Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,907)

Search Parameters:
Keywords = stimuli-responsiveness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2477 KB  
Article
Atherosclerotic Plaque Crystals Induce Endothelial Dysfunction
by Jishamol Thazhathveettil, Sherin Aloysius Gomez, Deborah Olaoseeji, Rongrong Wu, Allan Sirsjö and Geena Varghese Paramel
Int. J. Mol. Sci. 2025, 26(19), 9758; https://doi.org/10.3390/ijms26199758 - 7 Oct 2025
Abstract
Endothelial dysfunction is an early driver of atherosclerosis, yet the direct impact of endogenous crystals such as cholesterol crystals and monosodium urate on endothelial activation remains incompletely understood. In this study, we examine how crystalline stimuli modulate human umbilical vein endothelial cells by [...] Read more.
Endothelial dysfunction is an early driver of atherosclerosis, yet the direct impact of endogenous crystals such as cholesterol crystals and monosodium urate on endothelial activation remains incompletely understood. In this study, we examine how crystalline stimuli modulate human umbilical vein endothelial cells by assessing inflammatory signaling, mitochondrial respiration, and neutrophil recruitment. Using dose- and time-controlled experiments, we show that CC and MSU are internalized by endothelial cells, activating NF-κB and STAT3 signaling pathways and inducing a robust pro-inflammatory cytokine profile. Notably, CC caused marked mitochondrial dysfunction, evidenced by impaired respiratory capacity and loss of membrane potential, revealing a novel bioenergetic vulnerability in endothelial cells. Both direct crystal stimulation and exposure to crystal-primed conditioned media triggered endothelial adhesion molecule expression and promoted neutrophil adhesion, indicating that soluble mediators released upon crystal stimulation can propagate vascular inflammation. These findings demonstrate that crystalline stimuli are potent vascular danger signals capable of driving endothelial inflammation, mitochondrial impairment, and immune cell engagement, which are hallmarks of early atherogenesis. By elucidating these multifaceted endothelial responses, this study provides important mechanistic insights into how crystal-induced signals may contribute to vascular dysfunction and the early stages of atherogenesis. Full article
(This article belongs to the Special Issue Endothelial Dysfunction and Cardiovascular Diseases)
16 pages, 5174 KB  
Article
Glucocorticoids Induce an Opposite Metabolic Switch in Human Monocytes Contingent upon Their Polarization
by Elisa Peruzzi, Sophia Heidenreich, Lucas Klaus, Angela Boshnakovska, Agathe Amouret, Tobias Legler, Sybille D. Reichardt, Fred Lühder and Holger M. Reichardt
Biomolecules 2025, 15(10), 1422; https://doi.org/10.3390/biom15101422 - 7 Oct 2025
Abstract
Background: Monocytes can commit to different phenotypes associated with specific features required in inflammation and homeostasis. Classical and alternative activation are two extremes of monocyte polarization and are both influenced by glucocorticoids (GCs). Methods: Human monocytes were sorted from the blood of healthy [...] Read more.
Background: Monocytes can commit to different phenotypes associated with specific features required in inflammation and homeostasis. Classical and alternative activation are two extremes of monocyte polarization and are both influenced by glucocorticoids (GCs). Methods: Human monocytes were sorted from the blood of healthy individuals and activated with LPS or IL-4 and IL-13, either in the absence or presence of dexamethasone (Dex). Metabolic adjustments were analyzed using Seahorse stress tests, SCENITH, and RT-qPCR. Results: LPS enhanced glycolysis and also, to a lesser extent, oxidative phosphorylation (OXPHOS), whereas addition of Dex induced a metabolic switch in favor of the latter. In contrast, activation of monocytes with IL-4 and IL-13 exclusively stimulated OXPHOS, which was suppressed by concomitant Dex treatment. The glycolytic function of monocytes matched alterations in gene expression of glucose transporters and metabolic enzymes, which were upregulated by LPS and inhibited by Dex via interference with the mTORC1 pathway but remained unaltered in response to IL-4 and IL-13. Although the dependency of classically and alternatively activated monocytes on OXPHOS and glucose usage markedly differed, modulation by GCs was limited to the latter polarization state. Conclusions: Our findings unravel a highly selective regulation of human monocyte energy metabolism by different activating stimuli as well as by GCs. Full article
Show Figures

