Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = stirred media mills

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4739 KiB  
Article
Visible Light Active Natural Rutile Photocatalyst Obtained via Nano Milling
by Kata Saszet, Enikő Eszter Almási, Ádám Rácz, Katalin Bohács, Milica Todea, Klára Hernádi, Zsolt Pap and Lucian Baia
Molecules 2025, 30(7), 1600; https://doi.org/10.3390/molecules30071600 - 3 Apr 2025
Viewed by 593
Abstract
Natural rutile is a widely available titanium mineral which shows great potential as a photocatalyst for environmental remediation when processed correctly. Industries invest large sums in the transformation of the rutile mineral into pure, synthetic nano titania. Still, the present study proves that [...] Read more.
Natural rutile is a widely available titanium mineral which shows great potential as a photocatalyst for environmental remediation when processed correctly. Industries invest large sums in the transformation of the rutile mineral into pure, synthetic nano titania. Still, the present study proves that bare natural rutile with trace element content can also be applied as a photocatalyst, without harsh chemical interventions, simply by processing via nano grinding. Samples with different mean primary particle size values were obtained by wet stirred media milling, their compositional and structural properties were investigated, and their photocatalytic properties were evaluated under both visible- and UV-light illumination for the degradation of phenol and ibuprofen. By changing the grain size and the particle size distribution, and due to the doping effect of impurities present in the mineral, the band gap values of the samples and their photocatalytic activities changed as well. The nano milled rutile exhibited visible light photocatalytic activity, with a 33% degradation efficiency in the case of both phenol and ibuprofen, after 22 h of irradiation. The present study not only highlights the photocatalytic degradation of a pharmaceutical by natural rutile mineral, but its findings also suggest that ground nano rutile can function as an environmentally friendly photocatalyst, as it not only avoids the use of harmful chemicals typically employed in TiO2 synthesis but also offers a simpler, more cost-effective alternative for producing photocatalytic materials. Full article
Show Figures

Figure 1

27 pages, 8768 KiB  
Article
A Novel PBM for Nanomilling of Drugs in a Recirculating Wet Stirred Media Mill: Impacts of Batch Size, Flow Rate, and Back-Mixing
by Hamidreza Heidari, Nontawat Muanpaopong, Gulenay Guner, Helen F. Yao, Donald J. Clancy and Ecevit Bilgili
Pharmaceutics 2024, 16(3), 353; https://doi.org/10.3390/pharmaceutics16030353 - 2 Mar 2024
Cited by 3 | Viewed by 2505
Abstract
We examined the evolution of fenofibrate (FNB, drug) particle size distribution (PSD) during the production of nanosuspensions via wet stirred media milling (WSMM) with a cell-based population balance model (PBM). Our objective was to elucidate the potential impacts of batch size, suspension volumetric [...] Read more.
We examined the evolution of fenofibrate (FNB, drug) particle size distribution (PSD) during the production of nanosuspensions via wet stirred media milling (WSMM) with a cell-based population balance model (PBM). Our objective was to elucidate the potential impacts of batch size, suspension volumetric flow rate, and imperfect mixing in a recirculating WSMM. Various specific breakage rate functions were fitted to experimental PSD data at baseline conditions assuming perfect mixing. Then, the best function was used to simulate the PSD evolution at various batch sizes and flow rates to validate the model. A novel function, which is a product of power–law and logistic functions, fitted the evolution the best, signifying the existence of a transition particle size commensurate with a grinding limit. Although larger batches yielded coarser and wider PSDs, the suspensions had identical PSDs when milled for the same effective milling time. The flow rate had an insignificant influence on the PSD. Furthermore, the imperfect mixing in the mill chamber was simulated by considering more than one cell and different back-mixing flow ratios. The effects were weak and restricted to the first few turnovers. These insights contribute to our understanding of recirculating WSMM, providing valuable guidance for process development. Full article
Show Figures

