Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = stochastic gradient genetic algorithm

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1690 KB  
Article
Hybrid Drive Simulation Architecture for Power Distribution Based on the Federated Evolutionary Monte Carlo Algorithm
by Dongli Jia, Xiaoyu Yang, Wanxing Sheng, Keyan Liu, Tingyan Jin, Xiaoming Li and Weijie Dong
Energies 2025, 18(21), 5595; https://doi.org/10.3390/en18215595 - 24 Oct 2025
Cited by 1 | Viewed by 575
Abstract
Modern active distribution networks are increasingly characterized by high complexity, uncertainty, and distributed clustering, posing challenges for traditional model-based simulations in capturing nonlinear dynamics and stochastic variations. This study develops a data–model hybrid-driven simulation architecture that integrates a Federated Evolutionary Monte Carlo Optimization [...] Read more.
Modern active distribution networks are increasingly characterized by high complexity, uncertainty, and distributed clustering, posing challenges for traditional model-based simulations in capturing nonlinear dynamics and stochastic variations. This study develops a data–model hybrid-driven simulation architecture that integrates a Federated Evolutionary Monte Carlo Optimization (FEMCO) algorithm for distribution network optimization. The model-driven module employs spectral clustering to decompose the network into multiple autonomous subsystems and performs distributed reconstruction through gradient descent. The data-driven module, built upon Long Short-Term Memory (LSTM) networks, learns temporal dependencies between load curves and operational parameters to enhance predictive accuracy. These two modules are fused via a Random Forest ensemble, while FEMCO jointly leverages Monte Carlo global sampling, Federated Learning-based distributed training, and Genetic Algorithm-driven evolutionary optimization. Simulation studies on the IEEE 33 bus distribution system demonstrate that the proposed framework reduces power losses by 25–45% and voltage deviations by 75–85% compared with conventional Genetic Algorithm and Monte Carlo approaches. The results confirm that the proposed hybrid architecture effectively improves convergence stability, optimization precision, and adaptability, providing a scalable solution for the intelligent operation and distributed control of modern power distribution systems. Full article
Show Figures

Figure 1

45 pages, 2364 KB  
Systematic Review
Advances and Optimization Trends in Photovoltaic Systems: A Systematic Review
by Luis Angel Iturralde Carrera, Gendry Alfonso-Francia, Carlos D. Constantino-Robles, Juan Terven, Edgar A. Chávez-Urbiola and Juvenal Rodríguez-Reséndiz
AI 2025, 6(9), 225; https://doi.org/10.3390/ai6090225 - 10 Sep 2025
Cited by 1 | Viewed by 3052
Abstract
This article presents a systematic review of optimization methods applied to enhance the performance of photovoltaic (PV) systems, with a focus on critical challenges such as system design and spatial layout, maximum power point tracking (MPPT), energy forecasting, fault diagnosis, and energy management. [...] Read more.
This article presents a systematic review of optimization methods applied to enhance the performance of photovoltaic (PV) systems, with a focus on critical challenges such as system design and spatial layout, maximum power point tracking (MPPT), energy forecasting, fault diagnosis, and energy management. The emphasis is on the integration of classical and algorithmic approaches. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA) methodology, 314 relevant publications from 2020 to 2025 were analyzed to identify current trends, methodological advances, and practical applications in the optimization of PV performance. The principal novelty of this review lies in its integrative critical analysis, which systematically contrasts the applicability, performance, and limitations of deterministic classical methods with emerging stochastic metaheuristic and data-driven artificial intelligence (AI) techniques, highlighting the growing dominance of hybrid models that synergize their strengths. Traditional techniques such as analytical modeling, numerical simulation, linear and dynamic programming, and gradient-based methods are examined in terms of their efficiency and scope. In parallel, the study evaluates the growing adoption of metaheuristic algorithms, including particle swarm optimization, genetic algorithms, and ant colony optimization, as well as machine learning (ML) and deep learning (DL) models applied to tasks such as MPPT, spatial layout optimization, energy forecasting, and fault diagnosis. A key contribution of this review is the identification of hybrid methodologies that combine metaheuristics with ML/DL models, demonstrating superior results in energy yield, robustness, and adaptability under dynamic conditions. The analysis highlights both the strengths and limitations of each paradigm, emphasizing challenges related to data availability, computational cost, and model interpretability. Finally, the study proposes future research directions focused on explainable AI, real-time control via edge computing, and the development of standardized benchmarks for performance evaluation. The findings contribute to a deeper understanding of current capabilities and opportunities in PV system optimization, offering a strategic framework for advancing intelligent and sustainable solar energy technologies. Full article
Show Figures

