Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = static ice cover

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1555 KB  
Article
Off-the-Shelf Masked Ultrasonic Atomization for Hydrophilic Droplet Microarrays and Gradient Screening
by Xiaochen Lai, Xicheng Wang, Yanfei Sun, Yong Zhu and Mingpeng Yang
Appl. Sci. 2026, 16(2), 737; https://doi.org/10.3390/app16020737 - 10 Jan 2026
Viewed by 97
Abstract
Droplet microarrays are increasingly used for miniaturized, high-throughput biochemical assays, yet their fabrication commonly relies on complex lithographic processes, custom masks, or specialized coatings. Here we present a simple method for generating hydrophilic arrays on hydrophobic plastic substrates by combining ultrasonic atomization with [...] Read more.
Droplet microarrays are increasingly used for miniaturized, high-throughput biochemical assays, yet their fabrication commonly relies on complex lithographic processes, custom masks, or specialized coatings. Here we present a simple method for generating hydrophilic arrays on hydrophobic plastic substrates by combining ultrasonic atomization with off-the-shelf perforated masks. A fine mist of poly(vinyl alcohol) (PVA) solution is directed through commercial diamond sieves onto polypropylene (PP) sheets and polystyrene (PS) sheets, forming hydrophilic spots surrounded by the native hydrophobic background. Static contact angle measurements confirm a strong local contrast in wettability (from 100.85 ± 0.91° on untreated PP to 39.96 ± 0.71° on patterned spots, from 95.68 ± 3.61° on untreated PS to 52.00 ± 0.85° on patterned spots), while Image analysis shows droplet CVs of 6–8% in aqueous dye solutions for 1.2–2.0 mm masks; in complex media (LB), droplet uniformity decreases. By mounting the moving mask on a motorized stage, we generate one-dimensional reagent gradients simply by controlling the moving mask motion during atomization. We further demonstrate biological compatibility by culturing Escherichia coli in LB droplets containing resazurin, and by performing localized antibiotic screening using a moving mask-guided streptomycin gradient. The resulting droplet-wise viability data yield an on-chip dose–response curve with an IC50 of 5.1 µg · mL−1 (95% CI: 4.5–5.6 µg·mL−1), obtained from a single array. Covering droplets with Electronic Fluorinated Fluid maintains volumes within 5% of their initial value over 24 h. Compared with conventional droplet microarray fabrication, the proposed method eliminates custom mask production and cleanroom steps, is compatible with standard plastic labware, and intrinsically supports spatial gradients. These attributes make masked ultrasonic atomization a practical platform for high-throughput microfluidic assays, especially in resource-limited settings. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

20 pages, 3410 KB  
Article
Impact of Polar Ice Layers on the Corrosion-Related Static Electric Field of a Submerged Underwater Vehicle
by Mingjie Qiu, Mingyong Hu, Yuhong Li, Dingfeng Yu and Cong Chen
Mathematics 2025, 13(17), 2882; https://doi.org/10.3390/math13172882 - 6 Sep 2025
Viewed by 872
Abstract
The influence of polar ice-covered environments on the corrosion-related static electric field (CRSE) of underwater vehicles is critical for understanding and applying the characteristics of underwater electric fields in polar regions. This study utilizes a combined methodology involving COMSOL Multiphysics 6.1 simulations and [...] Read more.
The influence of polar ice-covered environments on the corrosion-related static electric field (CRSE) of underwater vehicles is critical for understanding and applying the characteristics of underwater electric fields in polar regions. This study utilizes a combined methodology involving COMSOL Multiphysics 6.1 simulations and laboratory-simulated experiments to systematically investigate the distribution characteristics of underwater vehicle electric fields under ice-covered conditions. By comparing the electric field distributions in scenarios with and without ice coverage, this study clarifies the effect of ice presence on the behavior of underwater electric fields. The simulation results demonstrate that the existence of ice layers enhances both the electric potential and field strength, with the degree of influence depending on the ice layer conductivity, thickness, and proximity of the measurement points to the ice layer. The accumulation of error analysis and laboratory experiments corroborates the reliability of the simulation results, demonstrating that ice layers enhance electric field signals by modifying the conductive properties of the surrounding medium, whereas the overall spatial distribution characteristics remain largely consistent. These findings offer a theoretical and technical basis for the optimization of stealth strategies in polar underwater vehicles and contribute to the advancement of electric field detection technologies. Full article
Show Figures

