Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms
Abstract
:1. Introduction
- We provide a clear-cut identification and detailed overview of the common existing numerical and global optimization algorithms.
- Introduction of three-fold benchmarking criteria, namely the Accuracy Profile Benchmark (APB), Function Evaluation Benchmark (FEB), and Execution Speed Benchmark (ES)
- Using the two-fold set of benchmarking criteria, we benchmarked the precision performance of the identified numerical and global optimization algorithms with practical case studies from different radio signal propagation terrains.
2. Related Works
3. Methods
- Identify the generic propagation model to be tuned and specify its key parameters, vector h, of the model to be tuned (optimized), and the iteration number, z.
- Define the initial guess parameters, n = (0,0 0), and set nfeval = 0.
- Define the complete objective function connecting the optimization parameters.
- Optionally, select the optimization solver and carefully stipulate the required options.
- Appraise the defined objective function E(h) and the possible constraints g(h) ≤ (n); nfeval = nfeval + 1.
- Introduce fair benchmarking criteria.
- Assess the convergence and precision performance of each method base in step (vi).
- If conditions are met, then stop; otherwise,
- Apply the search further directional of each optimization method for the parameter update.
- Assess the convergence and precision optimization of each method, else return to step 1.
3.1. Field Measurements
3.2. The Generic Propagation Loss Model
3.3. The Objective Function
3.4. Numerical Method
3.4.1. Gradient Descent (GD)
3.4.2. Direct Search
3.5. Global Optimization Methods
3.5.1. Genetic Algorithms (GAs)
3.5.2. Particle Swarm (PS)
3.5.3. Simulated Annealing
3.6. Accuracy Profile Benchmark
3.7. Function Evaluation Benchmark
3.8. Execution Speed Benchmark
4. Results and Discussion
4.1. Accuracy Profile Benchmark Analysis Using MAPE and APB
4.2. Benchmarking with Objective Function Value Analysis
4.3. Benchmarking with Execution Speed
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brenner, M.A. Radio Frequency Interference Monitor. U.S. Patent 7555262B2, 30 June 2009. [Google Scholar]
- Oh, H.S.; Jeong, D.G.; Jeon, W.S. Energy-efficient relay deployment in cellular systems using fractional frequency reuse and transmit antenna selection techniques. Int. J. Commun. Syst. 2019, 32, e3889. [Google Scholar] [CrossRef]
- Tataria, H.; Haneda, K.; Molisch, A.F.; Shafi, M.; Tufvesson, F. Standardization of Propagation Models: 800 MHz to 100 GHz—A Historical Perspective. 2020. Available online: http://arxiv.org/abs/2006.08491 (accessed on 15 October 2023).
- Bangerter, B.; Talwar, S.; Arefi, R.; Stewart, K. Networks and devices for the 5G era. IEEE Commun. Mag. 2014, 52, 90–96. [Google Scholar] [CrossRef]
- Viswanathan, H.; Mogensen, P.E. Communications in the 6G Era. IEEE Access 2020, 8, 57063–57074. [Google Scholar] [CrossRef]
- Mahmoodi, T.; Seetharaman, S. Traffic jam: Handling the increasing volume of mobile data traffic. IEEE Veh. Technol. Mag. 2014, 9, 56–62. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Shen, S.; Zhang, W.; Zhang, H.; Ren, Q.; Zhang, X.; Li, Y. An Accurate Maritime Radio Propagation Loss Prediction Approach Employing Neural Networks. Remote Sens. 2022, 14, 4753. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Kwon, S.; Kim, H. Mobility robustness optimization for handover failure reduction in LTE small-cell networks. IEEE Trans. Veh. Technol. 2017, 67, 4672–4676. [Google Scholar] [CrossRef]