Figure 1

13 pages, 1590 KB  
Article
Anorexia Nervosa Dampens Subjective and Facial Pain Responsiveness
by Stefan Lautenbacher, Miriam Kunz and Karl-Jürgen Bär
Brain Sci. 2025, 15(10), 1082; https://doi.org/10.3390/brainsci15101082 - 7 Oct 2025
Abstract
Background/Objectives: Individuals with anorexia nervosa (AN) are known to exhibit both reduced pain sensitivity—when assessed via thresholds and subjective ratings—and diminished facial expressions of emotion. Therefore, investigating the facial response to pain in this population is of particular interest. Method: Seventeen patients with [...] Read more.
Background/Objectives: Individuals with anorexia nervosa (AN) are known to exhibit both reduced pain sensitivity—when assessed via thresholds and subjective ratings—and diminished facial expressions of emotion. Therefore, investigating the facial response to pain in this population is of particular interest. Method: Seventeen patients with AN and 18 age- and sex-matched healthy controls were assessed using a thermode to induce heat pain. Subjective pain measures included pain threshold, pain tolerance, and pain ratings of supra-threshold stimuli, rated on a numerical rating scale (NRS). Facial responses to the suprathreshold stimuli were analyzed using the Facial Action Coding System (FACS). Eating pathology was assessed using the Eating Attitudes Test (EAT-26), the Eating Disorder Inventory-2 (EDI-2) and the body mass index (BMI), while depression was measured using the Beck Depression Inventory-II (BDI-II). Results: Compared with healthy controls, AN patients showed altogether significantly reduced facial expressions of pain, with particularly pronounced reductions in Action Units AU 6_7 and AU 9_10. In contrast, subjective pain measures showed only marginal differences between groups. Importantly, the reduction in facial expression could not be accounted for by differences in pain thresholds or ratings, nor by levels of eating pathology or depression. Conclusions: Individuals with AN display a markedly reduced facial expression of pain, which was observed for the first time, consistent with similar findings regarding the facial expressions of emotions. As this reduction cannot be explained by subjective pain report, it suggests that the communication of pain is impaired on two levels in AN: both in verbal and in nonverbal signaling. This may hinder the ability of others to recognize and respond to their pain appropriately. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

17 pages, 3701 KB  
Review
A Review of Assessment of Sow Pain During Farrowing Using Grimace Scores
by Lucy Palmer, Sabrina Lomax and Roslyn Bathgate
Animals 2025, 15(19), 2915; https://doi.org/10.3390/ani15192915 - 7 Oct 2025
Abstract
Reproduction is one of the most important considerations for the livestock industry, presenting significant economic and animal health and welfare pressures for producers. Parturition, the process of giving birth, is known to be highly painful in many mammalian species, but the understanding of [...] Read more.
Reproduction is one of the most important considerations for the livestock industry, presenting significant economic and animal health and welfare pressures for producers. Parturition, the process of giving birth, is known to be highly painful in many mammalian species, but the understanding of parturient pain in sows is limited. Farrowing, the process of parturition in pigs, is understudied compared to other livestock species, with very little research available specifically regarding pain. Pain can be detrimental to animal wellbeing; hence, it is vital for it to be reliably detected and managed in such a way that improves both sow and piglet health and welfare. Grimace scales have been developed as a method for pain detection and quantification in animals via observations of facial expression changes in response to painful stimuli. This presents a unique opportunity for improved pain assessment during farrowing, increasing the current understanding of farrowing dynamics and potentially enhancing farrowing management decisions to prioritise sow welfare. This review synthesises and critically analyses the current knowledge on sow parturient pain and the ability for the application of facial grimace scoring to measure pain severity. Grimace scoring was found to be an effective, simple and feasible method of pain assessment in a number of domestic species, and its recent application to farrowing is a promising development in the understanding and management of sow welfare during parturition. Full article
(This article belongs to the Special Issue Animal Health and Welfare Assessment of Pigs)
Show Figures

