Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = steam blanching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 994 KiB  
Article
Impact of Different Thermal Processing Techniques on the Phytochemical Composition, Antioxidant Capacity, and DNA-Protective Properties of Broccoli
by Karlo Miškec, Marta Frlin and Ivana Šola
Appl. Sci. 2025, 15(13), 7469; https://doi.org/10.3390/app15137469 - 3 Jul 2025
Viewed by 425
Abstract
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) [...] Read more.
Vegetables are usually thermally processed before consumption to improve their flavor and safety. In this work, the effect of boiling (BO), blanching (BL), steaming (ST), air-frying (AF), and pan-frying (PF)on the nutritional value and bioactivity of broccoli (Brassica oleracea var. italica) heads was investigated, including a comparative analysis of the tissue and the cooking water remaining after the treatments. Using spectrophotometric methods, AF broccoli was found to have the highest levels (p ≤ 0.05) of hydroxycinnamic acids (1.58 ± 0.71 mg CAE/g fw), total glucosinolates (3.76 ± 2.09 mg SinE/g fw), carotenoids (6.73 ± 2.89 mg/kg fw), and lycopene (0.91 ± 0.19 mg/kg fw). Steamed and AF broccoli had the highest total phenolics (0.72 ± 0.12 mg GAE/g fw and 0.65 ± 0.15 mg GAE/g fw, respectively; p ≤ 0.05). ST broccoli also had the highest levels of soluble sugars (11.04 ± 2.45 mg SucE/g fw) and total tannins (0.46 ± 0.19 mg GAE/g fw). The water remaining after cooking broccoli (BOW) had the highest total flavonoids (2.72 ± 0.59 mg QE/g fw) and antioxidant capacity (ABTS and FRAP, 57.57 ± 18.22% and 79.34 ± 3.28%, respectively; p ≤ 0.05). The DPPH assay showed that AF (36.12 ± 15.71%) and ST (35.48 ± 2.28%) had the strongest antioxidant potential. DNA nicking assay showed that BOW and BLW were the most effective in preserving plasmid DNA supercoiled form (99.51% and 94.81%, respectively; p ≤ 0.05). These results demonstrate that thermal processing significantly affects the phytochemical composition and functional properties of broccoli, with steaming and air-frying generally preserving the highest nutritional quality. Additionally, cooking water, often discarded, retains high levels of bioactive compounds and exhibits strong antioxidant and DNA-protective effects. To the best of our knowledge, this is the first study to investigate how different thermal processing techniques of vegetables influence their ability to protect plasmid DNA structure. Furthermore, this is the first study to compare the DNA-protective effects of broccoli tissue extracts and the water remaining after cooking broccoli. Full article
(This article belongs to the Special Issue New Trends in the Structure Characterization of Food)
Show Figures

Figure 1

16 pages, 6838 KiB  
Article
Comparing the Drying Characteristics, Phytochemicals, and Antioxidant Characterization of Panax quinquefolium L. Treated by Different Processing Techniques
by Meng Li, Shuang Liu, Zhenqiang Wang, Feng Liu, Hongjing Dong, Xuguang Qiao and Xiao Wang
Foods 2025, 14(5), 815; https://doi.org/10.3390/foods14050815 - 27 Feb 2025
Viewed by 760
Abstract
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a [...] Read more.
American ginseng (AG) has long been used as an ingredient in the food and pharmaceutical industries because of its nutritional and economic value. AG is rich in nutrients, and its quality is greatly affected by how it is processed. However, there is a relative paucity of research on the comprehensive evaluation of different processing techniques of AG. This study evaluated the differences in quality formation and properties of low-temperature softened, blanched, steamed followed by hot air drying, and vacuum freeze-dried AG (LTS-HAD, BL-HAD, ST-HAD, and VFD, respectively). The results demonstrated that AGs treated with VFD had the fastest drying time (85 h) and succeeded in preserving the color and microstructure of fresh ginseng. The contents of ginsenoside Rg1 and Rb1 in LTS-HAD samples were 2.81 ± 0.01 mg/g and 10.68 ± 0.66 mg/g, respectively, which were significantly higher than those in VFD samples (p < 0.05). Moreover, ST-HAD samples had an attractive reddish-brown appearance and higher antioxidant activity. Simultaneously, the formation of the ginsenosides Rg6, (S) Rg3, (R) Rg3, Rk1, and Rg5 was discovered. BL-HAD samples had an intermediate quality among the above samples. A total of 58 volatile compounds were identified, including aldehydes (14), alcohols (13), ketones (10), esters (6), terpenes (6), acids (5), and heterocyclic compounds (4). PCA of ginsenosides and volatile components, as well as correlation analysis with color and antioxidant activity, resulted in the identification of different processed products and potential bioactive components. Full article
Show Figures

