Curly Kale (Brassica oleracea var. Sabellica L.) Biofortified with 5,7-Diiodo-8-quinolinol: The Influence of Heat Treatment on Iodine Level, Macronutrient Composition and Antioxidant Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of 5,7-Diiodo-8-quinolinol
2.2. Curly Kale Cultivation and Biofortification with KIO3 and 5,7-Diiodo-8-quinolinol
2.3. Thermal Treatment of Curly Kale
2.4. Chemical Composition
2.4.1. Lyophilization of the Analytical Material
2.4.2. Determination of Dry Matter Content
2.4.3. Determination of Total Iodine
2.4.4. Basic Chemical Composition
2.4.5. Determination of Vitamin C, Total Carotenoids, Total Polyphenol Content, and Free Radical Quenching Capacity of ABTS *+
2.5. Assessment of Iodine Fortified Kale for Consumer Health and Safety
2.6. Animal Study
Iodine Content in Urine and Feces
2.7. Statistical Analysis
3. Results
3.1. Iodine Content
3.2. Dry Matter Content and Basic Chemical Composition
3.3. Vitamin C, Total Carotenoids, Total Polyphenol Content, and Free Radical Quenching Capacity of ABTS *+
3.4. Assessment of Iodine in Biofortified Curly Kale for Consumer Health and Safety
3.5. Bioavailability of Iodine in Animal Study
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Conflicts of Interest
References
- Qiao, T.; Luo, T.; Pei, H.; Yimingniyazi, B.; Aili, D.; Aimudula, A.; Zhao, H.; Zhang, H.; Dai, J.; Wang, D. Association between Abdominal Obesity Indices and Risk of Cardiovascular Events in Chinese Populations with Type 2 Diabetes: A Prospective Cohort Study. Cardiovasc. Diabetol. 2022, 21, 225. [Google Scholar] [CrossRef] [PubMed]
- Lisco, G.; De Tullio, A.; Triggiani, D.; Zupo, R.; Giagulli, V.A.; De Pergola, G.; Piazzolla, G.; Guastamacchia, E.; Sabbà, C.; Triggiani, V. Iodine Deficiency and Iodine Prophylaxis: An Overview and Update. Nutrients 2023, 15, 1004. [Google Scholar] [CrossRef] [PubMed]
- EFSA NDA Panel (EFSA Panel on Panel on Dietetic Products Nutrition and Allergies). Scientific Opinion on Dietary Reference Values for Iodine. EFSA J. 2014, 12, 3660. [Google Scholar] [CrossRef]
- World Health Organization. Iodine Deficiency in Europe: A Continuing Public Health Problem. Available online: https://apps.who.int/iris/handle/10665/43398 (accessed on 30 April 2023).
- Yadav, K.; Pandav, C.S. National Iodine Deficiency Disorders Control Programme: Current Status & Future Strategy. Indian J. Med. Res. 2018, 148, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Niwattisaiwong, S.; Burman, K.D.; Li-Ng, M. Iodine Deficiency: Clinical Implications. Cleve. Clin. J. Med. 2017, 84, 236–244. [Google Scholar] [CrossRef]
- Smoleń, S.; Kowalska, I.; Czernicka, M.; Halka, M.; Kęska, K.; Sady, W. Iodine and Selenium Biofortification with Additional Application of Salicylic Acid Affects Yield, Selected Molecular Parameters and Chemical Composition of Lettuce Plants (Lactuca sativa L. Var. Capitata). Front. Plant Sci. 2016, 7, 1553. [Google Scholar] [CrossRef]
- Smoleń, S.; Kowalska, I.; Skoczylas, Ł.; Tabaszewska, M.; Pitala, J.; Mrożek, J.; Kováčik, P. Effectiveness of Enriching Lettuce with Iodine Using 5-Iodosalicylic and 3,5-Diiodosalicylic Acids and the Chemical Composition of Plants Depending on the Type of Soil in a Pot Experiment. Food Chem. 2022, 382, 132347. [Google Scholar] [CrossRef]