- Oueis, J.; Strinati, E.C. Uplink traffic in future mobile networks: Pulling the alarm. In Cognitive Radio Oriented Wireless Networks, Proceedings of the 11th International Conference, CROWNCOM 2016, Grenoble, France, 30 May–1 June, 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 583–593. [Google Scholar]
- Caceres, N.; Wideberg, J.P.; Benitez, F.G. Review of traffic data estimations extracted from cellular networks. IET Intell. Transp. Syst. 2008, 2, 179–192. [Google Scholar] [CrossRef]
- Hwang, I.; Song, B.; Soliman, S.S. A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Commun. Mag. 2013, 51, 20–27. [Google Scholar] [CrossRef]
- Fehske, A.; Fettweis, G.; Malmodin, J.; Biczok, G. The global footprint of mobile communications: The ecological and economic perspective. IEEE Commun. Mag. 2011, 49, 55–62. [Google Scholar] [CrossRef]
- Simon, G.; Volgyesi, P.; Maróti, M.; Ledeczi, A. Simulation-based optimization of communication protocols for large-scale wireless sensor networks. IEEE Aerosp. Conf. 2003, 3, 31339–31346. [Google Scholar]
- Alam, M.M.; Hamida, E.B. Strategies for optimal mac parameters tuning in ieee 802.15. 6 wearable wireless sensor networks. J. Med. Syst. 2015, 39, 106. [Google Scholar] [CrossRef] [PubMed]
- Imoize, A.L.; Udeji, F.; Isabona, J.; Lee, C.-C. Optimizing the Quality of Service of Mobile Broadband Networks for a Dense Urban Environment. Future Internet 2023, 15, 181. [Google Scholar] [CrossRef]
- Mohammadjafari, S.; Roginsky, S.; Kavurmacioglu, E.; Cevik, M.; Ethier, J.; Bener, A.B. Machine learning-based radio coverage prediction in urban environments. IEEE Trans. Netw. Serv. Manag. 2020, 17, 2117–2130. [Google Scholar] [CrossRef]
- Surajudeen-Bakinde, N.T.; Faruk, N.; Popoola, S.I.; Salman, M.A.; Oloyede, A.A.; Olawoyin, L.A.; Calafate, C.T. Path loss predictions for multi-transmitter radio propagation in VHF bands using Adaptive Neuro-Fuzzy Inference System. Eng. Sci. Technol. Int. J. 2018, 21, 679–691. [Google Scholar] [CrossRef]
- Valavanis, I.K.; Athanasiadou, G.E.; Zarbouti, D.; Tsoulos, G.V. Base-station location optimization for LTE systems with genetic algorithms. In Proceedings of the 20th European Wireless Conference, EW 2014, Barcelona, Spain, 14–16 May 2014; pp. 473–478. [Google Scholar]
- Lim, S.Y.; Yun, Z.; Iskander, M.F. Propagation measurement and modeling for indoor stairwells at 2.4 and 5.8 GHz. IEEE Trans. Antennas Propag. 2014, 62, 4754–4761. [Google Scholar] [CrossRef]
- Morita, Y.; Rezaeiravesh, S.; Tabatabaei, N.; Vinuesa, R.; Fukagata, K.; Schlatter, P. Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems. J. Comput. Phys. 2022, 449, 110788. [Google Scholar] [CrossRef]
- Wilson, A.G.; Knowles, D.A.; Ghahramani, Z. Gaussian process regression networks. arXiv 2011, arXiv:1110.4411. [Google Scholar]
- Alali, Y.; Harrou, F.; Sun, Y. Optimized Gaussian Process Regression by Bayesian Optimization to Forecast COVID-19 Spread in India and Brazil: A Comparative Study. In Proceedings of the 2021 International Conference on ICT for Smart Society (ICISS), Bandung, Indonesia, 2–4 August 2021; pp. 1–6. [Google Scholar]