Figure 1

18 pages, 6327 KiB  
Article
The Effect of Pre-Treatment on the Rehydration of Dried Apple Cube
by Hebda Tomasz, Brzychczyk Beata, Giełżecki Jan and Cieśla Klaudia
Appl. Sci. 2025, 15(3), 1377; https://doi.org/10.3390/app15031377 - 29 Jan 2025
Cited by 1 | Viewed by 1130
Abstract
The subject of the research was a comparative analysis of the rehydration process of dried apples in cubic form. Cubes of dried Idared apples were subjected to various pre-treatment processes, including steam blanching, microwave heating and osmotic dehydration in a sucrose solution. The [...] Read more.
The subject of the research was a comparative analysis of the rehydration process of dried apples in cubic form. Cubes of dried Idared apples were subjected to various pre-treatment processes, including steam blanching, microwave heating and osmotic dehydration in a sucrose solution. The pre-treatment was followed by a convection drying process conducted using two different drying systems. The rehydration process was carried out at a water temperature of 20 °C for 150 min. Rehydration kinetics, instantaneous increments in rehydrate mass and the relative and absolute moisture content of rehydrated samples were analyzed based on the tests. The rehydration process rates were also determined. It was observed that osmotic drying in a 10% sucrose solution reduced the rehydration process of dried apples by up to 32%. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

20 pages, 2501 KiB  
Article
Different Pretreatment Methods to Strengthen the Microwave Vacuum Drying of Honeysuckle: Effects on the Moisture Migration and Physicochemical Quality
by Xiaoping Yang, Zhengying Ma, Fangxin Wan, Ao Chen, Wenkang Zhang, Yanrui Xu, Zepeng Zang and Xiaopeng Huang
Foods 2024, 13(22), 3712; https://doi.org/10.3390/foods13223712 - 20 Nov 2024
Viewed by 1246
Abstract
In this study, we analyzed the effects of three pretreatment methods—microwave, steam, and blanching—on the quality of Honeysuckle to determine the optimal pretreatment method; we then investigated the influence of different drying temperatures, vacuum levels, and rotation speeds on the drying characteristics, color, [...] Read more.
In this study, we analyzed the effects of three pretreatment methods—microwave, steam, and blanching—on the quality of Honeysuckle to determine the optimal pretreatment method; we then investigated the influence of different drying temperatures, vacuum levels, and rotation speeds on the drying characteristics, color, and active ingredient content of the Honeysuckle that was pretreated by the optimal pretreatment method during rotary microwave vacuum drying. The results indicated that a microwave pretreatment for 75 s was the optimal pretreatment method, which enhanced the retention of active ingredients and effectively improved the browning of the material. During the process of rotary microwave vacuum drying, as the temperature increased, the vacuum level rose, and the rotation speed increased, the drying rate gradually increased. However, excessively high vacuum levels and rapid rotation speeds could actually decrease the drying rate. In addition, the total phenols, total flavonoids, antioxidant activity, and various active ingredients of Honeysuckle dried by rotary microwave vacuum were effectively preserved. Furthermore, its rehydration properties and color were significantly superior to those dried through sun drying. The TIOPSIS method analysis showed that the optimal process parameters were a temperature of 50 °C, a vacuum level of −0.070 MPa, and a rotation speed of 35 Hz, which exhibited the highest relative closeness (0.76). The comprehensive analysis indicated that microwave pretreatment followed by rotary microwave vacuum drying was a promising drying method with potential applications in the dehydration of agricultural products and medicinal plants. Full article
Show Figures