- Li, R.; Li, D.-W.; Yan, A.-L.; Hong, C.-L.; Liu, H.-P.; Pan, L.-H.; Song, M.-Y.; Dai, Z.-X.; Ye, M.-L.; Weng, H.-X. The Bioaccessibility of Iodine in the Biofortified Vegetables throughout Cooking and Simulated Digestion. J. Food Sci. Technol. 2018, 55, 366–375. [Google Scholar] [CrossRef]
- Weng, H.; Hong, C.; Xia, T.; Bao, L.; Liu, H.; Li, D. Iodine Biofortification of Vegetable Plants—An Innovative Method for Iodine Supplementation. Chin. Sci. Bull. 2013, 58, 2066–2072. [Google Scholar] [CrossRef]
- Smoleń, S.; Czernicka, M.; Kęska-Izworska, K.; Kowalska, I.; Grzebelus, D.; Pitala, J.; Halka, M.; Skoczylas, Ł.; Tabaszewska, M.; Liszka-Skoczylas, M.; et al. Transcriptomic and Metabolic Studies on the Role of Inorganic and Organic Iodine Compounds in Lettuce Plants. Sci. Rep. 2023, 13, 8440. [Google Scholar] [CrossRef]
- Migliozzi, M.; Thavarajah, D.; Thavarajah, P.; Smith, P. Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition. Nutrients 2015, 7, 9285–9298. [Google Scholar] [CrossRef] [PubMed]
- Di Noia, J. Defining Powerhouse Fruits and Vegetables: A Nutrient Density Approach. Prev. Chronic Dis. 2014, 11, E95. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Mukherji, S. A New Approach to Synthesis of Dihalogenated 8-Quinolinol Derivatives. J. Org. Chem. 1957, 22, 1111–1112. [Google Scholar] [CrossRef]
- Krawczyk, K.K.; Smoleń, S.; Wisła-Świder, A.; Kowalska, A.; Kiełbasa, D.; Pitala, J.; Krzemińska, J.; Waśniowska, J.; Koronowicz, A. Kale (Brassica oleracea L. Var. Sabellica) Biofortified with Iodoquinolines: Effectiveness of Enriching with Iodine and Influence on Chemical Composition. Sci. Hortic. 2024, 323, 112519. [Google Scholar] [CrossRef]
- Murphy, E.W.; Criner, P.E. Comparison of Methods for Determining Retentions of Nutrients in Cooked Foods. J. Agric. Food Chem. 1975, 23, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.J.; Rice-Evans, C.A. Spectrophotometric Determination of Antioxidant Activity. Redox Rep. 1996, 2, 161–171. [Google Scholar] [CrossRef]
- Brantsæter, A.L.; Knutsen, H.K.; Johansen, N.C.; Nyheim, K.A.; Erlund, I.; Meltzer, H.M.; Henjum, S. Inadequate Iodine Intake in Population Groups Defined by Age, Life Stage and Vegetarian Dietary Practice in a Norwegian Convenience Sample. Nutrients 2018, 10, 230. [Google Scholar] [CrossRef]
- The Environmental Protection Agency. Integrated Risk Information System-Database; Environmental Protection Agency: Washington, DC, USA, 2011. [Google Scholar]
- Trumbo, P.; Yates, A.A.; Schlicker, S.; Poos, M. Dietary Reference Intakes: Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. J. Am. Diet. Assoc. 2001, 101, 294–301. [Google Scholar] [CrossRef]
- Reeves, P.G. Components of the AIN-93 Diets as Improvements in the AIN-76A Diet. J. Nutr. 1997, 127, 838S–841S. [Google Scholar] [CrossRef]
- Duborská, E.; Urík, M.; Šeda, M. Iodine Biofortification of Vegetables Could Improve Iodine Supplementation Status. Agronomy 2020, 10, 1574. [Google Scholar] [CrossRef]
- Cieślik, E.; Leszczyńska, T.; Filipiak-Florkiewicz, A.; Sikora, E.; Pisulewski, P.M. Effects of Some Technological Processes on Glucosinolate Contents in Cruciferous Vegetables. Food Chem. 2007, 105, 976–981. [Google Scholar] [CrossRef]