Figure 1

28 pages, 2172 KB  
Article
Bioinspired Stimulus Selection Under Multisensory Overload in Social Robots Using Reinforcement Learning
by Jesús García-Martínez, Marcos Maroto-Gómez, Arecia Segura-Bencomo, Álvaro Castro-González and José Carlos Castillo
Sensors 2025, 25(19), 6152; https://doi.org/10.3390/s25196152 - 4 Oct 2025
Abstract
Autonomous social robots aim to reduce human supervision by performing various tasks. To achieve this, they are equipped with multiple perceptual channels to interpret and respond to environmental cues in real time. However, multimodal perception often leads to sensory overload, as robots may [...] Read more.
Autonomous social robots aim to reduce human supervision by performing various tasks. To achieve this, they are equipped with multiple perceptual channels to interpret and respond to environmental cues in real time. However, multimodal perception often leads to sensory overload, as robots may receive numerous simultaneous stimuli with varying durations or persistent activations across different sensory modalities. Sensor overstimulation and false positives can compromise a robot’s ability to prioritise relevant inputs, sometimes resulting in repeated or inaccurate behavioural responses that reduce the quality and coherence of the interaction. This paper presents a Bioinspired Attentional System that uses Reinforcement Learning to manage stimulus prioritisation in real time. The system draws inspiration from the following two neurocognitive mechanisms: Inhibition of Return, which progressively reduces the importance of previously attended stimuli that remain active over time, and Attentional Fatigue, which penalises stimuli of the same perception modality when they appear repeatedly or simultaneously. These mechanisms define the algorithm’s reward function to dynamically adjust the weights assigned to each stimulus, enabling the system to select the most relevant one at each moment. The system has been integrated into a social robot and tested in three representative case studies that show how it modulates sensory signals, reduces the impact of redundant inputs, and improves stimulus selection in overstimulating scenarios. Additionally, we compare the proposed method with a baseline where the robot executes expressions as soon as it receives them using a queue. The results show the system’s significant improvement in expression management, reducing the number of expressions in the queue and the delay in performing them. Full article
Show Figures

