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Abstract: In cold and humid regions, ice accretion sometimes develops on the blades of wind turbines.
Blade icing reduces the power generation of the wind turbine and affects the safe operation of the
wind farm. For this paper, ultrasonic micro-vibration was researched as an effective de-icing method
to remove ice from the wind turbine blade surface and improve the efficiency of wind turbine power
generation. A blade segment with NACA0018 airfoil and the hollow structure at the leading edge
was designed. The modal analysis of the blade was simulated by ANSYS, and the de-icing vibration
mode was selected. Based on the simulation results, the blade segment sample with PZT patches was
machined, and its natural frequencies were measured with an impedance analyzer. A return-flow
icing wind tunnel system, and a device used to measure the adhesive strength of ice covering the
airfoil blade, were designed and manufactured. The experiments on the adhesive strength of the
ice were carried out under the excitation of the ultrasonic vibration. The experimental results show
that the adhesive strength of the ice, which was generated under the dynamic flow field condition,
was lower than the ice generated by water under the static flow field condition. Under the excitation
of the ultrasonic vibration, the adhesive strength of the ice decreased. When the excitation frequency
was 21.228 kHz, the adhesive strength was the lowest, which was 0.084 MPa. These research findings
lay the theoretical and experimental foundations for researching in-depth the application of the
ultrasonic de-icing technology to wind turbines.

Keywords: wind power; wind turbine; de-icing; ultrasonic vibration; simulation; adhesive strength

1. Introduction

In recent years, policies on energy efficiency and energy-saving have been made in
order to decrease energy consumption [1]. Therefore, renewable energies, such as wind
energy and solar energy are receiving increasing attention. Wind energy, as an energy
source, has the benefits of being clean, free and renewable. It has been widely used in
the field of wind power generation, and wind turbines have the advantages of a short
building period and flexibility of installation. Therefore, in recent decades, thousands of
wind turbines have been installed around the world. However, with the rapid development
of technology and the aging of many wind turbines, the repowering technology for them
needs to be further developed throughout the world. With regards to repowering, the
EU is ahead of the world [2–4]. Extreme conditions decrease performance and accelerate
the aging of wind turbines. For instance, when wind turbines work in cold and humid
regions, ice accretion often develops on the surface of the blades [5–7]. It changes the airfoil
profile of the blade, which leads to the degradation of the aerodynamic performance of
the wind turbine and the reduction of power generation efficiency. In addition, the icing
event increases the weight of the blade and shortens the lifespan of the wind turbine [8].
Some icing events of the wind turbines are shown in Figure 1. The wind farms were located
in the Heilongjiang Province, in the northeast of China, with the ice accretion developing
in the winter of 2019. Therefore, this research on anti- and de-icing technologies for the
wind turbine blades is significant and necessary for the regions affected by blade icing.
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At present, there are several types of de-icing methods being researched. They are 
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The fluid-thermal de-icing method uses hot fluid, such as hot air or hot liquid, to heat the 
icing blade surface in order to remove the ice. This method has a complex system and high 
weight due to the many tubes used to transmit the fluid. In addition, the volume of the 
air pump or the water pump is large, therefore, necessitates a large space [14]. The pneu-
matic impulsive de-icing method is similar to the fluid-thermal de-icing method, which 
also needs tubes to transmit air. This type of de-icing method uses an inflatable boot on 
the leading edge of the blade that, when inflated, dislodges accumulated ice. It also has a 
complex system and high weight [15]. Therefore, the above-mentioned methods are not 
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In recent years, scholars have conducted research utilizing icing tests on structures
with an airfoil profile, such as the wind turbine blades and airplane wings. Li Yan carried
out an icing test on a wind turbine blade and explored the distribution of icing on the blade
surface and the cylinder under the rotational states [9,10]. Yi Xian conducted theoretical
research on the effect of icing on the aerodynamic performance of an airplane wing and
proposed a numerical simulation method for icing on structures with an airfoil profile.
Based on the method, simulation software on blade icing was developed [11]. The research
findings show that icing accretion on the airfoil structure leads to a decrease in the lift
coefficient and an increase in the drag coefficient, and the aerodynamic performance
significantly degrades. Therefore, developing anti- and de-icing methods can promote the
power generation efficiency of wind.