Figure 1

14 pages, 715 KB  
Article
A Data-Driven Approach of DRG-Based Medical Insurance Payment Policy Formulation in China Based on an Optimization Algorithm
by Kun Ba and Biqing Huang
Stats 2025, 8(3), 54; https://doi.org/10.3390/stats8030054 - 30 Jun 2025
Viewed by 2624
Abstract
The diagnosis-related group (DRG) system classifies patients into different groups in order to facilitate decisions regarding medical insurance payments. Currently, more than 600 standard DRGs exist in China. Payment details represented by DRG weights must be adjusted during decision-making. After modeling the DRG [...] Read more.
The diagnosis-related group (DRG) system classifies patients into different groups in order to facilitate decisions regarding medical insurance payments. Currently, more than 600 standard DRGs exist in China. Payment details represented by DRG weights must be adjusted during decision-making. After modeling the DRG weight-determining process as a parameter-searching and optimization-solving problem, we propose a stochastic gradient tracking algorithm (SGT) and compare it with a genetic algorithm and sequential quadratic programming. We describe diagnosis-related groups in China using several statistics based on sample data from one city. We explored the influence of the SGT hyperparameters through numerous experiments and demonstrated the robustness of the best SGT hyperparameter combination. Our stochastic gradient tracking algorithm finished the parameter search in only 3.56 min when the insurance payment rate was set at 95%, which is acceptable and desirable. As the main medical insurance payment scheme in China, DRGs require quantitative evidence for policymaking. The optimization algorithm proposed in this study shows a possible scientific decision-making method for use in the DRG system, particularly with regard to DRG weights. Full article
Show Figures

Figure 1

12 pages, 3164 KB  
Article
Optimizing Vehicle Body Cross-Sections Using a Parametric Mathematical Model
by Zhaohui Hu, Shuai Mo, Huang Liu and Fuhao Mo
Appl. Sci. 2024, 14(23), 11427; https://doi.org/10.3390/app142311427 - 9 Dec 2024
Viewed by 1679
Abstract
This paper proposes a fast optimization method of body section at the conceptual design stage, based on the demand for body performance in body concept design. The study first establishes a geometrically simplified model of the truss body structure and uses the transfer [...] Read more.
This paper proposes a fast optimization method of body section at the conceptual design stage, based on the demand for body performance in body concept design. The study first establishes a geometrically simplified model of the truss body structure and uses the transfer matrix method to establish a fully parameterized model of the geometrically simplified body under bending conditions. Then, the stochastic gradient genetic algorithm is used to optimize the solution and determine the geometric parameters of each section. In the example of this paper, after the optimization of the established meshless model, the mass of the whole vehicle is reduced by 30%, and the stiffness of the whole vehicle is greater than that of the benchmark vehicle (5128 N/mm, 4386 N/mm), and at the same time, compared with the conceptual design method of the body of CAE technology, the modeling time is greatly reduced, and the computational efficiency of the analytical method is greatly improved compared with the finite element method. Full article
Show Figures