Graphical abstract

17 pages, 3147 KiB  
Article
Design Space and Control Strategy for the Manufacturing of Wet Media Milled Drug Nanocrystal Suspensions by Adopting Mechanistic Process Modeling
by André Bitterlich, Andrej Mihorko and Michael Juhnke
Pharmaceutics 2024, 16(3), 328; https://doi.org/10.3390/pharmaceutics16030328 - 26 Feb 2024
Cited by 7 | Viewed by 2504
Abstract
Wet media milling is a fully industrialized technology for the manufacturing of drug nanocrystal suspensions. This work describes the development of an advanced control strategy and an associated design space for a manufacturing process at a commercial scale. Full-scale experiments and mechanistic process [...] Read more.
Wet media milling is a fully industrialized technology for the manufacturing of drug nanocrystal suspensions. This work describes the development of an advanced control strategy and an associated design space for a manufacturing process at a commercial scale. Full-scale experiments and mechanistic process modeling have been used to establish a physically reasonable control strategy of factors relevant to the quality attributes of the nanocrystal suspension. The design space has been developed based on a mature mechanistic process model of the wet media milling procedure. It presents the process–product attribute relationship between a multidimensional range of measured process parameters and a range of the product-quality attribute mean particle sizes. The control strategy allows for simple, robust, and sound scientific process control as well as the operational flexibility of the suspension batch size. This is an industrial case study of control strategy and design-space definition with the crucial contribution of mechanistic process modeling for an intended commercial manufacturing process. Full article
Show Figures

Graphical abstract

8 pages, 3333 KiB  
Proceeding Paper
Formulation of Sustainable Biopolymer-Based Nanoparticles Obtained via Media Milling for Chia Oil Vehiculization in Pickering Emulsions
by María G. Bordón, Lucía López-Vidal, Nahuel Camacho, Marcela L. Martínez, María C. Penci, Cecilio Carrera-Sánchez, Víctor Pizones Ruiz Henestrosa, Santiago D. Palma and Pablo D. Ribotta
Biol. Life Sci. Forum 2023, 25(1), 20; https://doi.org/10.3390/blsf2023025020 - 5 Dec 2023
Viewed by 1024
Abstract
Sustainable corn starch nanoparticles were prepared using media milling to stabilize omega-3-rich Pickering emulsions based on chia oil. The milling conditions were as follows: 24 h (milling time), 0.4–0.6 mm (bead diameter), 1600 rpm (impeller speed), 30% (volume occupied by the grinding media), [...] Read more.
Sustainable corn starch nanoparticles were prepared using media milling to stabilize omega-3-rich Pickering emulsions based on chia oil. The milling conditions were as follows: 24 h (milling time), 0.4–0.6 mm (bead diameter), 1600 rpm (impeller speed), 30% (volume occupied by the grinding media), 7% w/v (starch concentration), and 0, 0.07 and 1% w/v of sodium dodecyl sulfate (SDS). Nanosuspensions containing 7% w/v of starch and the three concentrations of SDS were filtered, centrifuged, homogenized, and spray-dried to obtain redispersible powders. The particle size ranges were 2288 ± 211, 385 ± 21, and 278 ± 11 nm with 0, 0.07 and 1% w/v of SDS, respectively. The most stable backscattering profiles obtained during a period of one week were observed with 0.07 and 1% w/v of SDS. Therefore, the surface dilatational rheology of these particles adsorbed at chia oil/water interfaces was studied. A rapid decrease in the interfacial tension within 1 h was obtained with 1% w/v of SDS (down to 3 mN/m). Moreover, the most stable particle size after redispersion was obtained with the highest concentration of SDS. Finally, Pickering emulsions were prepared, and significant coalescence was observed with 0 and 0.07% w/v of SDS (within a few minutes). Nonetheless, in the presence of 1% w/v of SDS, oil droplets showed mean diameters and polydispersity indexes of 280.13 ± 4.60 nm and 0.35 ± 0.02, respectively, with no significant variations during storage for around 1 month. The results show that wet-stirred media milling can be applied to produce sustainable, new food-grade starch nanoparticles able to deliver bioactive compounds from chia oil. Full article
(This article belongs to the Proceedings of V International Conference la ValSe-Food and VIII Symposium Chia-Link)
Show Figures