- Zakaria, Y.A.; Hamad, E.K.I.; Elhamid, A.S.A.; El-Khatib, K.M. Developed channel propagation models and path loss measurements for wireless communication systems using regression analysis techniques. Bull. Natl. Res. Cent. 2021, 45, 54. [Google Scholar] [CrossRef]
- Zeleny, J.; Perez-Fontan, F.; Pechac, P. Generalized propagation channel model for 2 GHz low elevation links using a ray-tracing method. Radioengineering 2015, 24, 1044–1049. [Google Scholar] [CrossRef]
- Aldhaibani, A.O.; Rahman, T.A.; Alwarafy, A. Radio-propagation measurements and modeling in indoor stairwells at millimeter-wave bands. Phys. Commun. 2020, 38, 100955. [Google Scholar] [CrossRef]
- Chan, C.C.; Kurnia, F.G.; Al-Hournani, A.; Gomez, K.M.; Kandeepan, S.; Rowe, W. Open-Source and Low-Cost Test Bed for Automated 5G Channel Measurement in mmWave Band. J. Infrared Millim. Terahertz Waves 2019, 40, 535–556. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Isabona, J. Joint Statistical and Machine Learning Approach for Practical Data-Driven Assessment of User Throughput Quality in Microcellular Radio Networks. Wirel. Pers. Commun. 2021, 119, 1661–1680. [Google Scholar]
- Popoola, S.I.; Atayero, A.A.; Faruk, N. Received signal strength and local terrain profile data for radio network planning and optimization at GSM frequency bands. Data Brief 2018, 16, 972–981. [Google Scholar] [CrossRef]
- Nadir, Z.; Ahmad, M.I. Pathloss determination using Okumura-Hata model and cubic regression for missing data for Oman. In Proceedings of the International MultiConference of Engineers and Computer Scientists 2010, Hong Kong, China, 17–19 March 2010; pp. 804–807. [Google Scholar]
- Kämpf, J.H.; Wetter, M.; Robinson, D. A comparison of global optimization algorithms with standard benchmark functions and real-world applications using EnergyPlus. J. Build. Perform. Simul. 2010, 3, 103–120. [Google Scholar] [CrossRef]
- Miró, A.; Pozo, C.; Guillén-Gosálbez, G.; Egea, J.A.; Jiménez, L. Deterministic global optimization algorithm based on outer approximation for the parameter estimation of nonlinear dynamic biological systems. BMC Bioinform. 2012, 13, 90. [Google Scholar] [CrossRef] [PubMed]
- Shcherbina, O.; Neumaier, A.; Sam-Haroud, D.; Vu, X.-H.; Nguyen, T.-V. Benchmarking global optimization and constraint satisfaction codes. In Proceedings of the First International Workshop Global Constraint Optimization and Constraint Satisfaction, COCOS 2002, Valbonne-Sophia Antipolis, France, 2-4 October 2002; pp. 211–222. [Google Scholar]
- Liu, Q.; Chen, W.; Deng, J.D.; Gu, T.; Zhang, H.; Yu, Z.; Zhang, J. Benchmarking stochastic algorithms for global optimization problems by visualizing confidence intervals. IEEE Trans. Cybern. 2017, 47, 2924–2937. [Google Scholar] [CrossRef]
- Villaverde, A.F.; Fröhlich, F.; Weindl, D.; Hasenauer, J.; Banga, J.R. Benchmarking optimization methods for parameter estimation in large kinetic models. Bioinformatics 2019, 35, 830–838. [Google Scholar] [CrossRef]
- Schneider, P.-I.; Santiago, X.G.; Soltwisch, V.; Hammerschmidt, M.; Burger, S.; Rockstuhl, C. Benchmarking Five Global Optimization Approaches for Nano-optical Shape Optimization and Parameter Reconstruction. ACS Photonics 2019, 6, 2726–2733. [Google Scholar] [CrossRef]