Figure 1

13 pages, 14643 KB  
Technical Note
Drone-Based Ground-Penetrating Radar with Manual Transects for Improved Field Surveys of Buried Ice
by Adam R. Tjoelker, Michel Baraër, Eole Valence, Bastien Charonnat, Janie Masse-Dufresne, Bryan G. Mark and Jeffrey M. McKenzie
Remote Sens. 2024, 16(13), 2461; https://doi.org/10.3390/rs16132461 - 4 Jul 2024
Cited by 14 | Viewed by 4641
Abstract
The steep and unstable terrain found on debris-covered glaciers, rock glaciers, talus slopes, moraines and other proglacial features often make terrestrial ground-penetrating radar (GPR) surveys unsafe or cost-prohibitive. To address these challenges, this research introduces a novel approach for studying buried ice using [...] Read more.
The steep and unstable terrain found on debris-covered glaciers, rock glaciers, talus slopes, moraines and other proglacial features often make terrestrial ground-penetrating radar (GPR) surveys unsafe or cost-prohibitive. To address these challenges, this research introduces a novel approach for studying buried ice using multi-low-frequency drone-based GPR. Monostatic antennas of 50, 100, and 200 MHz were flown along a transect spanning a debris-covered glacier and an ice–debris complex at Shár Shaw Tagà (Grizzly Creek) in southwest Yukon, Canada. The drone-based results were compared to manual GPR at two locations along the transect. The two manual segments were conducted using the same radar system in a bi-static mode and included common mid-point (CMP) surveys. Overall, the drone-based radar successfully identified buried ice and enabled estimation of ice body thickness. Notably, CMP results confirmed layer characteristics and enabled depths to be measured across the entire drone-based transect. Discrimination of detail across a range of depths was made possible by comparing the three low frequencies, highlighting the possibility of using this method for future investigations of debris thickness in addition to quantifying buried ice. This study confirms the effectiveness of drone-based GPR combined with manual CMP for surveying ice beneath previously inaccessible terrain. Full article
(This article belongs to the Special Issue Remote Sensing of Cryosphere and Related Processes)
Show Figures

Figure 1

18 pages, 29917 KB  
Article
The Geomechanics of the Dangkhar Landslide, Himachal Pradesh, India
by Markus Kaspar and D. Scott Kieffer
Geotechnics 2024, 4(2), 655-672; https://doi.org/10.3390/geotechnics4020035 - 14 Jun 2024
Cited by 2 | Viewed by 2534
Abstract
The Dangkhar Landslide is an extremely large landslide located in the Spiti Valley of Himachal Pradesh, India. The landslide is situated in a remote high mountain desert within the Tethys Himalaya at elevations between 3400 m and 5600 m. It is amongst the [...] Read more.
The Dangkhar Landslide is an extremely large landslide located in the Spiti Valley of Himachal Pradesh, India. The landslide is situated in a remote high mountain desert within the Tethys Himalaya at elevations between 3400 m and 5600 m. It is amongst the five largest continental landslides on earth, covering an area of approximately 54 km2 and having an estimated volume of 15–20 km3. Geomechanical evaluations based on the block theory indicate that the Dangkhar Landslide formed as a result of unfavorable combinations of structural geological features and complex surface morphology. A massive kinematically removable block is created by a regional synclinal flexure that is crosscut and kinematically liberated by bounding side valleys. Three-dimensional block kinematics are necessary to permit the release of the giant block and its sliding along the synclinal flexure. Pseudostatic slope stability sensitivity analyses incorporating estimates of site seismicity and shear strength parameters suggest that earthquake shaking could have triggered instability if the static factor of safety was less than or in the range of about 1.5–1.9. Considering the glacial history of the region, ice debuttressing represents an additional potential triggering mechanism. Full article
Show Figures