Figure 1

16 pages, 4460 KB  
Article
Fluidic Response and Sensing Mechanism of Meissner’s Corpuscles to Low-Frequency Mechanical Stimulation
by Si Chen, Tonghe Yuan, Zhiheng Yang, Weimin Ru and Ning Yang
Sensors 2025, 25(19), 6151; https://doi.org/10.3390/s25196151 - 4 Oct 2025
Abstract
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and [...] Read more.
Meissner’s corpuscles are essential mechanoreceptors that detect low-frequency vibrations. However, the internal fluid dynamic processes that convert directional mechanical stimuli into neural signals are not yet fully understood. This study aims to clarify the direction-specific sensing mechanism by analyzing internal fluid flow and shear stress distribution under different vibration modes. A biomimetic microfluidic platform was developed and coupled with a dynamic mesh computational fluid dynamics (CFD) model to simulate the response of the corpuscle to 20 Hz normal and tangential vibrations. The simulation results showed clear differences in fluid behavior. Normal vibration produced localized vortices and peak wall shear stress greater than 0.0054 Pa along the short axis. In contrast, tangential vibration generated stable laminar flow with a lower average shear stress of about 0.0012 Pa along the long axis. These results suggest that the internal structure of the Meissner corpuscle is important for converting mechanical inputs from different directions into specific fluid patterns. This study provides a physical foundation for understanding mechanotransduction and supports the design of biomimetic sensors with improved directional sensitivity for use in smart skin and soft robotic systems. Full article
(This article belongs to the Section Biosensors)
15 pages, 1026 KB  
Article
Flexible, Stretchable, and Self-Healing MXene-Based Conductive Hydrogels for Human Health Monitoring
by Ruirui Li, Sijia Chang, Jiaheng Bi, Haotian Guo, Jianya Yi and Chengqun Chu
Polymers 2025, 17(19), 2683; https://doi.org/10.3390/polym17192683 - 3 Oct 2025
Abstract
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In [...] Read more.
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In this study, polyvinyl alcohol (PVA) and polyacrylamide (PAM) were used as the dual-network matrix, lithium chloride and MXene were added, and a simple immersion strategy was adopted to synthesize a multifunctional MXene-based conductive hydrogel in a glycerol/water (1:1) binary solvent system. A subsequent investigation was then conducted on the hydrogel. The prepared PVA/PAM/LiCl/MXene hydrogel exhibits excellent tensile properties (~1700%), high electrical conductivity (1.6 S/m), and good self-healing ability. Furthermore, it possesses multimodal sensing performance, including humidity sensitivity (sensitivity of −1.09/% RH), temperature responsiveness (heating sensitivity of 2.2 and cooling sensitivity of 1.5), and fast pressure response/recovery times (220 ms/230 ms). In addition, the hydrogel has successfully achieved real-time monitoring of human joint movements (elbow and knee bending) and physiological signals (pulse, breathing), as well as enabled monitoring of spatial pressure distribution via a 3 × 3 sensor array. The performance and versatility of this hydrogel make it a promising candidate for next-generation flexible sensors, which can be applied in the fields of human health monitoring, electronic skin, and human–machine interaction. Full article
(This article belongs to the Special Issue Semiflexible Polymers, 3rd Edition)
22 pages, 615 KB  
Review
Theranostic Nanoplatforms in Nuclear Medicine: Current Advances, Emerging Trends, and Perspectives for Personalized Oncology
by María Jimena Salgueiro and Marcela Zubillaga
J. Nanotheranostics 2025, 6(4), 27; https://doi.org/10.3390/jnt6040027 - 3 Oct 2025
Abstract
The convergence of nanotechnology with nuclear medicine has led to the development of theranostic nanoplatforms that combine targeted imaging and therapy within a single system. This review provides a critical and updated synthesis of the current state of nanoplatform-based theranostics, with a particular [...] Read more.
The convergence of nanotechnology with nuclear medicine has led to the development of theranostic nanoplatforms that combine targeted imaging and therapy within a single system. This review provides a critical and updated synthesis of the current state of nanoplatform-based theranostics, with a particular focus on their application in oncology. We explore multifunctional nanocarriers that integrate diagnostic radionuclides for SPECT/PET imaging with therapeutic radioisotopes (α-, β-, or Auger emitters), chemotherapeutics, and biological targeting ligands. We highlight advances in nanomaterial engineering—such as hybrid architectures, surface functionalization, and stimuli-responsive designs—that improve tumor targeting, biodistribution, and therapeutic outcomes. Emphasis is placed on translational challenges including pharmacokinetics, toxicity, regulatory pathways, and GMP-compliant manufacturing. The article closes with a forward-looking perspective on how theranostic nanoplatforms could reshape the future of personalized oncology through precision-targeted diagnostics and radiotherapy. Full article
Show Figures