Figure 1

24 pages, 3621 KB  
Article
Improving Forest Above-Ground Biomass Estimation Accuracy Using Multi-Source Remote Sensing and Optimized Least Absolute Shrinkage and Selection Operator Variable Selection Method
by Er Wang, Tianbao Huang, Zhi Liu, Lei Bao, Binbing Guo, Zhibo Yu, Zihang Feng, Hongbin Luo and Guanglong Ou
Remote Sens. 2024, 16(23), 4497; https://doi.org/10.3390/rs16234497 - 30 Nov 2024
Cited by 15 | Viewed by 5654
Abstract
Estimation of forest above-ground biomass (AGB) using multi-source remote sensing data is an important method to improve the accuracy of the estimate. However, selecting remote sensing factors that can effectively improve the accuracy of forest AGB estimation from a large amount of data [...] Read more.
Estimation of forest above-ground biomass (AGB) using multi-source remote sensing data is an important method to improve the accuracy of the estimate. However, selecting remote sensing factors that can effectively improve the accuracy of forest AGB estimation from a large amount of data is a challenge when the sample size is small. In this regard, the Least Absolute Shrinkage and Selection Operator (Lasso) has advantages for extensive redundant variables but still has some drawbacks. To address this, the study introduces two Least Absolute Shrinkage and Selection Operator Lasso-based variable selection methods: Least Absolute Shrinkage and Selection Operator Genetic Algorithm (Lasso-GA) and Variance Inflation Factor Least Absolute Shrinkage and Selection Operator (VIF-Lasso). Sentinel 2, Sentinel 1, Landsat 8 OLI, ALOS-2 PALSAR-2, Light Detection and Ranging, and Digital Elevation Model (DEM) data were used in this study. In order to explore the variable selection capabilities of Lasso-GA and VIF-Lasso for remote sensing estimation of forest AGB. It compares Lasso-GA and VIF-Lasso with Boruta, Random Forest Importance Selection, Pearson Correlation, and Lasso for selecting remote sensing factors. Additionally, it employs eight machine learning models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), Support Vector Machine (SVM), Bayesian Regression Neural Network (BRNN), Elastic Net (EN), K-Nearest Neighbors (KNN), Extremely Randomized Trees (ETR), and Stochastic Gradient Boosting (SGBoost)—to estimate forest AGB in Wuyi Village, Zhenyuan County. The results showed that the optimized Lasso variable selection could improve the accuracy of forest biomass estimation. The VIF-Lasso method results in a BRNN model with an R2 of 0.75 and an RMSE of 16.48 Mg/ha. The Lasso-GA method results in an ETR model with an R2 of 0.73 and an RMSE of 16.70 Mg/ha. Compared to the optimal SGBoost model with the Lasso variable selection method (R2 of 0.69, RMSE of 18.63 Mg/ha), the VIF-Lasso method improves R2 by 0.06 and reduces RMSE by 2.15 Mg/ha, while the Lasso-GA method improves R2 by 0.04 and reduces RMSE by 1.93 Mg/ha. From another perspective, they also demonstrated that the RX sample count and sensitivity provided by LiDAR, as well as the Horizontal Transmit, Vertical Receive provided by Microwave Radar, along with the feature variables (Mean, Contrast, and Correlation) calculated from the Green, Red, and NIR bands of optical remote sensing in 7 × 7 and 5 × 5 windows, play an important role in forest AGB estimation. Therefore, the optimized Lasso variable selection method shows strong potential for forest AGB estimation using multi-source remote sensing data. Full article
Show Figures

Figure 1

13 pages, 1540 KB  
Article
NSGA–III–XGBoost-Based Stochastic Reliability Analysis of Deep Soft Rock Tunnel
by Jiancong Xu, Chen Sun and Guorong Rui
Appl. Sci. 2024, 14(5), 2127; https://doi.org/10.3390/app14052127 - 4 Mar 2024
Cited by 7 | Viewed by 2215
Abstract
How to evaluate the reliability of deep soft rock tunnels under high stress is a very important problem to be solved. In this paper, we proposed a practical stochastic reliability method based on the third-generation non-dominated sorting genetic algorithm (NSGA–III) and eXtreme Gradient [...] Read more.
How to evaluate the reliability of deep soft rock tunnels under high stress is a very important problem to be solved. In this paper, we proposed a practical stochastic reliability method based on the third-generation non-dominated sorting genetic algorithm (NSGA–III) and eXtreme Gradient Boosting (XGBoost). The proposed method used the Latin hypercube sampling method to generate the dataset samples of geo-mechanical parameters and adopted XGBoost to establish the model of the nonlinear relationship between displacements and surrounding rock mechanical parameters. And NSGA–III was used to optimize the surrogate model hyper-parameters. Finally, the failure probability was computed by the optimized surrogate model. The proposed approach was firstly implemented in the analysis of a horseshoe-shaped highway tunnel to illustrate the efficiency of the approach. Then, in comparison to the support vector regression method and the back propagation neural network method, the feasibility, validity and advantages of XGBoost were demonstrated for practical problems. Using XGBoost to achieve Monte Carlo simulation, a surrogate solution can be provided for numerical simulation analysis to overcome the time-consuming reliability evaluation of initial support structures in soft rock tunnels. The proposed method can evaluate quickly the large deformation disaster risks of non-circular deep soft rock tunnels. Full article
Show Figures