At present, there are several types of de-icing methods being researched. They are the
electro-thermal de-icing method, the fluid-thermal de-icing method, the pneumatic impulse
de-icing method, the surface coating de-icing method, the ultrasonic vibration de-icing
method, and so on. Among these methods, the electro de-icing method needs massive
energy [12]. Since the wind turbine is a device for generating electric power, this method
significantly decreases the efficiency of power generation. The surface coating method
is a type of active de-icing method. The blade surface of the wind turbine is covered by
a hydrophobic material layer. This method reduces the icing rate but cannot completely get
rid of icing. Moreover, the adhesive strength of the coating is too low, which easily falls off
the blade surface [13] and, consequently, loses the capability of de-icing. The fluid-thermal
de-icing method uses hot fluid, such as hot air or hot liquid, to heat the icing blade surface
in order to remove the ice. This method has a complex system and high weight due to
the many tubes used to transmit the fluid. In addition, the volume of the air pump or the
water pump is large, therefore, necessitates a large space [14]. The pneumatic impulsive
de-icing method is similar to the fluid-thermal de-icing method, which also needs tubes to
transmit air. This type of de-icing method uses an inflatable boot on the leading edge of
the blade that, when inflated, dislodges accumulated ice. It also has a complex system and
high weight [15]. Therefore, the above-mentioned methods are not suited to wind turbine
de-icing. In contrast, the ultrasonic de-icing method has the advantages of low energy
consumption, a simple structure and easy installation, which is suited to the field of wind
power generation. In the early research, the ultrasonic de-icing method aimed, mainly,
to remove the ice covering the surfaces of helicopter blades [16,17]. The research meth-
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ods included the analytic method, the simulation method and the experimental method.
A mathematical model of the shear stress, at the interface between the ice and the plate
substrate, was established by the analytic method. However, the model is established
based on the theory of the elastic wave spreading on the plate without a boundary, which
expresses the relationship between the interface shear stress concentration (ISSC) and the
wave velocity [18]. Jifeng Zhang studied the ultrasonic de-icing of a plate with a coating
based on the mathematical model. The theoretical model provided the reference for the
design principle of coating and ultrasonic parameters required for efficient de-icing [19].
The simulation method establishes the solid model of the blade and analyzes the de-icing
vibration mode and the distribution of shear stress which is at the interface between the
ice and the substrate. Jose Palacios researched the ultrasonic de-icing of a plate element.
He simulated the distribution of the shear stress at the interface between the small piece
of ice and the plate substrate [20]. Li Yan simulated the variation and the distribution
of the shear stress with the excitation frequency. When the shear stress at the adhesive
interface alternates positively and negatively, the de-icing shear stress is highest [21].
Li Luping examined the effect of the space between the PZT patches on the shear stress
at the adhesive interface by simulation. The simulation result showed that there was the
optimum space that can generate higher shear stress [22]. The experimental method carries
out the ultrasonic de-icing test in low-temperature equipment, such as a refrigerator or
an icing wind tunnel. However, in the existing ultrasonic de-icing experiments, most
of the icing conditions are static flow fields in a refrigerator [23,24]. The dynamic flow
field condition, such as a wind tunnel, is seldom used [25]. In real icing conditions for
wind turbines, the super-cooled water droplets, moving with the airflow, impact the blade
surface. Therefore, the static flow field cannot simulate real icing conditions. In addition,
the adhesive strength of the ice, covering the blade surface and generated in the dynamic
flow field, is seldom researched.