Figure 1

34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

26 pages, 1645 KB  
Review
Mechanotransduction-Epigenetic Coupling in Pulmonary Regeneration: Multifunctional Bioscaffolds as Emerging Tools
by Jing Wang and Anmin Xu
Pharmaceuticals 2025, 18(10), 1487; https://doi.org/10.3390/ph18101487 - 2 Oct 2025
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present [...] Read more.
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present a promising therapeutic strategy through targeted modulation of critical cellular processes, including proliferation, migration, and differentiation. This review synthesizes recent advances in scaffold-based interventions for PF, with a focus on their dual mechano-epigenetic regulatory functions. We delineate how scaffold properties (elastic modulus, stiffness gradients, dynamic mechanical cues) direct cell fate decisions via mechanotransduction pathways, exemplified by focal adhesion–cytoskeleton coupling. Critically, we highlight how pathological mechanical inputs establish and perpetuate self-reinforcing epigenetic barriers to regeneration through aberrant chromatin states. Furthermore, we examine scaffolds as platforms for precision epigenetic drug delivery, particularly controlled release of inhibitors targeting DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) to disrupt this mechano-reinforced barrier. Evidence from PF murine models and ex vivo lung slice cultures demonstrate scaffold-mediated remodeling of the fibrotic niche, with key studies reporting substantial reductions in collagen deposition and significant increases in alveolar epithelial cell markers following intervention. These quantitative outcomes highlight enhanced alveolar epithelial plasticity and upregulating antifibrotic gene networks. Emerging integration of stimuli-responsive biomaterials, CRISPR/dCas9-based epigenetic editors, and AI-driven design to enhance scaffold functionality is discussed. Collectively, multifunctional bioscaffolds hold significant potential for clinical translation by uniquely co-targeting mechanotransduction and epigenetic reprogramming. Future work will need to resolve persistent challenges, including the erasure of pathological mechanical memory and precise spatiotemporal control of epigenetic modifiers in vivo, to unlock their full therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
47 pages, 8140 KB  
Review
A Review on Low-Dimensional Nanoarchitectonics for Neurochemical Sensing and Modulation in Responsive Neurological Outcomes
by Mohammad Tabish, Iram Malik, Ali Akhtar and Mohd Afzal
Biomolecules 2025, 15(10), 1405; https://doi.org/10.3390/biom15101405 - 2 Oct 2025
Abstract
Low-Dimensional Nanohybrids (LDNHs) have emerged as potent multifunctional platforms for neurosensing and neuromodulation, providing elevated spatial-temporal precision, versatility, and biocompatibility. This review examines the intersection of LDNHs with artificial intelligence, brain–computer interfaces (BCIs), and closed-loop neurotechnologies, highlighting their transformative potential in personalized neuro-nano-medicine. [...] Read more.
Low-Dimensional Nanohybrids (LDNHs) have emerged as potent multifunctional platforms for neurosensing and neuromodulation, providing elevated spatial-temporal precision, versatility, and biocompatibility. This review examines the intersection of LDNHs with artificial intelligence, brain–computer interfaces (BCIs), and closed-loop neurotechnologies, highlighting their transformative potential in personalized neuro-nano-medicine. Utilizing stimuli-responsive characteristics, optical, thermal, magnetic, and electrochemical LDNHs provide real-time feedback-controlled manipulation of brain circuits. Their pliable and adaptable structures surpass the constraints of inflexible bioelectronics, improving the neuronal interface and reducing tissue damage. We also examined their use in less invasive neurological diagnostics, targeted therapy, and adaptive intervention systems. This review delineates recent breakthroughs, integration methodologies, and fundamental mechanisms, while addressing significant challenges such as long-term biocompatibility, deep-tissue accessibility, and scalable manufacturing. A strategic plan is provided to direct future research toward clinical use. Ultimately, LDNHs signify a transformative advancement in intelligent, tailored, and closed-loop neurotechnologies, integrating materials science, neurology, and artificial intelligence to facilitate the next era of precision medicine. Full article
Show Figures