Figure 1

20 pages, 2573 KiB  
Article
The Effect of Thermal Processes on the Organoleptic and Nutraceutical Quality of Tomato Fruit (Solanum lycopersicum L.)
by Federica Narra, Federico Ivan Brigante, Eugenia Piragine, Pavel Solovyev, Giada Benedetti, Fabrizio Araniti, Luana Bontempo, Costanza Ceccanti, Alma Martelli and Lucia Guidi
Foods 2024, 13(22), 3678; https://doi.org/10.3390/foods13223678 - 19 Nov 2024
Viewed by 1606
Abstract
The present study investigated the changes in the organoleptic characteristics, nutraceuticals, and antioxidant activity of tomato fruits subjected to different thermal processes: tomato sauce (80 °C for 30 min), blanching treatment (100 °C for 10 s), and the superheated steam method (SHS; 100 [...] Read more.
The present study investigated the changes in the organoleptic characteristics, nutraceuticals, and antioxidant activity of tomato fruits subjected to different thermal processes: tomato sauce (80 °C for 30 min), blanching treatment (100 °C for 10 s), and the superheated steam method (SHS; 100 °C for 7 min) compared with fresh tomato fruit. Even though SHS negatively modified the color of the product (L* −7% than fresh tomatoes), it was the only technology able to increase the antioxidant activity compared with fresh tomatoes (e.g., +40.3% in ABTS assay), whilst lycopene and ascorbic acid contents reported similar values to fresh tomatoes. Regarding lycopene, only 5Z-lycopene (with a higher bioavailability than (all-E)-isomers) was found in all samples, and SHS maintained the same level observed in fresh tomato fruit. Furthermore, SHS technology preserved the antioxidant effects of fresh tomato extract even in human endothelial cells. This result confirmed those obtained in previous “cell-free” assays and demonstrated that SHS treatment significantly maintains the biological properties of tomato fruit in preventing oxidative stress. However, heat-treated tomato extracts did not show the same effects as fresh tomato extract against noradrenaline-induced vasoconstriction in isolated rat aortic rings. This study demonstrates that the use of SHS technology can be considered an innovative and sustainable thermal process (in terms of maintaining the nutraceutical quality) for tomato fruits, thus paving the way for future investigations on the effects of fresh and heat-treated tomatoes after intestinal absorption in vitro and in vivo. Full article
Show Figures