Figure 1

24 pages, 1996 KiB  
Article
Growth Response of Non-Conventional Yeasts on Sugar-Rich Media: Part 2: Citric Acid Production and Circular-Oriented Valorization of Glucose-Enriched Olive Mill Wastewaters Using Novel Yarrowia lipolytica Strains
by Dimitris Sarris, Erminta Tsouko, Angelos Photiades, Sidoine Sadjeu Tchakouteu, Panagiota Diamantopoulou and Seraphim Papanikolaou
Microorganisms 2023, 11(9), 2243; https://doi.org/10.3390/microorganisms11092243 - 6 Sep 2023
Cited by 8 | Viewed by 1944
Abstract
The global market for citric acid (CA) is one of the biggest and fastest expanding markets in the food industry. The CA production employing microbial bioprocessing with efficient GRAS strains and renewable waste streams is in line with the European Union binding targets [...] Read more.
The global market for citric acid (CA) is one of the biggest and fastest expanding markets in the food industry. The CA production employing microbial bioprocessing with efficient GRAS strains and renewable waste streams is in line with the European Union binding targets for resource efficiency, sustainable consumption-production, and low-carbon technologies. In this work, the potential of three novel wild-type Yarrowia lipolytica strains (namely LMBF Y-46, LMBF Y-47 and ACA-YC 5033) regarding the production of CA and other valuable metabolites was tested on glucose-based media, and the most promising amongst the screened strains (viz. the strain ACA-YC 5033) was cultured on glucose-based media, in which part of the fermentation water had been replaced by olive-mill wastewaters (OMWs) in a novel approach of simultaneous OMW valorization and bioremediation. In the first part of this study, the mentioned strains were cultured under nitrogen-limited conditions with commercial (low-cost) glucose employed as a sole carbon source in shake-flask cultures at an initial concentration (S0) ≈ of 50 g/L. Variable quantities of secreted citric acid (CA) and intra-cellular compounds (viz. polysaccharides and lipids) were produced. All strains did not accumulate significantly high lipid quantities (i.e., maximum lipid in dry cell weight [DCW] values ≈30% w/w were noted) but produced variable CA quantities. The most promising strain, namely ACA-YC 5033, produced CA up to c. 24 g/L, with a yield of CA produced on glucose consumed (YCA/S) ≈ 0.45 g/g. This strain in stirred tank bioreactor experiments, at remarkably higher S0 concentrations (≈110 g/L) and the same initial nitrogen quantity added into the medium, produced notably higher CA quantities, up to 57 g/L (YCA/S ≈ 0.52 g/g). The potential of the same strain (ACA-YC 5033) to bioremediate OMWs and to produce value-added compounds, i.e., yeast cells, CA, and intra-cellular metabolites, was also assessed; under nitrogen-limited conditions in which OMWs had partially replaced tap water and significant glucose concentrations had been added (S0 ≈ 100 g/L, simultaneous molar ratio C/N ≈ 285 g/g, initial phenolic compounds [Phen0] adjusted to ≈1.0 g/L; these media were similar to the OMWs generated from the traditional press extraction systems) the notable CA quantity of 60.2 g/L with simultaneous YCA/S = 0.66 g/g, was obtained in shake flasks, together with satisfactory phenolic compounds removal (up to 19.5% w/w) and waste decolorization (up to 47.0%). Carbon-limited conditions with Phen0 ≈ 1.0 g/L favored the production of yeast DCW (up to 25.3 g/L), with equally simultaneous interesting phenolic compounds and color removal. The fatty acid profile showed that cellular lipids were highly unsaturated with oleic, linoleic and palmitoleic acids, accounting for more than 80% w/w. This study proposed an interesting approach that could efficiently address the biotreatment of toxic effluents and further convert them into circular-oriented bioproducts. Full article
(This article belongs to the Special Issue Advances in Microbial Metabolites)
Show Figures