Figure 1

17 pages, 1818 KB  
Article
pH-Sensitive Release of Functionalized Chiral Carbon Dots from PLGA Coatings on Titanium Alloys for Biomedical Applications
by Roberto López-Muñoz, Pascale Chevallier, Francesco Copes, Rafik Naccache and Diego Mantovani
Polymers 2025, 17(19), 2667; https://doi.org/10.3390/polym17192667 - 2 Oct 2025
Abstract
Titanium and its alloys are the most widely used metallic materials for bone contact implants. However, despite advances in implant technology, these alloys are still susceptible to post-operative clinical complications such as inflammation, which is often joined by infections and biofilm formation. A [...] Read more.
Titanium and its alloys are the most widely used metallic materials for bone contact implants. However, despite advances in implant technology, these alloys are still susceptible to post-operative clinical complications such as inflammation, which is often joined by infections and biofilm formation. A number of coatings were studied to overcome the drawbacks of these complications, but the controlled release of bioactive molecules over the first few days and the adhesion of the coating to the substrate remain recognized challenges. Carbon dots and the antibacterial potential of chiral carbon dots (CCDs) were recently reported, and their chirality was identified as a major contribution to the bactericidal effect. This study aimed to achieve a stimuli-responsive medium-term controlled release for up to one month. Two types of chiral carbon dots (CCDs) with distinct functional groups were incorporated into a stable and adherent biodegradable polymer coating, i.e., poly(lactic-co-glycolic acid) (PLGA). To enhance the coating adhesion, the titanium alloy surfaces were pre-treated and activated. The wettability, morphology, and surface composition of the coatings were characterized by contact angle, profilometry, SEM, and XPS, respectively. Coating degradation, adhesion, and CCDs release were studied at physiological pH (7.4) and at an acidic pH characteristic of an inflammatory site (pH 3.0) for up to one month. Their biological performances and blood compatibility were assessed as well. Degradation studies conducted over 28 days revealed a slow mass loss of approximately 10%, with maximum release rates for CCDs-OH and CCDs-NH2 of 67% and 45% at pH 7.4, respectively. At pH 3.0 an inverse trend was observed with 49% and 59% maximum release after 28 days. Furthermore, the coatings did not exhibit any cytotoxic and hemolytic effects. These findings demonstrate the potential of this approach to providing titanium implants with pH-sensitive controlled release of bioactive CCDs lasting up to one month, which could address key challenges in implant-associated complications. Full article
(This article belongs to the Special Issue Smart and Functional Biopolymers)
Show Figures

Figure 1

5 pages, 483 KB  
Proceeding Paper
Nanoparticle-Mediated Drug Delivery: Enhancing Therapeutic Efficacy and Minimizing Toxicity
by Andrew Waititu, Tabitha Waithira and Allan Mwaura
Eng. Proc. 2025, 109(1), 19; https://doi.org/10.3390/engproc2025109019 - 2 Oct 2025
Abstract
This research focuses on developing innovative nanoparticle-based drug delivery systems to enhance therapeutic efficacy while minimizing adverse effects. We engineered biocompatible polymeric nanoparticles capable of encapsulating various therapeutic agents, demonstrating improved stability, prolonged circulation times, and preferential accumulation in target tissues. Surface functionalization [...] Read more.
This research focuses on developing innovative nanoparticle-based drug delivery systems to enhance therapeutic efficacy while minimizing adverse effects. We engineered biocompatible polymeric nanoparticles capable of encapsulating various therapeutic agents, demonstrating improved stability, prolonged circulation times, and preferential accumulation in target tissues. Surface functionalization with targeting ligands achieved unprecedented specificity in drug delivery. Our nanoparticle formulations exhibited superior tumor accumulation in preclinical cancer models, enhancing therapeutic efficacy and reducing systemic toxicity. Additionally, we developed stimuli-responsive nanoparticles for precise spatiotemporal control over drug release. These advanced delivery systems promise to improve patient outcomes and advance personalized nanomedicine. Full article
(This article belongs to the Proceedings of Micro Manufacturing Convergence Conference)
Show Figures