Figure 1

22 pages, 53463 KiB  
Article
Distribution of Dietary Phospholipids in Selected Agri-Foods: Versatile Nutraceutical Ingredients
by Ho-Chang Kim, Eun-Ju Cho, Hyeon-Jun Chang, Jung-Ah Shin and Jeung-Hee Lee
Foods 2024, 13(22), 3603; https://doi.org/10.3390/foods13223603 - 11 Nov 2024
Cited by 1 | Viewed by 1207
Abstract
Phospholipids (PLs) play a crucial role in the nutraceutical field due to their various health benefits, including supporting acetylcholine production, enhancing cell membrane fluidity, and promoting cognitive functions. This study aimed to investigate the PL composition of selected agri-foods, including grains, vegetables, and [...] Read more.
Phospholipids (PLs) play a crucial role in the nutraceutical field due to their various health benefits, including supporting acetylcholine production, enhancing cell membrane fluidity, and promoting cognitive functions. This study aimed to investigate the PL composition of selected agri-foods, including grains, vegetables, and fruits, and assess the effects of cooking methods. The major PLs identified in most agri-foods were phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Additionally, lyso-phosphatidylethanolamine and lyso-phosphatidylcholine were found in rice, grains, and wheat, while N-acyl-phosphatidylethanolamine was detected in grains, wheat, and some vegetables. Phosphatidylinositol was present in fruits and vegetables, and phosphatidylserine was exclusively found in mushrooms. The PL composition was influenced by cooking methods, with boiling, steaming, blanching, and roasting increasing the PL content, while salting tended to decrease it. Although most agri-foods contained higher levels of PC than PE, citrus fruits under long-term low-temperature storage had significantly more PE than PC. This study established a PL database for the selected agri- and processed/cooked foods, providing insights into changes in PL composition and content based on cooking methods. Given the important health functions of each PL, consuming various agri-foods and incorporating different cooking methods for optimal health benefits is advisable. Full article
(This article belongs to the Special Issue The Development of New Functional Foods and Ingredients: 2nd Edition)
Show Figures

Figure 1

18 pages, 7952 KiB  
Article
Deep Learning Prediction of Moisture and Color Kinetics of Apple Slices by Long Short-Term Memory as Affected by Blanching and Hot-Air Drying Conditions
by Zehui Jia, Yanhong Liu and Hongwei Xiao
Processes 2024, 12(8), 1724; https://doi.org/10.3390/pr12081724 - 16 Aug 2024
Cited by 6 | Viewed by 1735
Abstract
This study aimed to improve apple slices’ color and drying kinetics by optimizing the hot-air drying process, utilizing machine and deep learning models. Different steam blanching times (30, 60, 90, and 120 s), drying temperatures (50, 55, 60, 65, and 70 °C), and [...] Read more.
This study aimed to improve apple slices’ color and drying kinetics by optimizing the hot-air drying process, utilizing machine and deep learning models. Different steam blanching times (30, 60, 90, and 120 s), drying temperatures (50, 55, 60, 65, and 70 °C), and humidity control methods (full humidity removal or temperature–humidity control) were examined. These factors significantly affected the quality of apple slices. 60 s blanching, 60 °C temperature, and full dehumidification represented the optimal drying conditions for apple slices’ dehydration, achieving better drying kinetics and the best color quality. However, the fastest drying process (40 min) was obtained at a 60 °C drying temperature combined with complete dehumidification after 90 s blanching. Furthermore, machine and deep learning models, including backpropagation (BP), convolutional neural network–long short-term memory (CNN-LSTM), temporal convolutional network (TCN), and long short-term memory (LSTM) networks, effectively predicted the moisture content and color variation in apple slices. Among these, LSTM networks demonstrated exceptional predictive performance with an R2 value exceeding 0.98, indicating superior accuracy. This study provides a scientific foundation for optimizing the drying process of apple slices and illustrates the potential application of deep learning in the agricultural processing and engineering fields. Full article
(This article belongs to the Special Issue Drying Kinetics and Quality Control in Food Processing, 2nd Edition)
Show Figures