Figure 1

29 pages, 7593 KiB  
Article
Do Mixtures of Beads with Different Sizes Improve Wet Stirred Media Milling of Drug Suspensions?
by Gulenay Guner, Mirsad Mehaj, Natasha Seetharaman, Sherif Elashri, Helen F. Yao, Donald J. Clancy and Ecevit Bilgili
Pharmaceutics 2023, 15(9), 2213; https://doi.org/10.3390/pharmaceutics15092213 - 26 Aug 2023
Cited by 5 | Viewed by 3136
Abstract
The impacts of bead sizes and bead mixtures on breakage kinetics, the number of milling cycles applied to prevent overheating, and power consumption during the nanomilling of drug (griseofulvin) suspensions were investigated from both an experimental and theoretical perspective. Narrowly sized zirconia beads [...] Read more.
The impacts of bead sizes and bead mixtures on breakage kinetics, the number of milling cycles applied to prevent overheating, and power consumption during the nanomilling of drug (griseofulvin) suspensions were investigated from both an experimental and theoretical perspective. Narrowly sized zirconia beads with nominal sizes of 100, 200, and 400 µm and their half-and-half binary mixtures were used at 3000 and 4000 rpm with two bead loadings of 0.35 and 0.50. Particle size evolution was measured during the 3 h milling experiments using laser diffraction. An nth-order breakage model was fitted to the experimental median particle size evolution, and various microhydrodynamic parameters were calculated. In general, the beads and their mixtures with smaller median sizes achieved faster breakage. While the microhydrodynamic model explained the impacts of process parameters, it was limited in describing bead mixtures. For additional test runs performed, the kinetics model augmented with a decision tree model using process parameters outperformed that augmented with an elastic-net regression model using the microhydrodynamic parameters. The evaluation of the process merit scores suggests that the use of bead mixtures did not lead to notable process improvement; 100 µm beads generally outperformed bead mixtures and coarser beads in terms of fast breakage, low power consumption and heat generation, and low intermittent milling cycles. Full article
(This article belongs to the Collection Feature Papers in Pharmaceutical Technology)
Show Figures

Graphical abstract

37 pages, 8036 KiB  
Review
Energy-Efficient Advanced Ultrafine Grinding of Particles Using Stirred Mills—A Review
by Arvind Kumar, Rina Sahu and Sunil Kumar Tripathy
Energies 2023, 16(14), 5277; https://doi.org/10.3390/en16145277 - 10 Jul 2023
Cited by 33 | Viewed by 10947
Abstract
The present literature review explores the energy-efficient ultrafine grinding of particles using stirred mills. The review provides an overview of the different techniques for size reduction and the impact of energy requirements on the choice of stirred mills. It also discusses the factors, [...] Read more.
The present literature review explores the energy-efficient ultrafine grinding of particles using stirred mills. The review provides an overview of the different techniques for size reduction and the impact of energy requirements on the choice of stirred mills. It also discusses the factors, including the design, operating parameters, and feed material properties, influencing the grinding performance. The review concludes that stirred mills have significant potential for achieving the energy-efficient ultrafine grinding of particles. Stirred mills have unique designs and operations, which provide higher grinding efficiency, lower energy consumption, and reduced media consumption compared to traditional tumbling mills. The review highlights the advantages of stirred mills over conventional grinding methods and their potential to revolutionise industrial processes while lowering the environmental impacts. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 22557 KiB  
Article
Analysis and Optimization of the Milling Performance of an Industry-Scale VSM via Numerical Simulations
by Chengguang Tong, Zuobing Chen, Chang Liu and Qiang Xie
Materials 2023, 16(13), 4712; https://doi.org/10.3390/ma16134712 - 29 Jun 2023
Cited by 4 | Viewed by 1824
Abstract
Vertical stirred mills (VSM) are widely used for powder processing in many situations like mechanical alloying preparation and raw material crushing and shaping. Many structural and operational parameters like stirrer helix angle and rotating speed have great significance on VSM performance, especially in [...] Read more.
Vertical stirred mills (VSM) are widely used for powder processing in many situations like mechanical alloying preparation and raw material crushing and shaping. Many structural and operational parameters like stirrer helix angle and rotating speed have great significance on VSM performance, especially in a large industry-scale situation. Therefore, it becomes essential to investigate these parameters systematically to obtain high energy efficiency and good product quality. In this work, the discrete element method (DEM) was used to examine the effects of stirrer helix angle (α), stirrer diameter (d), and rotating speed (n) on the grinding performance in an industrial VSM, and then the response surface method (RSM) was employed for multi-objective optimization in the VSM. It is found that a media vortex phenomenon may happen near the stirring shaft. The media collisions are significantly influenced by α, d, and n. Through multi-objective optimization design (MOD), the power consumption (P) of the stirrer reduced by 8.09%. The media collision energy (E) increased by 9.53%. The energy conversion rate (R) rises by 20.70%. The collision intensity and frequency are both improved. This optimization method can help determine good operating parameters based on certain structures. Full article
(This article belongs to the Special Issue Advances in Mechanical Alloying and Milling)
Show Figures