- Comandini, P.; Cerretani, L.; Rinaldi, M.; Cichelli, A.; Chiavaro, E. Stability of Iodine during Cooking: Investigation on Biofortified and Not Fortified Vegetables. Int. J. Food Sci. Nutr. 2013, 64, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Kapusta-Duch, J.; Bieżanowska-Kopeć, R.; Smoleń, S.; Pysz, M.; Kopeć, A.; Piątkowska, E.; Rakoczy, R.; Koronowicz, A.; Skoczylas, Ł.; Leszczyńska, T. The Effect of Preliminary Processing and Different Methods of Cooking on the Iodine Content and Selected Antioxidative Properties of Carrot (Daucus carota L.) Biofortified with (Potassium) Iodine. Folia Hortic. 2017, 29, 11–24. [Google Scholar] [CrossRef]
- Kiferle, C.; Gonzali, S.; Holwerda, H.T.; Ibaceta, R.R.; Perata, P. Tomato Fruits: A Good Target for Iodine Biofortification. Front. Plant Sci. 2013, 4, 205. [Google Scholar] [CrossRef]
- Salau, B.A.; Ajani, E.O.; Odufuwa, K.T.; Adegbesan, B.O.; Soladoye, M.O. Effect of Processing on Iodine Content of Some Selected Plants Food. Afr. J. Biotechnol. 2010, 9, 1200–1204. [Google Scholar] [CrossRef]
- Miglio, C.; Chiavaro, E.; Visconti, A.; Fogliano, V.; Pellegrini, N. Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables. J. Agric. Food Chem. 2008, 56, 139–147. [Google Scholar] [CrossRef]
- Rana, R.; Raghuvanshi, R.S. Effect of Different Cooking Methods on Iodine Losses. J. Food Sci. Technol. 2013, 50, 1212–1216. [Google Scholar] [CrossRef]
- WHO. Report of the Formal Meeting of Member States to Conclude the Work on the Comprehensive Global Monitoring Framework, Including Indicators, and a Set of Voluntary Global Targets for the Prevention and Control of Communicable Diseases. Available online: http://apps.who.int/gb/NCDs/pdf/A_NCD_2-en.pdf (accessed on 8 April 2023).
- Krekora-Wollny, K. Niedoczynność Tarczycy a Otyłość. Forum Zaburzeń Metab. 2010, 1, 63–65. [Google Scholar]
- Rubio-Almanza, M.; Cámara-Gómez, R.; Merino-Torres, J.F. Obesidad y diabetes mellitus tipo 2: También unidas en opciones terapéuticas. Endocrinol. Diabetes Nutr. 2019, 66, 140–149. [Google Scholar] [CrossRef]
- Myszka, K.; Kamińska, B.; Fraś, A.; Ploch, M.; Boros, D. Metoda Dumasa Alternatywną Metodą Oznaczania Białka w Produktach Roślinnych-Badania Porównawcze z Metodą Kjeldahla. Biul. Inst. Hod. I Aklim. Roślin 2011, 260/261, 155–161. [Google Scholar] [CrossRef]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-Based Diets: Considerations for Environmental Impact, Protein Quality, and Exercise Performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.-F.; Sun, B.; Yuan, J.; Wang, Q.-M. Effects of Different Cooking Methods on Health-Promoting Compounds of Broccoli. J. Zhejiang Univ. Sci. B 2009, 10, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Komolka, P.; Górecka, D. Effect of Thermal Treatment on Dietary Fibre Content in Brassica Vegetables. Zywn. Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2012, 19, 68–76. [Google Scholar] [CrossRef]