Figure 1

22 pages, 1729 KB  
Article
Association between the Static and Dynamic Lung Function and CT-Derived Thoracic Skeletal Muscle Measurements–A Retrospective Analysis of a 12-Month Observational Follow-Up Pilot Study
by Mia Solholt Godthaab Brath, Sisse Dyrman Alsted, Marina Sahakyan, Esben Bolvig Mark, Jens Brøndum Frøkjær, Henrik Højgaard Rasmussen, Lasse Riis Østergaard, Rasmus Brath Christensen and Ulla Møller Weinreich
Adv. Respir. Med. 2024, 92(2), 123-144; https://doi.org/10.3390/arm92020015 - 6 Mar 2024
Cited by 1 | Viewed by 2390
Abstract
Background: Patients with chronic obstructive pulmonary disease (COPD) with low skeletal muscle mass and severe airway obstruction have higher mortality risks. However, the relationship between dynamic/static lung function (LF) and thoracic skeletal muscle measurements (SMM) remains unclear. This study explored patient characteristics (weight, [...] Read more.
Background: Patients with chronic obstructive pulmonary disease (COPD) with low skeletal muscle mass and severe airway obstruction have higher mortality risks. However, the relationship between dynamic/static lung function (LF) and thoracic skeletal muscle measurements (SMM) remains unclear. This study explored patient characteristics (weight, BMI, exacerbations, dynamic/static LF, sex differences in LF and SMM, and the link between LF and SMM changes. Methods: A retrospective analysis of a 12-month prospective follow-up study patients with stable COPD undergoing standardized treatment, covering mild to severe stages, was conducted. The baseline and follow-up assessments included computed tomography and body plethysmography. Results: This study included 35 patients (17 females and 18 males). This study revealed that females had more stable LF but tended to have greater declines in SMM areas and indices than males (−5.4% vs. −1.9%, respectively), despite the fact that females were younger and had higher LF and less exacerbation than males. A multivariate linear regression showed a negative association between the inspiratory capacity/total lung capacity ratio (IC/TLC) and muscle fat area. Conclusions: The findings suggest distinct LF and BC progression patterns between male and female patients with COPD. A low IC/TLC ratio may predict increased muscle fat. Further studies are necessary to understand these relationships better. Full article
Show Figures

Figure 1

18 pages, 8278 KB  
Article
A Horizontal Distribution Model of Static Ice Cover Generated by Static and Dynamic Water Considering the Heat Transfer of Riverbanks
by Boxiang Xue, Zhengzhong Wang, Quanhong Liu and Hanxiang Li
Water 2023, 15(22), 3893; https://doi.org/10.3390/w15223893 - 8 Nov 2023
Viewed by 1774
Abstract
The thermal factor is the main reason for winter ice cover with a low Froude number flow, and the heat transfer to narrow and deep river banks accelerates ice cover formation and ice thickness change. The freezing of water flow to freezing thickening [...] Read more.
The thermal factor is the main reason for winter ice cover with a low Froude number flow, and the heat transfer to narrow and deep river banks accelerates ice cover formation and ice thickness change. The freezing of water flow to freezing thickening is a nonisothermal-flow phase transition process coupled with the water flow temperature, environment and riverbank. Here, the Nusselt number and viscous dissipation are used to consider the flow velocity influence on icing, and a thermodynamic model of static ice cover horizontal distribution considering riverbed heat transfer is established. The initial ice time, freezing time and static ice cover thickness formed by static and dynamic water calculated by the model were consistent with measured data. The model reflects the horizontal growth process of the static ice cover, which was significant for narrow and deep channels. The horizontal distribution of the static ice cover was thin in the center and thick on both sides. The maximum horizontal thickness difference of −20 °C indoor freezing for 24 h reached 15% of the central ice thickness. Compared with the degree-day method for calculating ice thickness, the numerical model and dimensionless formula better reflect the growth law and horizontal distribution characteristics of static ice cover and provide a theoretical basis for safe water conveyance under ice cover in winter and ice cover formation in reservoirs and lakes in cold regions. Full article
Show Figures

Figure 1

19 pages, 4937 KB  
Article
Low Frequency Cyclic Mechanical Loading of Till Deposits from Northern Germany under Oedometric Conditions
by Henok Hailemariam and Frank Wuttke
Geotechnics 2023, 3(2), 531-549; https://doi.org/10.3390/geotechnics3020029 - 20 Jun 2023
Cited by 1 | Viewed by 1703
Abstract
Glacial deposits are of significant importance to geotechnical engineers and geologists in northern Europe, North America, and Northern Asia, as vast areas of these land surfaces were historically covered with ice leading to the formation of a wide variety of till deposits. The [...] Read more.
Glacial deposits are of significant importance to geotechnical engineers and geologists in northern Europe, North America, and Northern Asia, as vast areas of these land surfaces were historically covered with ice leading to the formation of a wide variety of till deposits. The use of these areas for various engineering purposes warrants their subjection to mechanical loads (of static and cyclic forms) from manmade structures, as well as natural hazards such as earthquakes. This paper focuses on the experimental investigation of the cyclic mechanical loading behavior of two glacial tills from northern Germany under one-dimensional loading or oedometric conditions, and in different soil wetting conditions. The experimental results show a significant dependence of the cyclic mechanical response of the glacial tills on wetting condition and number of loading cycles. The recorded values of accumulated plastic strains of the glacial tills generally increase with an increase in wetting or moisture content, with the highest measured value for the two tills being around 3.9% after 19 cycles of loading. The findings of the experimental cyclic mechanical tests of the glacial tills are discussed in view of the intrinsic soil behavior and fabric. Full article
Show Figures