Figure 1

22 pages, 3482 KB  
Article
Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms
by Joseph Isabona, Agbotiname Lucky Imoize, Oluwasayo Akinloye Akinwumi, Okiemute Roberts Omasheye, Emughedi Oghu, Cheng-Chi Lee and Chun-Ta Li
Information 2023, 14(11), 621; https://doi.org/10.3390/info14110621 - 19 Nov 2023
Cited by 1 | Viewed by 2886
Abstract
Benchmarking different optimization algorithms is tasky, particularly for network-based cellular communication systems. The design and management process of these systems involves many stochastic variables and complex design parameters that demand an unbiased estimation and analysis. Though several optimization algorithms exist for different parametric [...] Read more.
Benchmarking different optimization algorithms is tasky, particularly for network-based cellular communication systems. The design and management process of these systems involves many stochastic variables and complex design parameters that demand an unbiased estimation and analysis. Though several optimization algorithms exist for different parametric modeling and tuning, an in-depth evaluation of their functional performance has not been adequately addressed, especially for cellular communication systems. Firstly, in this paper, nine key numerical and global optimization algorithms, comprising Gauss–Newton (GN), gradient descent (GD), Genetic Algorithm (GA), Levenberg–Marguardt (LM), Quasi-Newton (QN), Trust-Region–Dog-Leg (TR), pattern search (PAS), Simulated Annealing (SA), and particle swam (PS), have been benchmarked against measured data. The experimental data were taken from different radio signal propagation terrains around four eNodeB cells. In order to assist the radio frequency (RF) engineer in selecting the most suitable optimization method for the parametric model tuning, three-fold benchmarking criteria comprising the Accuracy Profile Benchmark (APB), Function Evaluation Benchmark (FEB), and Execution Speed Benchmark (ESB) were employed. The APB and FEB were quantitatively compared against the measured data for fair benchmarking. By leveraging the APB performance criteria, the QN achieved the best results with the preferred values of 98.34, 97.31, 97.44, and 96.65% in locations 1–4. The GD attained the worst performance with the lowest APE values of 98.25, 95.45, 96.10, and 95.70 in the tested locations. In terms of objective function values and their evaluation count, the QN algorithm shows the fewest function counts of 44, 44, 56, and 44, and the lowest objective values of 80.85, 37.77, 54.69, and 41.24, thus attaining the best optimization algorithm results across the study locations. The worst performance was attained by the GD with objective values of 86.45, 39.58, 76.66, and 54.27, respectively. Though the objective values achieved with global optimization methods, PAS, GA, PS, and SA, are relatively small compared to the QN, their function evaluation counts are high. The PAS, GA, PS, and SA recorded 1367, 2550, 3450, and 2818 function evaluation counts, which are relatively high. Overall, the QN algorithm achieves the best optimization, and it can serve as a reference for RF engineers in selecting suitable optimization methods for propagation modeling and parametric tuning. Full article
(This article belongs to the Special Issue Intelligent Information Processing for Sensors and IoT Communications)
Show Figures