- Ayaz, F.A.; Glew, R.H.; Millson, M.; Huang, H.S.; Chuang, L.T.; Sanz, C.; Hayırlıoglu-Ayaz, S. Nutrient Contents of Kale (Brassica oleraceae L. Var. acephala DC.). Food Chem. 2006, 96, 572–579. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Roshanravan, N.; Mahdavi, R.; Alizadeh, E.; Jafarabadi, M.; Hedayati, M.; Ghavami, A.; Alipour, S.; Alamdari, N.; Barati, M.; Ostadrahimi, A. Effect of Butyrate and Inulin Supplementation on Glycemic Status, Lipid Profile and Glucagon-like Peptide 1 Level in Patients with Type 2 Diabetes: A Randomized Double-Blind, Placebo-Controlled Trial. Horm. Metab. Res. 2017, 49, 886–891. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, L.; Qi, J.; Ojo, O.; Du, X.; Liu, Y.; Wang, X. The Effect of Dietary Fiber (Oat Bran) Supplement on Blood Pressure in Patients with Essential Hypertension: A Randomized Controlled Trial. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2458–2470. [Google Scholar] [CrossRef]
- Pérez-Montes de Oca, A.; Julián, M.T.; Ramos, A.; Puig-Domingo, M.; Alonso, N. Microbiota, Fiber, and NAFLD: Is There Any Connection? Nutrients 2020, 12, 3100. [Google Scholar] [CrossRef]
- Hullings, A.G.; Sinha, R.; Liao, L.M.; Freedman, N.D.; Graubard, B.I.; Loftfield, E. Whole Grain and Dietary Fiber Intake and Risk of Colorectal Cancer in the NIH-AARP Diet and Health Study Cohort. Am. J. Clin. Nutr. 2020, 112, 603–612. [Google Scholar] [CrossRef]
- Svanberg, S.J.M.; Nyman, E.M.; Andersson, G.-L.; Nilsson, R. Effects of Boiling and Storage on Dietary Fibre and Digestible Carbohydrates in Various Cultivars of Carrots. J. Sci. Food Agric. 1997, 73, 245–254. [Google Scholar] [CrossRef]
- Andersson, J.; Garrido-Banuelos, G.; Bergdoll, M.; Vilaplana, F.; Menzel, C.; Mihnea, M.; Lopez-Sanchez, P. Comparison of Steaming and Boiling of Root Vegetables for Enhancing Carbohydrate Content and Sensory Profile. J. Food Eng. 2022, 312, 110754. [Google Scholar] [CrossRef]
- Lisiewska, Z. Naturalne Związki Ograniczające Wartość Odżywczą Niektórych Warzyw. Postępy Nauk. Rol. 1991, 38, 1–2. [Google Scholar]
- Sikora, E.; Cieślik, E.; Leszczyńska, T.; Filipiak-Florkiewicz, A.; Pisulewski, P.M. The Antioxidant Activity of Selected Cruciferous Vegetables Subjected to Aquathermal Processing. Food Chem. 2008, 107, 55–59. [Google Scholar] [CrossRef]
- Sikora, E.; Bodziarczyk, I. Composition and Antioxidant Activity of Kale (Brassica oleracea L. Var. acephala) Raw and Cooked. Acta Scientiarum Polonorum. Technol. Aliment. 2012, 11, 239–248. [Google Scholar]
- Gumul, D.; Korus, J.; Achremowicz, B. Wpływ procesów przetwórczych na aktywność przeciwutleniającą surowców pochodzenia roślinnego. Żywność Nauka-Technol.-Jakość 2005, 12, 41–48. [Google Scholar]
- Kapusta-Duch, J.; Kusznierewicz, B.; Leszczyńska, T.; Borczak, B. Effect of Culinary Treatment on Changes in the Contents of Selected Nutrients and Non-Nutrients in Curly Kale (Brassica oleracea Var. acephala). J. Food Process. Preserv. 2016, 40, 1280–1288. [Google Scholar] [CrossRef]
- Dewanto, V.; Wu, X.; Adom, K.K.; Liu, R.H. Thermal Processing Enhances the Nutritional Value of Tomatoes by Increasing Total Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 3010–3014. [Google Scholar] [CrossRef]
- Kurilich, A.C.; Tsau, G.J.; Brown, A.; Howard, L.; Klein, B.P.; Jeffery, E.H.; Kushad, M.; Wallig, M.A.; Juvik, J.A. Carotene, Tocopherol, and Ascorbate Contents in Subspecies of Brassica oleracea. J. Agric. Food Chem. 1999, 47, 1576–1581. [Google Scholar] [CrossRef]
- Gębczynski, P. Changes in the Content of Antioxidant Compounds Selected in Frozen Vegetables, Depending on the Pretreatment and Storage Conditions and Method of Preparation for Consumption. Zesz. Nauk. Akad. Rol. W Krakowie 2008, 455, 25–31. [Google Scholar]
