuses macro-index and micro-stock inputs through the synergistic use of state-space models (SSMs) and large language models (LLMs). Our two-branch architecture comprises (i) Micro-Stock Encoder, a Mamba-based temporal encoder for processing granular stock-level data (prices, volumes, and technical indicators), and (ii) Macro-Index Analyzer, an LLM module—employing DeepSeek R1 7B distillation—capable of interpreting market-level index trends (e.g., S&P 500) to produce textual summaries. These summaries are then distilled into compact embeddings via FinBERT. By merging these multi-scale representations through a concatenation mechanism and subsequently refining them with multi-layer perceptrons (MLPs), MambaLLM dynamically captures both asset-specific price behavior and systemic market fluctuations. Extensive experiments on six major U.S. stocks (AAPL, AMZN, MSFT, TSLA, GOOGL, and META) reveal that MambaLLM delivers up to a 28.50% reduction in RMSE compared with suboptimal models, surpassing traditional recurrent neural networks and MAMBA-based baselines under volatile market conditions. This marked performance gain highlights the framework’s unique ability to merge structured financial time series with semantically rich macroeconomic narratives. Altogether, our findings underscore the scalability and adaptability of MambaLLM, offering a powerful, next-generation tool for financial forecasting and risk management. Full article
(This article belongs to the Special Issue Applied Mathematics in Data Science and High-Performance Computing)
Show Figures

Figure 1

20 pages, 1548 KiB  
Article
Network Analysis of Volatility Spillovers Between Environmental, Social, and Governance (ESG) Rating Stocks: Evidence from China
by Miao Tian, Shuhuai Li, Xianghan Cao and Guizhou Wang
Mathematics 2025, 13(10), 1586; https://doi.org/10.3390/math13101586 - 12 May 2025
Viewed by 764
Abstract
In the globalized economic system, environmental, social, and governance (ESG) factors have emerged as critical dimensions for assessing non-financial performance and ensuring the long-term sustainable development of businesses, influencing corporate behavior, investor expectations, and regulatory landscapes. This article applies the VAR-DY network analysis [...] Read more.
In the globalized economic system, environmental, social, and governance (ESG) factors have emerged as critical dimensions for assessing non-financial performance and ensuring the long-term sustainable development of businesses, influencing corporate behavior, investor expectations, and regulatory landscapes. This article applies the VAR-DY network analysis method to construct a large-scale financial volatility spillover network covering all Chinese stocks. It explores the risk transmission paths among different ESG-rated groups and analyzes the patterns and impacts of risk transmission during extreme market volatility. The study finds that as ESG ratings decrease from AAA to C, the network’s average shortest path length and average connectedness strength decreases, indicating that highly rated companies play a central role in the network and maintain their ESG ratings through close connections, positively affecting market stability. However, analyses of the 2015 Chinese stock market crash and the COVID-19 pandemic show a general increase in volatility spillover effects. Notably, the direction of risk spillover in relation to ESG ratings was opposite in these two events, reflecting differences in the underlying drivers of market volatility. This suggests that under extreme market conditions, traditional risk management tools need to be optimized by incorporating ESG factors to better address risk contagion. Full article
(This article belongs to the Special Issue Advances in Financial Mathematics and Risk Management)
Show Figures

Figure 1

27 pages, 1758 KiB  
Article
Cybersecure XAI Algorithm for Generating Recommendations Based on Financial Fundamentals Using DeepSeek
by Iván García-Magariño, Javier Bravo-Agapito and Raquel Lacuesta
AI 2025, 6(5), 95; https://doi.org/10.3390/ai6050095 - 2 May 2025
Viewed by 1414
Abstract
Background: Investment decisions in stocks are one of the most complex tasks due to the uncertainty of which stocks will increase or decrease in their values. A diversified portfolio statistically reduces the risk; however, stock choice still substantially influences the profitability. Methods: This [...] Read more.
Background: Investment decisions in stocks are one of the most complex tasks due to the uncertainty of which stocks will increase or decrease in their values. A diversified portfolio statistically reduces the risk; however, stock choice still substantially influences the profitability. Methods: This work proposes a methodology to automate investment decision recommendations with clear explanations. It utilizes generative AI, guided by prompt engineering, to interpret price predictions derived from neural networks. The methodology also includes the Artificial Intelligence Trust, Risk, and Security Management (AI TRiSM) model to provide robust security recommendations for the system. The proposed system provides long-term investment recommendations based on the financial fundamentals of companies, such as the price-to-earnings ratio (PER) and the net margin of profits over the total revenue. The proposed explainable artificial intelligence (XAI) system uses DeepSeek for describing recommendations and suggested companies, as well as several charts based on Shapley additive explanation (SHAP) values and local-interpretable model-agnostic explanations (LIMEs) for showing feature importance. Results: In the experiments, we compared the profitability of the proposed portfolios, ranging from 8 to 28 stock values, with the maximum expected price increases for 4 years in the NASDAQ-100 and S&P-500, where both bull and bear markets were, respectively, considered before and after the custom duties increases in international trade by the USA in April 2025. The proposed system achieved an average profitability of 56.62% while considering 120 different portfolio recommendations. Conclusions: A t-Student test confirmed that the difference in profitability compared to the index was statistically significant. A user study revealed that the participants agreed that the portfolio explanations were useful for trusting the system, with an average score of 6.14 in a 7-point Likert scale. Full article
(This article belongs to the Special Issue AI in Finance: Leveraging AI to Transform Financial Services)
Show Figures

Figure 1

Back to TopTop