Figure 1

12 pages, 1102 KB  
Article
Self-Motion Misperception Induced by Neck Muscle Fatigue
by Fabio Massimo Botti, Marco Guardabassi, Chiara Occhigrossi, Mario Faralli, Aldo Ferraresi, Francesco Draicchio and Vito Enrico Pettorossi
Audiol. Res. 2025, 15(5), 128; https://doi.org/10.3390/audiolres15050128 - 2 Oct 2025
Abstract
Background/Objectives: Previous research has demonstrated that the perception of self-motion, as signaled by cervical proprioception, is significantly altered during neck muscle fatigue, while no similar effects are observed when self-motion is signaled by the vestibular system. Given that in typical natural movements, both [...] Read more.
Background/Objectives: Previous research has demonstrated that the perception of self-motion, as signaled by cervical proprioception, is significantly altered during neck muscle fatigue, while no similar effects are observed when self-motion is signaled by the vestibular system. Given that in typical natural movements, both proprioceptive and vestibular signals are activated simultaneously, this study sought to investigate whether the misperception of motion persists during neck muscle fatigue when both proprioceptive and vestibular stimulation are present. Methods: The study evaluated the gain of the perceptual responses to symmetric yaw sinusoidal head rotations on a stationary trunk during visual target localization tasks across different rotational frequencies. In addition, the final localization error of the visual target was assessed following asymmetric sinusoidal head rotations with differing half-cycle velocities. Results: The findings indicated that even with combined proprioceptive and vestibular stimulation, self-motion perceptual responses under neck muscle fatigue showed a pronounced reduction in the gain at low-frequency stimuli and a notable increase in localization error following asymmetric rotations. Notably, spatial localization error was observed to persist after asymmetric stimulation conditioning in the light. Additionally, even moderate levels of muscle fatigue were found to result in increased self-motion misperception. Conclusions: This study suggests that neck muscle fatigue can disrupt spatial orientation, even when the vestibular system is activated, so that slow movements are inaccurately perceived. This highlights the potential risks associated with neck muscle fatigue in daily activities that demand precise spatial perception. Full article
(This article belongs to the Section Balance)
Show Figures

Figure 1

33 pages, 9239 KB  
Article
From Sensory Experience to Community Activation: The Impact and Enhancement Pathways of Sensory Stimulation in Public Art on Residents’ Participation
by Yitong Shen, Ran Tan and Shengju Li
Buildings 2025, 15(19), 3535; https://doi.org/10.3390/buildings15193535 - 1 Oct 2025
Abstract
Within the context of urban sustainability, the renewal and activation of communities have received growing attention. Public art, as a common approach to community revitalization, has long been regarded as an effective means of addressing urban and community issues. Basic human senses serve [...] Read more.
Within the context of urban sustainability, the renewal and activation of communities have received growing attention. Public art, as a common approach to community revitalization, has long been regarded as an effective means of addressing urban and community issues. Basic human senses serve as a bridge between residents and community spaces, offering an effective entry point for creating human-oriented spaces. This study addresses the challenge of insufficient spatial vitality in community spaces by examining how sensory interventions can enhance residents’ participation in public art and thereby contribute to the revitalization of communities. To guide this inquiry, a theoretical framework was constructed based on sensory marketing theory and the Stimulus–Organism–Response (SOR) model, focusing on three core dimensions: sensory stimuli, perceptual responses, and behavioral intention. The study further investigated the relationship between public art and residents’ willingness to participate through five types of sensory stimuli, using a measurement scale and Structural Equation Modeling (SEM), with eight public art installations in Shanghai serving as case references. It also assessed the relative strength of each effect. Participant interviews and non-participatory observations were subsequently conducted for validation and supplementary analysis. The results show that residents’ participation willingness in community public art is directly influenced by perceptual responses (emotional fluctuations, cognitive memory, and physiological responses), and indirectly influenced by different sensory stimuli. Cognitive memory, shaped mainly by olfactory and visual stimuli, emerged as the most important factor in encouraging participation. Participation willingness also varies across generations, and different sensory stimuli are associated with distinct participation patterns. Based on empirical data from Shanghai’s community activation practices, the study proposes implementation strategies guided by the Theory of Planned Behavior (TPB) to enhance spatial vitality, promote community activation, and support sustainable development. Full article
Back to TopTop