- Arnoud, A.; Guvenen, F.; Kleineberg, T. Benchmarking Global Optimizers; National Bureau of Economic Research: Cambridge, MA, USA, 2019. [Google Scholar]
- Isabona, J.; Imoize, A.L. Terrain-based adaption of propagation model loss parameters using non-linear square regression. J. Eng. Appl. Sci. 2021, 68, 33. [Google Scholar] [CrossRef]
- Omasheye, O.R.; Azi, S.; Isabona, J.; Imoize, A.L.; Li, C.-T.; Lee, C.-C. Joint Random Forest and Particle Swarm Optimization for Predictive Pathloss Modeling of Wireless Signals from Cellular Networks. Futur. Internet 2022, 14, 373. [Google Scholar] [CrossRef]
- Chang, S.; Baliga, A. Development of Machine Learning-Based Radio Propagation Models and Benchmarking for Mobile Networks. J. Stud. Res. 2021, 10, 1–12. [Google Scholar] [CrossRef]
- Masood, U.; Farooq, H.; Abu-Dayya, A. Interpretable AI-Based Large-Scale 3D Pathloss Prediction Model for Enabling Emerging Self-Driving Networks. IEEE Trans. Mob. Comput. 2023, 22, 3968–3984. [Google Scholar] [CrossRef]
- Ebhota, V.C.; Isabona, J.; Srivastava, V.M. Environment-Adaptation Based Hybrid Neural Network Predictor for Signal Propagation Loss Prediction in Cluttered and Open Urban Microcells. Wireless Pers. Commun. 2019, 104, 935–948. [Google Scholar] [CrossRef]
- Nuñez, Y.; Lovisolo, L.; da Silva Mello, L.; Orihuela, C. On the interpretability of machine learning regression for path-loss prediction of millimeter-wave links. Expert Syst. Appl. 2023, 215, 119324. [Google Scholar] [CrossRef]
- Olukanni, S.E.; Isabona, J.; Odesanya, I. Radio Spectrum Measurement Modeling and Prediction based on Adaptive Hybrid Model for Optimal Network Planning. Int. J. Image Graph. Signal Process. 2023, 15, 19–32. [Google Scholar] [CrossRef]
- Rappaport, T.S. Wireless Communications: Principles and Applications, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Molisch, A.F. Wireless Communications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Wright, M.H. Optimization methods for base station placement in wireless applications. In Proceedings of the VTC’98. 48th IEEE Vehicular Technology Conference. Pathway to Global Wireless Revolution (Cat. No. 98CH36151), Ottawa, ON, Canada, 21 May 1998; pp. 387–391. [Google Scholar]
- Guo, W. Explainable Artificial Intelligence for 6G: Improving Trust between Human and Machine. IEEE Commun. Mag. 2020, 58, 39–45. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Booker, L.B.; Goldberg, D.E.; Holland, J.H. Classifier systems and genetic algorithms. Artif. Intell. 1989, 40, 235–282. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms and adaptation. In Adaptive Control of Ill-Defined Systems; Springer: Berlin/Heidelberg, Germany, 1984; pp. 317–333. [Google Scholar]
- Fernandes, L.C.; Soares, A.J.M. Path loss prediction in microcellular environments at 900MHz. AEU -Int. J. Electron. Commun. 2014, 68, 983–989. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November 1995; pp. 1942–1948. [Google Scholar]
Methods | Algorithms |
---|---|
Gradient descent (1st order) search | Gradient Descent (GD) |
Quasi-Newton (QN) | |
Gradient and Hessian | Gauss–Newton (GN) |
(2nd order) search | Trust-Region–Dog-Leg (TR) |
Levenberg–Marguardt (LM) | |