Figure 1

15 pages, 4948 KiB  
Article
Enzymatic One-Pot Hydrolysis of Extracted Sugar Beet Press Pulp after Solid-State Fermentation with an Engineered Aspergillus niger Strain
by Melanie Knesebeck, Dominik Schäfer, Kevin Schmitz, Marcel Rüllke, J. Philipp Benz and Dirk Weuster-Botz
Fermentation 2023, 9(7), 582; https://doi.org/10.3390/fermentation9070582 - 21 Jun 2023
Cited by 11 | Viewed by 2687
Abstract
Extracted sugar beet press pulp (SBPP) is a promising agricultural residue for saccharification and further bioconversion. Combining solid-state fermentation of SBPP with engineered Aspergillus niger for enzyme production followed by hydrolysis of additionally added SBPP in the same bioreactor was studied to produce a [...] Read more.
Extracted sugar beet press pulp (SBPP) is a promising agricultural residue for saccharification and further bioconversion. Combining solid-state fermentation of SBPP with engineered Aspergillus niger for enzyme production followed by hydrolysis of additionally added SBPP in the same bioreactor was studied to produce a sugar solution (hydrolysate) in a one-pot process. The initial aerobic solid-state fermentations were carried out in duplicate on non-milled, wet SBPP (moisture content of 72% (w/v)) with an A. niger strain engineered for constitutive pectinase production for 96 h, and this resulted in polygalacturonase activities of up to 256 U mL−1 in the wet media. Afterwards, water was added to the bioreactor, and the remaining solids were suspended by stirring to dissolve the hydrolytic enzymes. Metabolic activities of A. niger were inactivated by a N2-atmosphere and by increasing the temperature to 50 °C. High solid loads of milled SBPP were added to the stirred-tank reactor with a delay of 24 h to enable sugar yield calculations based on the compositional analysis of the SBPP used. The resulting final sugar concentrations of the hydrolysate after 166 h were 17 g L−1 d-glucose, 18.8 g L−1 l-arabinose, and 12.5 g L−1 d-galacturonic acid, corresponding to sugar yields of 98% d-glucose, 86% l-arabinose, and 50% d-galacturonic acid, respectively. Including the other sugars released during enzymatic hydrolysis in the one-pot process (d-xylose, d-mannose, d-galactose), a total sugar concentration of 54.8 g L−1 was achieved in the hydrolysate. The one-pot process combining hydrolytic enzyme production in solid-state fermentation with high solid loads during enzymatic hydrolysis of the milled SBPP reduces hydrolytic process costs by replacing chemical pre-treatments, enabling the in situ production of SBPP-adapted hydrolytic enzymes, as well as avoiding intermediate enzyme extraction and preparation steps. Full article
(This article belongs to the Special Issue Enzymes in Biorefinery)
Show Figures