- Nartea, A.; Fanesi, B.; Falcone, P.M.; Pacetti, D.; Frega, N.G.; Lucci, P. Impact of Mild Oven Cooking Treatments on Carotenoids and Tocopherols of Cheddar and Depurple Cauliflower (Brassica oleracea L. Var. botrytis). Antioxidants 2021, 10, 196. [Google Scholar] [CrossRef]
- Korus, A. Content of Carotenoids and Chlorophyll Pigments in Kale (Brassica oleracea L. Var. acephala) Depending on the Cultivar and the Harvest Date. Electron. J. Pol. Agric. Univ. 2007, 10, 28. [Google Scholar]
- Gunathilake, K.; Ranaweera, K.; Rupasinghe, H. Effect of Different Cooking Methods on Polyphenols, Carotenoids and Antioxidant Activities of Selected Edible Leaves. Antioxidants 2018, 7, 117. [Google Scholar] [CrossRef] [PubMed]
- Armesto, J.; Gómez-Limia, L.; Carballo, J.; Martínez, S. Effects of Different Cooking Methods on Some Chemical and Sensory Properties of Galega Kale. Int. J. Food Sci. Technol. 2016, 51, 2071–2080. [Google Scholar] [CrossRef]
- The World Health Organization. Salt Reduction and Iodine Fortification Strategies in Public Health; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Piątkowska, E.; Kopeć, A.; Bieżanowska-Kopeć, R.; Pysz, M.; Kapusta-Duch, J.; Koronowicz, A.A.; Smoleń, S.; Skoczylas, Ł.; Ledwożyw-Smoleń, I.; Rakoczy, R.; et al. The Impact of Carrot Enriched in Iodine through Soil Fertilization on Iodine Concentration and Selected Biochemical Parameters in Wistar Rats. PLoS ONE 2016, 11, e0152680. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, R.; Kopeć, A.; Piątkowska, E.; Smoleń, S.; Skoczylas, Ł.; Leszczyńska, T.; Sady, W. The Iodine Content in Urine, Faeces and Selected Organs of Rats Fed Lettuce Biofortified with Iodine through Foliar Application. Biol. Trace Elem. Res. 2016, 174, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Tonacchera, M.; Dimida, A.; Servi, D.; Frigeri, M.; Ferrarini, M.; Marco, D. Iodine Fortification of Vegetables Improves Human Iodine Nutrition: In Vivo Evidence for a New Model of Iodine Prophylaxis. J. Clin. Endocrinol. Metab. 2013, 98, E694–E697. [Google Scholar] [CrossRef]
- Baldassano, S.; Gaudio, D.; Sabatino, F.; Caldarella, L.; Pasquale, D.; Rosa, D. Biofortification: Effect of Iodine Fortified Food in the Healthy Population, Double-Arm Nutritional Study. Front. Nutr. 2022, 9, 871638. [Google Scholar] [CrossRef]
Ingredient (g·kg−1) | C | CO | BO | CR | BR |
---|---|---|---|---|---|
Corn starch | 397.486 | 524.716 | 524.896 | 526.036 | 525.456 |
Saccharose | 100 | 100 | 100 | 100 | 100 |
Casein | 200 | 200 | 200 | 200 | 200 |
Soybean oil | 70 | 70 | 70 | 70 | 70 |
Fiber | 50 | 47.02 a | 50 | 50 | 50 |
Vitamin mix b | 10 | 10 | 10 | 10 | 10 |
Mineral mix b | 35 | 35 | 35 c | 35 | 35 c |
Choline | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
TBHQ d | 0.014 | 0.014 | 0.014 | 0.014 | 0.014 |
Biofortified kale e | - | - | 11.2 | - | 11.1 |
Control kale e | - | 10.75 | - | 9.98 | - |
Type of Heat Treatment | Cultivar | Daily Intake of I | Coverage of RDA-I | HQ | |||
---|---|---|---|---|---|---|---|
With 50 g of Curly Kale (µg I Day−1) | With 100 g of Curly Kale (µg I Day−1) | In 50 g of Curly Kale (%) | In 100 g of Curly Kale (%) | For 50 g of Curly Kale | For 100 g of Curly Kale | ||
steaming | Oldenbor F1_control | 4.68 ± 0.08 c | 9.35 ± 0.06 c | 3.12 ± 0.05 c | 6.23 ± 0.10 c | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