Figure 1

19 pages, 12196 KB  
Article
Estimation of Lithium-Ion Battery State of Charge Based on Genetic Algorithm Support Vector Regression under Multiple Temperatures
by Chao Chen, Zhenhua Li and Jie Wei
Electronics 2023, 12(21), 4433; https://doi.org/10.3390/electronics12214433 - 27 Oct 2023
Cited by 5 | Viewed by 2857
Abstract
In the energy crisis and post-epidemic era, the new energy industry is thriving, encompassing new energy vehicles exclusively powered by lithium-ion batteries. Within the battery management system of these new energy vehicles, the state of charge (SOC) estimation plays a pivotal role. The [...] Read more.
In the energy crisis and post-epidemic era, the new energy industry is thriving, encompassing new energy vehicles exclusively powered by lithium-ion batteries. Within the battery management system of these new energy vehicles, the state of charge (SOC) estimation plays a pivotal role. The SOC represents the current state of charge of the lithium-ion battery. This paper proposes a joint estimation algorithm based on genetic algorithm (GA) simulating biogenetic properties and support vector regression (SVR) to improve the prediction accuracy of lithium-ion battery SOC. Genetic algorithm support vector regression (GASVR) is proposed to address the limitations of traditional SVR, which lacks guidance on parameter selection. The model attains notable accuracy. GASVR constructs a set of solution spaces, generating initial populations that adhere to a normal distribution using a stochastic approach. A fitness function calculates the fitness value for each individual. Based on their fitness, the roulette wheel method is employed to generate the next-generation population through selection, crossover, and mutation. After several iterations, individuals with the highest fitness values are identified. These top individuals acquire parameter information, culminating in the training of the final SVR model. The model leverages advanced mathematical techniques to address SOC prediction challenges in the Hilbert space, providing theoretical justification for handling intricate nonlinear problems. Rigorous testing of the model at temperatures ranging from −20 C to 25 C under three different working conditions demonstrates its superior accuracy and robustness compared to extreme gradient boosting (XGBoost), random forest regression (RFR), linear kernel function SVR, and the original radial basis kernel function SVR. The model proposed in this paper lays the groundwork and offers a scheme for predicting the SOC within the battery management system of new energy vehicles. Full article
(This article belongs to the Special Issue Advanced Energy Supply and Storage Systems for Electric Vehicles)
Show Figures

Figure 1

13 pages, 377 KB  
Article
SVD-Based Identification of Parameters of the Discrete-Time Stochastic Systems Models with Multiplicative and Additive Noises Using Metaheuristic Optimization
by Andrey Tsyganov and Yulia Tsyganova
Mathematics 2023, 11(20), 4292; https://doi.org/10.3390/math11204292 - 15 Oct 2023
Cited by 2 | Viewed by 1926
Abstract
The paper addresses a parameter identification problem for discrete-time stochastic systems models with multiplicative and additive noises. Stochastic systems with additive and multiplicative noises are considered when solving many practical problems related to the processing of measurements information. The purpose of this work [...] Read more.
The paper addresses a parameter identification problem for discrete-time stochastic systems models with multiplicative and additive noises. Stochastic systems with additive and multiplicative noises are considered when solving many practical problems related to the processing of measurements information. The purpose of this work is to develop a numerically stable gradient-free instrumental method for solving the parameter identification problems for a class of mathematical models described by discrete-time linear stochastic systems with multiplicative and additive noises on the basis of metaheuristic optimization and singular value decomposition. We construct an identification criterion in the form of the negative log-likelihood function based on the values calculated by the newly proposed SVD-based Kalman-type filtering algorithm, taking into account the multiplicative noises in the equations of the state and measurements. Metaheuristic optimization algorithms such as the GA (genetic algorithm) and SA (simulated annealing) are used to minimize the identification criterion. Numerical experiments confirm the validity of the proposed method and its numerical stability compared with the usage of the conventional Kalman-type filtering algorithm. Full article
(This article belongs to the Special Issue Advanced Research in Fuzzy Systems and Artificial Intelligence)
Show Figures