Figure 1

19 pages, 2438 KiB  
Article
Sausage Quality during Storage under the Partial Substitution of Meat with Fermented Oyster Mushrooms
by Meltem Boylu, Géza Hitka and György Kenesei
Foods 2024, 13(13), 2115; https://doi.org/10.3390/foods13132115 - 2 Jul 2024
Cited by 3 | Viewed by 2602
Abstract
The increasing global demand for meat production, driven by a rapidly expanding population and changing dietary preferences has prompted the search for protein-rich, sustainable, and healthier meat alternatives. In this context, edible mushrooms are viewed as advantageous substitutes for meat, offering a viable [...] Read more.
The increasing global demand for meat production, driven by a rapidly expanding population and changing dietary preferences has prompted the search for protein-rich, sustainable, and healthier meat alternatives. In this context, edible mushrooms are viewed as advantageous substitutes for meat, offering a viable solution. This study aimed to investigate the effects of partially replacing (25% and 50%) pork meat in sausage samples with fermented oyster mushrooms (Pleurotus ostreatus), which were subjected to various pretreatments. Six different pretreatments were applied to fresh oyster mushrooms as follows: blanching in water, steaming, oven-cooking, microwave treatment, high hydrostatic pressure treatment, and ultraviolet light treatment. The effects of mushroom replacement on the moisture, pH, lipid oxidation, color, and textural properties of sausages during the 4-week refrigerated storage period were evaluated. The results revealed that replacing pork meat with fermented oyster mushrooms resulted in an increase in moisture content and b* values and a decrease in pH, L*, a*, and shear force values, proportional to the mushroom percentage. The lipid oxidation findings suggest that the antioxidant capabilities of fermented oyster mushrooms were influenced by the pretreatment methods applied to the mushrooms, exhibiting varying levels of effectiveness. Full article
(This article belongs to the Special Issue Mushrooms in Food Industry and Human Nutrition)
Show Figures

Figure 1

20 pages, 3055 KiB  
Article
Curly Kale (Brassica oleracea var. Sabellica L.) Biofortified with 5,7-Diiodo-8-quinolinol: The Influence of Heat Treatment on Iodine Level, Macronutrient Composition and Antioxidant Content
by Justyna Waśniowska, Teresa Leszczyńska, Aneta Kopeć, Ewa Piątkowska, Sylwester Smoleń, Joanna Krzemińska, Iwona Kowalska, Jacek Słupski, Ewelina Piasna-Słupecka, Katarzyna Krawczyk and Aneta Koronowicz
Nutrients 2023, 15(22), 4730; https://doi.org/10.3390/nu15224730 - 9 Nov 2023
Cited by 6 | Viewed by 3190
Abstract
Many disorders are a result of an inadequate supply of macronutrients and micronutrients in the diet. One such element is iodine. This study used curly kale (Brassica oleracea var. Sabellica L.) biofortified with the 5,7-diiodo-8-quinolinol iodine compound. The effect of the heat [...] Read more.
Many disorders are a result of an inadequate supply of macronutrients and micronutrients in the diet. One such element is iodine. This study used curly kale (Brassica oleracea var. Sabellica L.) biofortified with the 5,7-diiodo-8-quinolinol iodine compound. The effect of the heat treatment on the chemical composition of the curly kale was studied. In addition, iodine bioavailability was evaluated in in vivo studies. Our investigation showed that iodine loss depends on the type of heat treatment as well as on the variety of kale. Curly kale biofortified with iodoquinoline had significantly higher iodine levels after thermal processing (steaming, blanching, boiling) than the vegetable biofortified with KIO3. Generally, steaming was the best thermal processing method, as it contributed to the lowest iodine loss in curly kale. The red variety of kale, ‘Redbor F1’, showed a better iodine stability during the heat treatment than the green variety, ‘Oldenbor F1’. The thermal treatment also significantly affected the dry matter content and the basic chemical composition of the tested varieties of the 5,7-diI-8-Q biofortified kale. The steaming process caused a significant increase in total carbohydrates, fiber, protein and crude fat content (‘Oldenbor F1’, ‘Redbor F1’), and antioxidant activity (‘Oldenbor F1’). On the other hand, boiling caused a significant decrease, while steaming caused a significant increase, in protein and dry matter content (‘Oldenbor F1’, ‘Redbor F1’). The blanching process caused the smallest significant decrease in ash compared to the other thermal processes used (‘Oldenbor F1’). A feeding experiment using Wistar rats showed that iodine from the 5,7-diI-8-Q biofortified kale has a higher bioavailability than that from the AIN-93G diet. A number of promising results have been obtained, which could form the basis for further research. Full article
(This article belongs to the Special Issue Vegetarian Diet Patterns and Their Impact on Common Chronic Diseases)
Show Figures