Oldenbor F1_5,7-diI-8-Q | 75.87 ± 0.36 g | 151.75 ± 0.47g | 50.58 ± 0.000 g | 101.16 ± 0.31 g | 0.015 ± 0.000 e | 0.030 ± 0.000e | |
Redbor F1_control | 3.93 ± 0.04 bc | 7.85 ± 0.08 bc | 2.62 ± 0.03 a | 5.24 ± 0.05 bc | 0.000 ± 0.000 a | 0.000 ± 0.000 a | |
Redbor F1_5,7-diI-8-Q | 84.31 ± 0.04 h | 168.62 ± 0.73 h | 56.21 ± 0.024 h | 112.41 ± 0.48 h | 0.018 ± 0.000 f | 0.037 ± 0.000 f | |
blanching | Oldenbor F1_control | 2.53 ± 0.03 ab | 5.07 ± 0.06 ab | 1.69 ± 0.02 ab | 3.38 ± 0.04 ab | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
Oldenbor F1_5,7-diI-8-Q | 74.72 ± 0.71 g | 149.46 ± 0.47 g | 49.82 ± 0.001 g | 99.64 ± 0.95 g | 0.015 ± 0.000 e | 0.029 ± 0.001 e | |
Redbor F1_control | 2.23 ± 0.04 ab | 4.53 ± 0.09 ab | 1.51 ± 0.03 ab | 3.02 ± 0.06 ab | 0.000 ± 0.000 a | 0.000 ± 0.000 a | |
Redbor F1_5,7-diI-8-Q | 65.28 ± 0.07 e | 130.56 ± 1.37 e | 43.52 ± 0.46 e | 87.04 ± 0.91 e | 0.011 ± 0.000 c | 0.022 ± 0.000 c | |
boiling | Oldenbor F1_control | 4.13 ± 0.03 bc | 8.26 ± 0.06 bc | 2.75 ± 0.00 bc | 5.50 ± 0.04 bc | 0.000 ± 0.000 a | 0.000 ± 0.000 a |
Oldenbor F1_5,7-diI-8-Q | 45.10 ± 0.21 d | 90.19 ± 0.43 d | 30.06 ± 0.02 d | 60.13 ± 0.28 d | 0.005 ± 0.000 b | 0.011 ± 0.000 b | |
Redbor F1_control | 0.002 ± 0.000 a | 4.10 ± 0.07 a | 1.35 ± 0.02 a | 2.71 ± 0.05 a | 0.000 ± 0.000 a | 0.000 ± 0.000 a | |
Redbor F1_5,7-diI-8-Q | 72.61 ± 0.71 f | 145.22 ± 1.41 f | 48.41 ± 0.47 f | 96.81 ± 0.940 f | 0.014 ± 0.000 d | 0.027 ± 0.001 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waśniowska, J.; Leszczyńska, T.; Kopeć, A.; Piątkowska, E.; Smoleń, S.; Krzemińska, J.; Kowalska, I.; Słupski, J.; Piasna-Słupecka, E.; Krawczyk, K.; et al. Curly Kale (Brassica oleracea var. Sabellica L.) Biofortified with 5,7-Diiodo-8-quinolinol: The Influence of Heat Treatment on Iodine Level, Macronutrient Composition and Antioxidant Content. Nutrients 2023, 15, 4730. https://doi.org/10.3390/nu15224730
Waśniowska J, Leszczyńska T, Kopeć A, Piątkowska E, Smoleń S, Krzemińska J, Kowalska I, Słupski J, Piasna-Słupecka E, Krawczyk K, et al. Curly Kale (Brassica oleracea var. Sabellica L.) Biofortified with 5,7-Diiodo-8-quinolinol: The Influence of Heat Treatment on Iodine Level, Macronutrient Composition and Antioxidant Content. Nutrients. 2023; 15(22):4730. https://doi.org/10.3390/nu15224730
Chicago/Turabian StyleWaśniowska, Justyna, Teresa Leszczyńska, Aneta Kopeć, Ewa Piątkowska, Sylwester Smoleń, Joanna Krzemińska, Iwona Kowalska, Jacek Słupski, Ewelina Piasna-Słupecka, Katarzyna Krawczyk, and et al. 2023. "Curly Kale (Brassica oleracea var. Sabellica L.) Biofortified with 5,7-Diiodo-8-quinolinol: The Influence of Heat Treatment on Iodine Level, Macronutrient Composition and Antioxidant Content" Nutrients 15, no. 22: 4730. https://doi.org/10.3390/nu15224730
APA StyleWaśniowska, J., Leszczyńska, T., Kopeć, A., Piątkowska, E., Smoleń, S., Krzemińska, J., Kowalska, I., Słupski, J., Piasna-Słupecka, E., Krawczyk, K., & Koronowicz, A. (2023). Curly Kale (Brassica oleracea var. Sabellica L.) Biofortified with 5,7-Diiodo-8-quinolinol: The Influence of Heat Treatment on Iodine Level, Macronutrient Composition and Antioxidant Content. Nutrients, 15(22), 4730. https://doi.org/10.3390/nu15224730