Figure 1

16 pages, 1431 KiB  
Article
Relation between Scale-Up and Life Cycle Assessment for Wet Grinding Process of Pumice
by Viktoria Mannheim and Weronika Kruszelnicka
Energies 2023, 16(11), 4470; https://doi.org/10.3390/en16114470 - 1 Jun 2023
Cited by 3 | Viewed by 2331
Abstract
This study examines the grinding process of pumice based on the dry and wet laboratory measurements, scale-up method, and life cycle assessment. This research’s main goal was to set up the relation between scale-up and life cycle assessment results for the wet grinding [...] Read more.
This study examines the grinding process of pumice based on the dry and wet laboratory measurements, scale-up method, and life cycle assessment. This research’s main goal was to set up the relation between scale-up and life cycle assessment results for the wet grinding process with the help of mathematical equations. Within the first research works, basic grinding testing in a laboratory dry Bond mill was accomplished. This step allowed the description of the estimated particle size distribution, median particle size, specific grinding work, and grindability index number of pumice. The second step was the determination of power consumption and scale-up in a laboratory stirred media mill, and it involved the assessment of resources, primary energies, and environmental impacts of wet grinding using GaBi 8.0 software. According to the results, we obtain life cycle emission factors by introducing five coefficients for grinding in laboratory and industrial conditions. These constants depend on the external dimensions of the mill and can be expressed by a derived scale constant from the scale-up. Research results enable the industry to make a prognosis for industrial plants based on the integration between life cycle assessment and scale-up of the pilot grinding processes. Full article
(This article belongs to the Special Issue Life Cycle Assessment in Waste Management)
Show Figures

Figure 1

14 pages, 4289 KiB  
Article
Chemical Dissolution-Assisted Ultrafine Grinding for Preparation of Quasi-Spherical Colloids of Zinc Oxide
by Guanghua Huang, Zening Chen, Zhidong Pan, Yan Xu, Hanlin Hu and Yanmin Wang
Materials 2023, 16(7), 2558; https://doi.org/10.3390/ma16072558 - 23 Mar 2023
Cited by 2 | Viewed by 1611
Abstract
Submicron-sized quasi-spherical zinc oxide (ZnO) particles were prepared by wet ultrafine grinding in a stirred media mill under various conditions. The effects of parameters (i.e., solution type, acid or alkali concentration, solid content and grinding time) on the particle median size (d50 [...] Read more.
Submicron-sized quasi-spherical zinc oxide (ZnO) particles were prepared by wet ultrafine grinding in a stirred media mill under various conditions. The effects of parameters (i.e., solution type, acid or alkali concentration, solid content and grinding time) on the particle median size (d50), particle size distribution (PSD) and sphericity of ZnO particles was investigated. The results show that submicron-sized quasi-spherical particles (i.e., d50: 370 nm, uniformity coefficient (n) of 2.28 and sphericity of 0.91) can be obtained when the micron-sized ZnO particles are ground for 30 min in a CH3COOH solution at a concentration of 0.010 mol/L with 20 wt.% of solid content. The chemical dissolution of ZnO particles ground in the presence and absence of acetic acid is discussed. It is indicated that chemical dissolution accelerated due to the mechanochemical effects could reduce the particle size, obtain a narrower PSD and enhance the sphericity. In addition, the functions of selection and breakage were used to analyze the grinding mechanism of ZnO particles. Full article
Show Figures