Figure 1

18 pages, 12997 KiB  
Article
Cooking Methods for Preserving Isothiocyanates and Reducing Goitrin in Brassica Vegetables
by Thanaporn Panduang, Pakkapong Phucharoenrak, Weeraya Karnpanit and Dunyaporn Trachootham
Foods 2023, 12(19), 3647; https://doi.org/10.3390/foods12193647 - 2 Oct 2023
Cited by 2 | Viewed by 2922
Abstract
Glucosinolates in Brassica vegetables can be hydrolyzed into various products, e.g., chemopreventive agents, isothiocyanates (ITCs) and anti-thyroid substance, goitrin. Cooking can reduce goitrin but destroy isothiocyanates. This study aimed to optimize cooking conditions for reducing goitrin while preserving isothiocyanates in Brassica vegetables. Cabbage [...] Read more.
Glucosinolates in Brassica vegetables can be hydrolyzed into various products, e.g., chemopreventive agents, isothiocyanates (ITCs) and anti-thyroid substance, goitrin. Cooking can reduce goitrin but destroy isothiocyanates. This study aimed to optimize cooking conditions for reducing goitrin while preserving isothiocyanates in Brassica vegetables. Cabbage and Chinese kale samples were divided evenly into raw, blanched, steamed, and water-based stir-fried samples. Cooking temperature and time were varied at 60, 80, or 100 °C for 2, 4, or 6 min. The levels of goitrin, benzyl isothiocyanate (BITC), and sulforaphane (SFN) were measured using LC-MS/MS. Response surface model (RSM) was used to identify the optimal cooking conditions to reduce goitrin but preserve ITCs. Results showed that goitrin content in cabbage depended on the cooking methods, temperature, and time, while that of Chinese kale only depended on the methods. In contrast, the concentrations of SFN in cabbage and BITC in kale depended on the cooking temperature and time but not methods. Based on RSM analysis, the suggested household cooking methods for preserving isothiocyanates and reducing goitrin are steaming cabbage at 80–100 °C for 4 min and stir-frying Chinese kale at 60–100 °C for 2 min. Such methods may preserve the bioactive compounds while reducing food hazards. Full article
Show Figures

Graphical abstract

21 pages, 4929 KiB  
Article
Quantifying of the Best Model for Prediction of Greenhouse Gas Emission, Quality, and Thermal Property Values during Drying Using RSM (Case Study: Carrot)
by Ebrahim Taghinezhad, Mohammad Kaveh, Antoni Szumny and Adam Figiel
Appl. Sci. 2023, 13(15), 8904; https://doi.org/10.3390/app13158904 - 2 Aug 2023
Cited by 5 | Viewed by 1697
Abstract
The aim of this study is to use the response surface methodology (RSM) to mathematically model the response parameters and emission of greenhouse gases (GHG) and optimize the drying variables for a carrot dried with the microwave method using [...] Read more.
The aim of this study is to use the response surface methodology (RSM) to mathematically model the response parameters and emission of greenhouse gases (GHG) and optimize the drying variables for a carrot dried with the microwave method using various pretreatments. To this end, the influence of the drying parameters (independent), such as microwave power and slice thickness dried by two pretreatments of ultrasonication at 30 °C for 10 min and blanching at 70 for 2 min, was explored on the dependent (response) parameters including the thermal properties (drying time, effective moisture diffusion coefficient (Deff), specific energy consumption, energy efficiency, quality features (color changes and shrinkage), and GHG emission (including CO2 and NOx). It should be mentioned that the emission of GHG was determined based on the energy consumption of various types of power plants such as the gas turbine steam power turbine, and combined cycle turbines using various fuels such as natural gas, heavy oil, and gas oil. The results indicated that the ultrasonication and blanching pretreatments can decrement the drying time (linearly), energy consumption (linearly or quadratically), shrinkage(quadratically), and color changes(quadratically) and enhance the Deff (linearly) and energy efficiency (linearly or quadratically) in all samples with R2 > 0.86. Moreover, the shortest drying time (42 min), lowest SEC (9.51 MJ/kg), and GHG emission ((4279.74 g CO2 in the combined cycle turbines plant, and 18.16 g NOX in the gas turbine plant) with natural gas for both plants) were recorded for the samples pretreated with blanching while the lowest color changes (13.69) and shrinkage (21.29) were observed in the ultrasonicated samples. Based on the optimization results, a microwave power of 300 W and steam power turbine of 2 mm were the best variables with a desirability of about 80% which resulted in the highest-quality products at the lowest GHG emission. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