Figure 1

32 pages, 9097 KB  
Article
Benign and Malignant Breast Tumor Classification in Ultrasound and Mammography Images via Fusion of Deep Learning and Handcraft Features
by Clara Cruz-Ramos, Oscar García-Avila, Jose-Agustin Almaraz-Damian, Volodymyr Ponomaryov, Rogelio Reyes-Reyes and Sergiy Sadovnychiy
Entropy 2023, 25(7), 991; https://doi.org/10.3390/e25070991 - 28 Jun 2023
Cited by 42 | Viewed by 9424
Abstract
Breast cancer is a disease that affects women in different countries around the world. The real cause of breast cancer is particularly challenging to determine, and early detection of the disease is necessary for reducing the death rate, due to the high risks [...] Read more.
Breast cancer is a disease that affects women in different countries around the world. The real cause of breast cancer is particularly challenging to determine, and early detection of the disease is necessary for reducing the death rate, due to the high risks associated with breast cancer. Treatment in the early period can increase the life expectancy and quality of life for women. CAD (Computer Aided Diagnostic) systems can perform the diagnosis of the benign and malignant lesions of breast cancer using technologies and tools based on image processing, helping specialist doctors to obtain a more precise point of view with fewer processes when making their diagnosis by giving a second opinion. This study presents a novel CAD system for automated breast cancer diagnosis. The proposed method consists of different stages. In the preprocessing stage, an image is segmented, and a mask of a lesion is obtained; during the next stage, the extraction of the deep learning features is performed by a CNN—specifically, DenseNet 201. Additionally, handcrafted features (Histogram of Oriented Gradients (HOG)-based, ULBP-based, perimeter area, area, eccentricity, and circularity) are obtained from an image. The designed hybrid system uses CNN architecture for extracting deep learning features, along with traditional methods which perform several handcraft features, following the medical properties of the disease with the purpose of later fusion via proposed statistical criteria. During the fusion stage, where deep learning and handcrafted features are analyzed, the genetic algorithms as well as mutual information selection algorithm, followed by several classifiers (XGBoost, AdaBoost, Multilayer perceptron (MLP)) based on stochastic measures, are applied to choose the most sensible information group among the features. In the experimental validation of two modalities of the CAD design, which performed two types of medical studies—mammography (MG) and ultrasound (US)—the databases mini-DDSM (Digital Database for Screening Mammography) and BUSI (Breast Ultrasound Images Dataset) were used. Novel CAD systems were evaluated and compared with recent state-of-the-art systems, demonstrating better performance in commonly used criteria, obtaining ACC of 97.6%, PRE of 98%, Recall of 98%, F1-Score of 98%, and IBA of 95% for the abovementioned datasets. Full article
(This article belongs to the Special Issue Pattern Recognition and Data Clustering in Information Theory)
Show Figures

Figure 1

17 pages, 3748 KB  
Article
NSGA-PINN: A Multi-Objective Optimization Method for Physics-Informed Neural Network Training
by Binghang Lu, Christian Moya and Guang Lin
Algorithms 2023, 16(4), 194; https://doi.org/10.3390/a16040194 - 3 Apr 2023
Cited by 17 | Viewed by 8821
Abstract
This paper presents NSGA-PINN, a multi-objective optimization framework for the effective training of physics-informed neural networks (PINNs). The proposed framework uses the non-dominated sorting genetic algorithm (NSGA-II) to enable traditional stochastic gradient optimization algorithms (e.g., ADAM) to escape local minima effectively. Additionally, the [...] Read more.
This paper presents NSGA-PINN, a multi-objective optimization framework for the effective training of physics-informed neural networks (PINNs). The proposed framework uses the non-dominated sorting genetic algorithm (NSGA-II) to enable traditional stochastic gradient optimization algorithms (e.g., ADAM) to escape local minima effectively. Additionally, the NSGA-II algorithm enables satisfying the initial and boundary conditions encoded into the loss function during physics-informed training precisely. We demonstrate the effectiveness of our framework by applying NSGA-PINN to several ordinary and partial differential equation problems. In particular, we show that the proposed framework can handle challenging inverse problems with noisy data. Full article
(This article belongs to the Topic Advances in Artificial Neural Networks)
Show Figures