Figure 1

16 pages, 4774 KiB  
Article
Performance Comparison of the Vertical and Horizontal Oriented Stirred Mill: Pilot Scale IsaMill vs. Full-Scale HIGMill
by Metin Can and Okay Altun
Minerals 2023, 13(3), 315; https://doi.org/10.3390/min13030315 - 23 Feb 2023
Cited by 7 | Viewed by 4248
Abstract
Varied types/geometries of stirred mills have been produced by different manufacturers, and the comparison task has been accomplished for some of the technologies, i.e., Tower mill vs IsaMill. However, the main drawbacks of these comparisons were the uncommon characteristics of the milling environment, [...] Read more.
Varied types/geometries of stirred mills have been produced by different manufacturers, and the comparison task has been accomplished for some of the technologies, i.e., Tower mill vs IsaMill. However, the main drawbacks of these comparisons were the uncommon characteristics of the milling environment, such as media size. In this study, HIGMill and IsaMill, which were vertically and horizontally chamber oriented, respectively, were compared for a regrinding process of copper ores with similar characterization and almost the same milling environment. Detailed characterization studies of the two ore types, such as work index, ore breakage and chemical composition, were performed. Modeling of the two mills was also performed to show the variation in the rate of breakage parameters. The entire assessments were based on comparing the signature plots, energy and shape of the product size distribution as well as the stress analyses. The results showed that HIGMill and IsaMill technologies behaved in a different manner for coarse and fine tail of comminution. IsaMill with horizontal orientation was found to be more energy-efficient, particularly at the fine grind size, and produced finer product when it was operated at the same stress level of HIGMill. Full article
(This article belongs to the Special Issue Comminution and Comminution Circuits Optimisation, Volume II)
Show Figures

Figure 1

8 pages, 2090 KiB  
Proceeding Paper
Increasing the Pozzolanic Reactivity of Recovered CDW Cement Stone by Mechanical Activation
by Roland Szabó, Máté Szűcs, Mária Ambrus and Gábor Mucsi
Mater. Proc. 2023, 13(1), 27; https://doi.org/10.3390/materproc2023013027 - 15 Feb 2023
Cited by 2 | Viewed by 1631
Abstract
The study focuses on enhancing the reactivity of the fine size fraction of construction and demolition waste (CDW) by mechanical activation in a stirred media mill. Systematic measurements were carried out to monitor the change in cement stone reactivity. The fine size fraction [...] Read more.
The study focuses on enhancing the reactivity of the fine size fraction of construction and demolition waste (CDW) by mechanical activation in a stirred media mill. Systematic measurements were carried out to monitor the change in cement stone reactivity. The fine size fraction of CDW (<200 µm) was milled in a stirred media mill for 1, 3, 5, and 10 min. The dispersion characteristics (particle size distribution, specific surface area (SSA)) of the mechanically activated CDW powder were determined using a laser particle size analyzer. Changes in the structure of the mechanically activated CDW powder particles were determined by Fourier transform infrared spectroscopy (FTIR) measurements. The effect of the mechanical activation on the pozzolanic reactivity of CDW powder was measured by lime sorption test and compressive strength measurements. The results clearly show that Portland cement can be replaced with mechanically activated CDW powder; however, increasing its amount decreases the strength. Furthermore, the grinding fineness significantly influenced the pozzolanic reactivity of the mechanically activated CDW powder, and thus the strength of the specimens. The CDW powder milled for 10 min had 51% more lime uptake than the initial CDW sample, and the specimen strength at the age of 7 days was 23% higher using ground CDW powder than using initial CDW at a 20% cement replacement ratio. Full article
(This article belongs to the Proceedings of 10th MATBUD’2023 Scientific-Technical Conference)
Show Figures