Figure 1

27 pages, 34572 KB  
Article
Evaluation of Remote Sensing and Reanalysis Products for Global Soil Moisture Characteristics
by Peng Zhang, Hongbo Yu, Yibo Gao and Qiaofeng Zhang
Sustainability 2023, 15(11), 9112; https://doi.org/10.3390/su15119112 - 5 Jun 2023
Cited by 6 | Viewed by 2927
Abstract
Soil moisture (SM) exists at the land-atmosphere interface and serves as a key driving variable that affects global water balance and vegetation growth. Its importance in climate and earth system studies necessitates a comprehensive evaluation and comparison of mainstream global remote sensing/reanalysis SM [...] Read more.
Soil moisture (SM) exists at the land-atmosphere interface and serves as a key driving variable that affects global water balance and vegetation growth. Its importance in climate and earth system studies necessitates a comprehensive evaluation and comparison of mainstream global remote sensing/reanalysis SM products. In this study, we conducted a thorough verification of ten global remote sensing/reanalysis SM products: SMAP DCA, SMAP SCA-H, SMAP SCA-V, SMAP-IB, SMOS IC, SMOS L3, LPRM_C1, LPRM_C2, LPRM_X, and ERA5-Land. The verification was based on ground observation data from the International SM Network (ISMN), considering both static factors (such as climate zone, land cover type, and soil type) and dynamic factors (including SM, leaf area index, and land surface temperature). Our goal was to assess the accuracy and applicability of these products. We analyzed the spatial and temporal distribution characteristics of global SM and discussed the vegetation effect on SM products. Additionally, we examined the global high-frequency fluctuations in the SMAP L-VOD product, along with their correlation with the normalized difference vegetation index, leaf area index, and vegetation water content. Our findings revealed that product quality was higher in regions located in tropical and arid zones, closed shrubs, loose rocky soil, and gray soil with low soil moisture, low leaf area index, and high average land surface temperature. Among the evaluated products, SMAP-IB, SMAP DCA, SMAP SCA-H, SMAP SCA-V, and ERA5-Land consistently performed better, demonstrating a good ability to capture the spatial and temporal variations in SM and showing a correlation of approximately 0.60 with ISMN. SMOS IC and SMOS L3 followed in performance, while LPRM_C1, LPRM_C2, and LPRM_X exhibited relatively poor results in SM inversion. These findings serve as a valuable reference for improving satellite/reanalysis SM products and conducting global-scale SM studies. Full article
Show Figures

Figure 1

20 pages, 10097 KB  
Article
Heat Stability and Icing Delay on Superhydrophobic Coatings in Facile One Step
by Jingyu Shang, Yongfeng Jiang and Wenhua Wang
Polymers 2022, 14(15), 3124; https://doi.org/10.3390/polym14153124 - 31 Jul 2022
Cited by 14 | Viewed by 3367
Abstract
Superhydrophobic coatings are limited to poor durability and a tedious preparation process. In this work, an efficient, eco-friendly, and cost-effective sol-gel method is developed for preparing superhydrophobic surfaces using an all-in-one suspension composed of methyltrimethoxysilane (MTMS), nano silicon dioxide (SiO2) particles, [...] Read more.
Superhydrophobic coatings are limited to poor durability and a tedious preparation process. In this work, an efficient, eco-friendly, and cost-effective sol-gel method is developed for preparing superhydrophobic surfaces using an all-in-one suspension composed of methyltrimethoxysilane (MTMS), nano silicon dioxide (SiO2) particles, and micron zinc oxide (ZnO) particles. Superhydrophobic coatings with a contact angle (CA) up to 153.9° and a sliding angle (SA) of about 3.0° are prepared on Q235 steel substrates using MTMS 5 mL, 0.8 g of nano SiO2, and 0.2 g of micron ZnO. The morphology of the superhydrophobic coating is characterized by scanning electron microscopy (SEM), and the surface is covered with a micro- and nano-scaled hierarchical rough structure. A series of tests are conducted, including long-term stability tests and thermostability tests. The CAs are all above 150°, and the SAs are below 6.3°, indicating the excellent static stability of the prepared superhydrophobic coatings. Moreover, the CA of the superhydrophobic coating remains above 152° after 120 h of UV exposure, and the time for a water droplet to freeze on the surface of the superhydrophobic coating is 18 times of the bare Q235 steel, indicating that the superhydrophobic coating exhibits good resistance to UV radiation and icing-delay properties. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