Figure 1

16 pages, 4044 KB  
Article
Discrimination of Deoxynivalenol Levels of Barley Kernels Using Hyperspectral Imaging in Tandem with Optimized Convolutional Neural Network
by Ke-Jun Fan, Bo-Yuan Liu and Wen-Hao Su
Sensors 2023, 23(5), 2668; https://doi.org/10.3390/s23052668 - 28 Feb 2023
Cited by 9 | Viewed by 2606
Abstract
Deoxynivalenol (DON) in raw and processed grain poses significant risks to human and animal health. In this study, the feasibility of classifying DON levels in different genetic lines of barley kernels was evaluated using hyperspectral imaging (HSI) (382–1030 nm) in tandem with an [...] Read more.
Deoxynivalenol (DON) in raw and processed grain poses significant risks to human and animal health. In this study, the feasibility of classifying DON levels in different genetic lines of barley kernels was evaluated using hyperspectral imaging (HSI) (382–1030 nm) in tandem with an optimized convolutional neural network (CNN). Machine learning methods including logistic regression, support vector machine, stochastic gradient descent, K nearest neighbors, random forest, and CNN were respectively used to develop the classification models. Spectral preprocessing methods including wavelet transform and max-min normalization helped to enhance the performance of different models. A simplified CNN model showed better performance than other machine learning models. Competitive adaptive reweighted sampling (CARS) in combination with successive projections algorithm (SPA) was applied to select the best set of characteristic wavelengths. Based on seven wavelengths selected, the optimized CARS-SPA-CNN model distinguished barley grains with low levels of DON (<5 mg/kg) from those with higher levels (5 mg/kg < DON ≤ 14 mg/kg) with an accuracy of 89.41%. The lower levels of DON class I (0.19 mg/kg ≤ DON ≤ 1.25 mg/kg) and class II (1.25 mg/kg < DON ≤ 5 mg/kg) were successfully distinguished based on the optimized CNN model, yielding a precision of 89.81%. The results suggest that HSI in tandem with CNN has great potential for discrimination of DON levels of barley kernels. Full article
Show Figures

Figure 1

12 pages, 460 KB  
Article
A Machine Learning Model for Food Source Attribution of Listeria monocytogenes
by Collins K. Tanui, Edmund O. Benefo, Shraddha Karanth and Abani K. Pradhan
Pathogens 2022, 11(6), 691; https://doi.org/10.3390/pathogens11060691 - 16 Jun 2022
Cited by 34 | Viewed by 5536
Abstract
Despite its low morbidity, listeriosis has a high mortality rate due to the severity of its clinical manifestations. The source of human listeriosis is often unclear. In this study, we investigate the ability of machine learning to predict the food source from which [...] Read more.
Despite its low morbidity, listeriosis has a high mortality rate due to the severity of its clinical manifestations. The source of human listeriosis is often unclear. In this study, we investigate the ability of machine learning to predict the food source from which clinical Listeria monocytogenes isolates originated. Four machine learning classification algorithms were trained on core genome multilocus sequence typing data of 1212 L. monocytogenes isolates from various food sources. The average accuracies of random forest, support vector machine radial kernel, stochastic gradient boosting, and logit boost were found to be 0.72, 0.61, 0.7, and 0.73, respectively. Logit boost showed the best performance and was used in model testing on 154 L. monocytogenes clinical isolates. The model attributed 17.5 % of human clinical cases to dairy, 32.5% to fruits, 14.3% to leafy greens, 9.7% to meat, 4.6% to poultry, and 18.8% to vegetables. The final model also provided us with genetic features that were predictive of specific sources. Thus, this combination of genomic data and machine learning-based models can greatly enhance our ability to track L. monocytogenes from different food sources. Full article
(This article belongs to the Special Issue Genomic Epidemiology of Foodborne Pathogens)
Show Figures