Figure 1

19 pages, 5526 KiB  
Article
Predicting the Temperature Evolution during Nanomilling of Drug Suspensions via a Semi-Theoretical Lumped-Parameter Model
by Gulenay Guner, Dogacan Yilmaz, Helen F. Yao, Donald J. Clancy and Ecevit Bilgili
Pharmaceutics 2022, 14(12), 2840; https://doi.org/10.3390/pharmaceutics14122840 - 18 Dec 2022
Cited by 9 | Viewed by 2658
Abstract
Although temperature can significantly affect the stability and degradation of drug nanosuspensions, temperature evolution during the production of drug nanoparticles via wet stirred media milling, also known as nanomilling, has not been studied extensively. This study aims to establish both descriptive and predictive [...] Read more.
Although temperature can significantly affect the stability and degradation of drug nanosuspensions, temperature evolution during the production of drug nanoparticles via wet stirred media milling, also known as nanomilling, has not been studied extensively. This study aims to establish both descriptive and predictive capabilities of a semi-theoretical lumped parameter model (LPM) for temperature evolution. In the experiments, the mill was operated at various stirrer speeds, bead loadings, and bead sizes, while the temperature evolution at the mill outlet was recorded. The LPM was formulated and fitted to the experimental temperature profiles in the training runs, and its parameters, i.e., the apparent heat generation rate Qgen and the apparent overall heat transfer coefficient times surface area UA, were estimated. For the test runs, these parameters were predicted as a function of the process parameters via a power law (PL) model and machine learning (ML) model. The LPM augmented with the PL and ML models was used to predict the temperature evolution in the test runs. The LPM predictions were also compared with those of an enthalpy balance model (EBM) developed recently. The LPM had a fitting capability with a root-mean-squared error (RMSE) lower than 0.9 °C, and a prediction capability, when augmented with the PL and ML models, with an RMSE lower than 4.1 and 2.1 °C, respectively. Overall, the LPM augmented with the PL model had both good descriptive and predictive capability, whereas the one with the ML model had a comparable predictive capability. Despite being simple, with two parameters and obviating the need for sophisticated numerical techniques for its solution, the semi-theoretical LPM generally predicts the temperature evolution similarly or slightly better than the EBM. Hence, this study has provided a validated, simple model for pharmaceutical engineers to simulate the temperature evolution during the nanomilling process, which will help to set proper process controls for thermally labile drugs. Full article
(This article belongs to the Collection Feature Papers in Pharmaceutical Technology)
Show Figures

Graphical abstract

25 pages, 8363 KiB  
Article
Multicomponent Comminution within a Stirred Media Mill and Its Application for Processing a Lithium-Ion Battery Slurry
by Markus Nöske, Jannes Müller, Christine Nowak, Kangqi Li, Xiaolu Xu, Sandra Breitung-Faes and Arno Kwade
Processes 2022, 10(11), 2309; https://doi.org/10.3390/pr10112309 - 6 Nov 2022
Cited by 5 | Viewed by 3315
Abstract
This study presents an approach for targeted comminution of component mixtures within a wet-operated stirred media mill. In the first step, a general understanding of the interactions between individual components on the grinding result with mixtures could be gained with basic experiments and [...] Read more.
This study presents an approach for targeted comminution of component mixtures within a wet-operated stirred media mill. In the first step, a general understanding of the interactions between individual components on the grinding result with mixtures could be gained with basic experiments and following our former research work. In particular, a protective effect of the coarser particles on the fines could be elucidated. These findings were used to develop a process for the production of a battery slurry containing fine ground silicon particles as well as dispersed carbon black and graphite particles. By a tailored sample preparation applying a combination of particle dissolution and separation, the particle size distributions of carbon black and graphite particles were analyzed separately within the produced battery slurries. Based on the selective particle size analysis, the slurry preparation could be transferred from a complex multistage batch process using a dissolver to a stirred media mill, which was finally operated in a continuous one-passage mode. The prepared slurries were subsequently further processed to silicon-rich anodes using a pilot scale coating and drying plant. Afterward, the produced anodes were electrochemically characterized in full cells. The cell results prove a comparable electrochemical behavior of anode coatings derived from a dissolver- or mill-based slurry production process. Therefore, we could demonstrate that it is possible to integrate the mixing process for the production of multicomponent slurries into the comminution process for the preparation of individual materials upstream. Even with nearly identical starting sizes of their feed materials, the targeted particle size distributions of the single components can be reached, taking into account the different material-dependent particle strengths and sequential addition of single components to the multicomponent comminution process. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

Back to TopTop