15 pages, 4861 KB  
Article
Simulation and Experimental Study on the Ultrasonic Micro-Vibration De-Icing Method for Wind Turbine Blades
by Yan Li, He Shen and Wenfeng Guo
Energies 2021, 14(24), 8246; https://doi.org/10.3390/en14248246 - 8 Dec 2021
Cited by 18 | Viewed by 4318
Abstract
In cold and humid regions, ice accretion sometimes develops on the blades of wind turbines. Blade icing reduces the power generation of the wind turbine and affects the safe operation of the wind farm. For this paper, ultrasonic micro-vibration was researched as an [...] Read more.
In cold and humid regions, ice accretion sometimes develops on the blades of wind turbines. Blade icing reduces the power generation of the wind turbine and affects the safe operation of the wind farm. For this paper, ultrasonic micro-vibration was researched as an effective de-icing method to remove ice from the wind turbine blade surface and improve the efficiency of wind turbine power generation. A blade segment with NACA0018 airfoil and the hollow structure at the leading edge was designed. The modal analysis of the blade was simulated by ANSYS, and the de-icing vibration mode was selected. Based on the simulation results, the blade segment sample with PZT patches was machined, and its natural frequencies were measured with an impedance analyzer. A return-flow icing wind tunnel system, and a device used to measure the adhesive strength of ice covering the airfoil blade, were designed and manufactured. The experiments on the adhesive strength of the ice were carried out under the excitation of the ultrasonic vibration. The experimental results show that the adhesive strength of the ice, which was generated under the dynamic flow field condition, was lower than the ice generated by water under the static flow field condition. Under the excitation of the ultrasonic vibration, the adhesive strength of the ice decreased. When the excitation frequency was 21.228 kHz, the adhesive strength was the lowest, which was 0.084 MPa. These research findings lay the theoretical and experimental foundations for researching in-depth the application of the ultrasonic de-icing technology to wind turbines. Full article
(This article belongs to the Special Issue Innovation in Wind Turbine Blade Design and Aeroelasticity)
Show Figures

Figure 1

37 pages, 21285 KB  
Article
Geostatistical and Statistical Classification of Sea-Ice Properties and Provinces from SAR Data
by Ute C. Herzfeld, Scott Williams, John Heinrichs, James Maslanik and Steven Sucht
Remote Sens. 2016, 8(8), 616; https://doi.org/10.3390/rs8080616 - 26 Jul 2016
Cited by 6 | Viewed by 7711
Abstract
Recent drastic reductions in the Arctic sea-ice cover have raised an interest in understanding the role of sea ice in the global system as well as pointed out a need to understand the physical processes that lead to such changes. Satellite remote-sensing data [...] Read more.
Recent drastic reductions in the Arctic sea-ice cover have raised an interest in understanding the role of sea ice in the global system as well as pointed out a need to understand the physical processes that lead to such changes. Satellite remote-sensing data provide important information about remote ice areas, and Synthetic Aperture Radar (SAR) data have the advantages of penetration of the omnipresent cloud cover and of high spatial resolution. A challenge addressed in this paper is how to extract information on sea-ice types and sea-ice processes from SAR data. We introduce, validate and apply geostatistical and statistical approaches to automated classification of sea ice from SAR data, to be used as individual tools for mapping sea-ice properties and provinces or in combination. A key concept of the geostatistical classification method is the analysis of spatial surface structures and their anisotropies, more generally, of spatial surface roughness, at variable, intermediate-sized scales. The geostatistical approach utilizes vario parameters extracted from directional vario functions, the parameters can be mapped or combined into feature vectors for classification. The method is flexible with respect to window sizes and parameter types and detects anisotropies. In two applications to RADARSAT and ERS-2 SAR data from the area near Point Barrow, Alaska, it is demonstrated that vario-parameter maps may be utilized to distinguish regions of different sea-ice characteristics in the Beaufort Sea, the Chukchi Sea and in Elson Lagoon. In a third and a fourth case study the analysis is taken further by utilizing multi-parameter feature vectors as inputs for unsupervised and supervised statistical classification. Field measurements and high-resolution aerial observations serve as basis for validation of the geostatistical-statistical classification methods. A combination of supervised classification and vario-parameter mapping yields best results, correctly identifying several sea-ice provinces in the shore-fast ice and the pack ice. Notably, sea ice does not have to be static to be classifiable with respect to spatial structures. In consequence, the geostatistical-statistical classification may be applied to detect changes in ice dynamics, kinematics or environmental changes, such as increased melt ponding, increased snowfall or changes in the equilibrium line. Full article
(This article belongs to the Special Issue Sea Ice Remote Sensing and Analysis)
Show Figures