21 pages, 1456 KiB  
Article
Variation of the Nutritional Composition and Bioactive Potential in Edible Macroalga Saccharina latissima Cultivated from Atlantic Canada Subjected to Different Growth and Processing Conditions
by Bétina Lafeuille, Éric Tamigneaux, Karine Berger, Véronique Provencher and Lucie Beaulieu
Foods 2023, 12(8), 1736; https://doi.org/10.3390/foods12081736 - 21 Apr 2023
Cited by 11 | Viewed by 2815
Abstract
Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June [...] Read more.
Macroalgae are a new food source in the Western world. The purpose of this study was to evaluate the impact of harvest months and food processing on cultivated Saccharina latissima (S. latissima) from Quebec. Seaweeds were harvested in May and June 2019 and processed by blanching, steaming, and drying with a frozen control condition. The chemical (lipids, proteins, ash, carbohydrates, fibers) and mineral (I, K, Na, Ca, Mg, Fe) compositions, the potential bioactive compounds (alginates, fucoidans, laminarans, carotenoids, polyphenols) and in vitro antioxidant potential were investigated. The results showed that May specimens were significantly the richest in proteins, ash, I, Fe, and carotenoids, while June macroalgae contained more carbohydrates. The antioxidant potential of water-soluble extracts (Oxygen Radical Absorbance Capacity [ORAC] analysis–625 µg/mL) showed the highest potential in June samples. Interactions between harvested months and processing were demonstrated. The drying process applied in May specimens appeared to preserve more S. latissima quality, whereas blanching and steaming resulted in a leaching of minerals. Losses of carotenoids and polyphenols were observed with heating treatments. Water-soluble extracts of dried May samples showed the highest antioxidant potential (ORAC analysis) compared to other methods. Thus, the drying process used to treat S. latissima harvested in May seems to be the best that should be selected. Full article
Show Figures

Graphical abstract

13 pages, 2572 KiB  
Article
Effects of Different Blanching Methods on the Quality of Tremella fuciformis and Its Moisture Migration Characteristics
by Zhipeng Zheng, Li Wu, Yibin Li, Wei Deng, Shouhui Chen and Hongbo Song
Foods 2023, 12(8), 1669; https://doi.org/10.3390/foods12081669 - 17 Apr 2023
Cited by 4 | Viewed by 2154
Abstract
Blanching is a critical step in the processing of Tremella fuciformis (T. fuciformis). The effects of different blanching methods (boiling water blanching (BWB), ultrasonic-low temperature blanching (ULTB), and high-temperature steam (HTS)) on the quality and moisture migration characteristics of T. fuciformis [...] Read more.
Blanching is a critical step in the processing of Tremella fuciformis (T. fuciformis). The effects of different blanching methods (boiling water blanching (BWB), ultrasonic-low temperature blanching (ULTB), and high-temperature steam (HTS)) on the quality and moisture migration characteristics of T. fuciformis were investigated. The results showed that the T. fuciformis blanched by ULTB (70 °C, 2 min, 40 kHz, 300 W) had the best quality, including a brighter appearance, superior texture, and good sensory features, with a polysaccharide content of 3.90 ± 0.02%. The moisture migration characteristics of T. fuciformis after blanching exhibited four peaks, displayed strong and weak chemically bound water, immobilized water, and free water, whereas ULTB had a weak effect on the freedom of water in T. fuciformis. The study will provide the foundation for the factory processing of T. fuciformis. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