Direct search | Pattern Search (PAS) |
Particle Swarm (PS) | |
Global search | Genetic Algorithm (GA) |
Simulated Annealing (SA) |
S/No. | Optimization Algorithm | Parameters | Objective Value (Fval) | NumEval | ||
---|---|---|---|---|---|---|
h1 | h2 | h3 | ||||
1 | GD | 10 | 20 | 23.60 | 86.45 | 601 |
2 | LM | 8.64 | 19.09 | 25.36 | 82.25 | 603 |
3 | GN | 8.21 | 21.20 | 23.91 | 81.38 | 300 |
4 | QN | 7.66 | 24.02 | 22.01 | 80.95 | 44 |
5 | TR | 8.81 | 18.23 | 25.91 | 82.74 | 301 |
6 | PAS | −13.25 | 21.47 | 30.00 | 81.30 | 1367 |
7 | GA | −4.83 | 24.12 | 25.60 | 80.95 | 2550 |
8 | PS | −9.84 | 24.02 | 27.14 | 80.96 | 3450 |
9 | SA | −1.78 | 23.83 | 24.74 | 80.96 | 2818 |
S/No. | Optimization Algorithm | Parameters | Objective Value (Fval) | NumEval | ||
---|---|---|---|---|---|---|
h1 | h2 | h3 | ||||
1 | GD | 10 | 20 | 26.54 | 39.58 | 601 |
2 | LM | 9.31 | 19.25 | 27.66 | 38.15 | 601 |
3 | GN | 9.04 | 20.48 | 26.71 | 37.78 | 300 |
4 | QN | 8.97 | 20.77 | 26.49 | 37.77 | 44 |
5 | TR | 9.39 | 18.89 | 27.94 | 38.34 | 301 |
6 | PAS | −1.88 | 20.38 | 30.00 | 37.79 | 1384 |
7 | GA | −1.63 | 18.29 | 31.58 | 38.80 | 2550 |
8 | PS | 8.19 | 20.76 | 26.72 | 37.77 | 3600 |
9 | SA | −9.03 | 20.89 | 31.67 | 37.77 | 2343 |
S/No. | Optimization Algorithm | Parameters | Objective Value (Fval) | NumEval | ||
---|---|---|---|---|---|---|
h1 | h2 | h3 | ||||
1 | GD | 10 | 20 | 23.40 | 79.66 | 601 |
2 | LM | 8.45 | 24.80 | 24.73 | 55.09 | 602 |
3 | GN | 9.32 | 20.74 | 27.69 | 57.69 | 300 |
4 | QN | 6.41 | 34.64 | 17.74 | 54.23 | 56 |
5 | TR | 9.02 | 22.17 | 26.67 | 56.67 | 303 |
6 | PAS | −5.91 | 23.50 | 30.00 | 55.80 | 1371 |
7 | GA | 7.76 | 29.99 | 20.95 | 52.88 | 2550 |
8 | PS | 2.86 | 30.00 | 22.39 | 52.87 | 2200 |
9 | SA | −6.08 | 29.95 | 25.02 | 52.89 | 4333 |
S/No. | Optimization Algorithm | Parameters | Objective Value (Fval) | NumEval | ||
---|---|---|---|---|---|---|
h1 | h2 | h3 | ||||
1 | GD | 10 | 20 | 26.68 | 54.27 | 601 |
2 | LM | 9.93 | 17.98 | 29.76 | 41.24 | 449 |
3 | GN | 9.73 | 18.84 | 29.11 | 41.31 | 300 |
4 | QN | 9.99 | 17.72 | 29.98 | 41.24 | 44 |
5 | TR | 9.87 | 18.23 | 29.58 | 41.26 | 302 |
6 | PAS | 6.09 | 19.03 | 30.00 | 41.33 | 1292 |
7 | GA | 6.26 | 17.77 | 31.03 | 41.24 | 2550 |
8 | PS | 2.28 | 17.72 | 32.23 | 41.24 | 3450 |
9 | SA | −6.59 | 27.74 | 34.80 | 42.25 | 2892 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Isabona, J.; Imoize, A.L.; Akinwumi, O.A.; Omasheye, O.R.; Oghu, E.; Lee, C.-C.; Li, C.-T. Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms. Information 2023, 14, 621. https://doi.org/10.3390/info14110621
Isabona J, Imoize AL, Akinwumi OA, Omasheye OR, Oghu E, Lee C-C, Li C-T. Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms. Information. 2023; 14(11):621. https://doi.org/10.3390/info14110621
Chicago/Turabian StyleIsabona, Joseph, Agbotiname Lucky Imoize, Oluwasayo Akinloye Akinwumi, Okiemute Roberts Omasheye, Emughedi Oghu, Cheng-Chi Lee, and Chun-Ta Li. 2023. "Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms" Information 14, no. 11: 621. https://doi.org/10.3390/info14110621
APA StyleIsabona, J., Imoize, A. L., Akinwumi, O. A., Omasheye, O. R., Oghu, E., Lee, C. -C., & Li, C. -T. (2023). Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms. Information, 14(11), 621. https://doi.org/10.3390/info14110621