Graphical abstract

15 pages, 398 KB  
Article
Spatial Feature Reconstruction of Cloud-Covered Areas in Daily MODIS Composites
by Stephan Paul, Sascha Willmes, Oliver Gutjahr, Andreas Preußer and Günther Heinemann
Remote Sens. 2015, 7(5), 5042-5056; https://doi.org/10.3390/rs70505042 - 23 Apr 2015
Cited by 18 | Viewed by 6263
Abstract
The opacity of clouds is the main problem for optical and thermal space-borne sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS). Especially during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice results in deficiencies of the MODIS cloud mask and [...] Read more.
The opacity of clouds is the main problem for optical and thermal space-borne sensors, like the Moderate-Resolution Imaging Spectroradiometer (MODIS). Especially during polar nighttime, the low thermal contrast between clouds and the underlying snow/ice results in deficiencies of the MODIS cloud mask and affected products. There are different approaches to retrieve information about frequently cloud-covered areas, which often operate with large amounts of days aggregated into single composites for a long period of time. These approaches are well suited for static-nature, slow changing surface features (e.g., fast-ice extent). However, this is not applicable to fast-changing features, like sea-ice polynyas. Therefore, we developed a spatial feature reconstruction to derive information for cloud-covered sea-ice areas based on the surrounding days weighted directly proportional with their temporal proximity to the initial day of interest. Its performance is tested based on manually-screened and artificially cloud-covered case studies of MODIS-derived polynya area data for the polynya in the Brunt Ice Shelf region of Antarctica. On average, we are able to completely restore the artificially cloud-covered test areas with a spatial correlation of 0.83 and a mean absolute spatial deviation of 21%. Full article
Show Figures

Figure 1

15 pages, 738 KB  
Article
Some Aspects of Ice-Hydropower Interaction in a Changing Climate
by Solomon Gebre, Netra Timalsina and Knut Alfredsen
Energies 2014, 7(3), 1641-1655; https://doi.org/10.3390/en7031641 - 18 Mar 2014
Cited by 16 | Viewed by 7588
Abstract
Ice formation and related processes in rivers and lakes/reservoirs influence the operation of hydropower plants in cold regions. It is a matter of interest to the scientific community and hydropower operators alike how existing ice effects and problems will manifest themselves in a [...] Read more.
Ice formation and related processes in rivers and lakes/reservoirs influence the operation of hydropower plants in cold regions. It is a matter of interest to the scientific community and hydropower operators alike how existing ice effects and problems will manifest themselves in a future changed climate. In this paper, we use different modeling results to investigate future freshwater ice conditions. The modeling approaches include using temperature derived winter indices, using one-dimensional (1D) hydrodynamic and ice cover model on three case study reservoirs, and using a 1D river hydrodynamic and ice cover model for a river reach. The analysis shows that changes in river and reservoir ice regimes due to climate change scenarios may have both positive and negative consequences for hydropower operation. Positive consequences emerge from reduction in ice season and reduced static ice loads. Negative consequences or challenges are attributed to unstable winters that may lead to increased frequency of freeze-thaw episodes with a shortened winter season. These aspects are discussed in more detail in the paper. Full article
Show Figures

Back to TopTop