16 pages, 1481 KiB  
Article
Effects of Different Processing Methods on the Quality and Physicochemical Characteristics of Laminaria japonica
by Zuomiao Yang, Xueting Li, Meiqi Yu, Shan Jiang and Hang Qi
Foods 2023, 12(8), 1619; https://doi.org/10.3390/foods12081619 - 12 Apr 2023
Cited by 5 | Viewed by 3068
Abstract
The effects of four domestic cooking methods, including blanching, steaming, boiling, and baking treatments, on processing properties, bioactive compound, pigments, flavor components, and tissue structure of Laminaria japonica were investigated. The results showed that the color and structure of kelp changed most obviously [...] Read more.
The effects of four domestic cooking methods, including blanching, steaming, boiling, and baking treatments, on processing properties, bioactive compound, pigments, flavor components, and tissue structure of Laminaria japonica were investigated. The results showed that the color and structure of kelp changed most obviously after baking; steaming was most beneficial in reducing the color change of the kelp (ΔE < 1), while boiling was most effective in maintaining the texture of the kelp (its hardness and chewiness were close to that of raw kelp); eight volatile compounds were detected in raw kelp, four and six compounds were detected in blanched and boiled kelp, while eleven and thirty kinds of compounds were detected in steamed and baked kelp, respectively. In addition, the contents of phloroglucinol and fucoxanthin in kelp after the four processing methods were significantly reduced (p < 0.05). However, of all the methods, steaming and boiling were the best at preserving these two bioactive substances (phloroglucinol and fucoxanthin) in kelp. Therefore, steaming and boiling seemed more appropriate to maintain the original quality of the kelp. Generally, to improve the sensory characteristics of each meal of Laminaria japonica and to maximize the retention of active nutrients, several different processing methods are provided according to the respective effects. Full article
Show Figures

Figure 1

17 pages, 6681 KiB  
Article
Effects of Steam and Water Blanching on Drying Characteristics, Water Distribution, Microstructure, and Bioactive Components of Gastrodia Elata
by Yong-Kang Xie, Xing-Yi Li, Chang Chen, Wei-Peng Zhang, Xian-Long Yu, Hong-Wei Xiao and Feng-Yin Lu
Plants 2023, 12(6), 1372; https://doi.org/10.3390/plants12061372 - 20 Mar 2023
Cited by 16 | Viewed by 3821
Abstract
In the current work, the effects of steam and boiling water blanching on the drying characteristics, water distribution, microstructure, and contents of bioactive substances of Gastrodia elata (G. elata) were explored. Results showed that the degree of steaming and blanching was [...] Read more.
In the current work, the effects of steam and boiling water blanching on the drying characteristics, water distribution, microstructure, and contents of bioactive substances of Gastrodia elata (G. elata) were explored. Results showed that the degree of steaming and blanching was related to the core temperature of G. elata. The steaming and blanching pretreatment increased the drying time of the samples by more than 50%. The low-field nuclear magnetic resonance (LF-NMR) of treated samples showed that the relaxation time corresponded to water molecule states (bound, immobilized, and free) and G. elata became shorter, which indicated a reduction in free moisture and increased resistance of water diffusion in the solid structure during drying. Hydrolysis of polysaccharides and gelatinization of starch granules was observed in the microstructure of treated samples, which was consistent with changes in water status and drying rates. Steaming and blanching increased gastrodin and crude polysaccharide contents and decreased p-hydroxybenzyl alcohol content. These findings will contribute to a better understanding of the effect of steaming and blanching on the drying behavior and quality attributes of G. elata. Full article
Show Figures

Figure 1

Back to TopTop