Figure 1

17 pages, 846 KB  
Article
Automated Machine Learning (AutoML)-Derived Preconception Predictive Risk Model to Guide Early Intervention for Gestational Diabetes Mellitus
by Mukkesh Kumar, Li Ting Ang, Hang Png, Maisie Ng, Karen Tan, See Ling Loy, Kok Hian Tan, Jerry Kok Yen Chan, Keith M. Godfrey, Shiao-yng Chan, Yap Seng Chong, Johan G. Eriksson, Mengling Feng and Neerja Karnani
Int. J. Environ. Res. Public Health 2022, 19(11), 6792; https://doi.org/10.3390/ijerph19116792 - 1 Jun 2022
Cited by 18 | Viewed by 5036
Abstract
The increasing prevalence of gestational diabetes mellitus (GDM) is contributing to the rising global burden of type 2 diabetes (T2D) and intergenerational cycle of chronic metabolic disorders. Primary lifestyle interventions to manage GDM, including second trimester dietary and exercise guidance, have met with [...] Read more.
The increasing prevalence of gestational diabetes mellitus (GDM) is contributing to the rising global burden of type 2 diabetes (T2D) and intergenerational cycle of chronic metabolic disorders. Primary lifestyle interventions to manage GDM, including second trimester dietary and exercise guidance, have met with limited success due to late implementation, poor adherence and generic guidelines. In this study, we aimed to build a preconception-based GDM predictor to enable early intervention. We also assessed the associations of top predictors with GDM and adverse birth outcomes. Our evolutionary algorithm-based automated machine learning (AutoML) model was implemented with data from 222 Asian multi-ethnic women in a preconception cohort study, Singapore Preconception Study of Long-Term Maternal and Child Outcomes (S-PRESTO). A stacked ensemble model with a gradient boosting classifier and linear support vector machine classifier (stochastic gradient descent training) was derived using genetic programming, achieving an excellent AUC of 0.93 based on four features (glycated hemoglobin A1c (HbA1c), mean arterial blood pressure, fasting insulin, triglycerides/HDL ratio). The results of multivariate logistic regression model showed that each 1 mmol/mol increase in preconception HbA1c was positively associated with increased risks of GDM (p = 0.001, odds ratio (95% CI) 1.34 (1.13–1.60)) and preterm birth (p = 0.011, odds ratio 1.63 (1.12–2.38)). Optimal control of preconception HbA1c may aid in preventing GDM and reducing the incidence of preterm birth. Our trained predictor has been deployed as a web application that can be easily employed in GDM intervention programs, prior to conception. Full article
Show Figures

Figure 1

20 pages, 1971 KB  
Article
Inter-Turn Short Circuit Fault Diagnosis of PMSM
by Xinglong Chen, Peng Qin, Yongyi Chen, Jianjian Zhao, Wenhao Li, Yao Mao and Tao Zhao
Electronics 2022, 11(10), 1576; https://doi.org/10.3390/electronics11101576 - 14 May 2022
Cited by 18 | Viewed by 5222
Abstract
Permanent Magnet Synchronous Motor (PMSM) is widely used due to its advantages of high power density, high efficiency and so on. In order to ensure the reliability of a PMSM system, it is extremely vital to accurately diagnose the incipient faults. In this [...] Read more.
Permanent Magnet Synchronous Motor (PMSM) is widely used due to its advantages of high power density, high efficiency and so on. In order to ensure the reliability of a PMSM system, it is extremely vital to accurately diagnose the incipient faults. In this paper, a variety of optimization algorithms are utilized to realize the diagnosis of the faulty position and severity of the inter-turn short-circuit (ITSC) fault, which is one of the most destructive and frequent faults in PMSM. Compared with the existing research results gained by particle swarm optimization algorithms, in this paper, the methods using other optimization algorithms incorporating genetic algorithm, whale optimization algorithm and stochastic parallel gradient descent algorithm (SPGD) can acquire more stable and precise results. In particular, the method based on SPGD can obtain the most desirable performance among the methods mentioned above; that is, the relative error of short-circuit turns ratio is approximately as low as 0.03%. In addition, in the case of asymmetric input three-phase voltage and with the adverse impact of high-order harmonics at different load moments, the fault diagnosis method based on SPGD still maintains relatively satisfactory properties. Finally, the verification on the actual PMSM platform demonstrates that the SPGD can still diagnose the faulty severity. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

Back to TopTop