In this paper, the ultrasonic de-icing method of wind turbine blades was researched
by simulation and experimentation. An innovative airfoil blade structure with PZT patches
was designed, and the vibration mode and its natural frequency were calculated by ANSYS.
Based on the theoretical calculation results, a sample of the blade segment was manu-
factured, and an experimental system, for icing and de-icing, was built. The adhesive
strengths of ice under different excitation frequencies were tested by a self-developed
device in order to validate the de-icing effect of ultrasonic vibration. The research findings
provide the theoretical and experimental foundations for exploring in more depth the
ultrasonic de-icing method of wind turbines.

2. Simulation

In the field of wind power generation, most of the wind turbines, including the
horizontal wind turbine and the vertical wind turbine, are lift-type turbines. Therefore, the
lift-type airfoil blade was selected as the blade for research. For lift-type airfoils, the NACA
series airfoils are widely used. This series of airfoils stem from the airplane, which are
developed by the National Advisory Committee for Aeronautics (NACA) in the USA. For
NACA series airfoils, there are two types of structures, the symmetrical structure and the
asymmetrical structure. For carrying out basic research, the symmetrical one was selected.
Additionally, the aerodynamic characteristics of the NACA0018 airfoil are better compared
with the other symmetrical ones, and this type of airfoil is easily manufactured due to its
simple structure. Therefore, an aluminum blade segment with the airfoil of NACA0018
was selected for this research. In addition, the aluminum material has the characteristics
of low density, high thermal conductivity and stable heat transfer performance. In some
cases, the blades of small-scale wind turbines are made of aluminum material which is
why the aluminum blade was selected as the research object in the present study.
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2.1. Simulation Model of the Blade

The sketch map of the blade is shown in Figure 2.
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Figure 2. Sketch map of the blade for the simulation.

As shown in Figure 2, the leading edge of the blade segment has a hollow structure,
which was used to lay out the PZT patches. In previous works, research findings show that
icing mainly concentrates on the leading edge of the horizontal axis wind turbine blade.
Therefore, in this study, the leading edge, with the hollow structure, was designed. The
chord length l at the position of the hollow structure was 30% of the whole blade chord
length C.

According to the size of the icing wind tunnel in our research group, the chord length
of the blade segment was 250 mm. The maximum thickness of the blade segment h was
45 mm. The size of the wingspan was 40 mm, and the thickness of the wall at the leading
edge was 1.5 mm.

2.2. Simulation of the De-Icing Vibration Mode

For getting the de-icing vibration mode, the model analysis of the blade was carried
out by ANSYS. ANSYS is a commercial finite element software, which is widely used in
the fields of machinery, chemical industry, aeronautics, astronautics and civil engineering.
In the present study, the principle of the ultrasonic de-icing method was based on mechan-
ical vibration, which belongs to the field of mechanical design [26,27]. Many vibration
analyses are carried out by ANSYS and many scholars have also researched ultrasonic
de-icing technologies using this simulation software [28,29]. According to the size of the
blade segment, the blade model was established in ANSYS. In the procedure of the simula-
tion, the density of the aluminum material was 2.7 × 103 kg/m3, and the element type for
the blade was SOLID187. The first ten vibration modes of the blade segment are shown
in Figure 3.

As shown in Figure 3, in the first ten vibration modes, the leading edge of the blade
segment had several kinds of deformations. These included bending, torsional and coupled
deformation. According to previous research findings, the adhesive strength of the ice,
at the tangential direction or the direction parallel to the substrate surface, is lower than
the ones in the other directions. Therefore, most of the mechanical de-icing methods are
developed based on the adhesive characteristic of ice. When the shear stress at the interface
between the ice and the substrate, which is generated by the external force, is higher than
the adhesive shear stress of the ice, the ice falls off the substrate. The ultrasonic de-icing
method is also based on the de-icing mechanism. When the icing blade vibrates under
the excitation of the PZT patches, the shear stress generates at the adhesive interface with
the deformation of the blade, which can decrease the adhesive strength or remove ice.
In previous research on ultrasonic de-icing of the icing plate, it was found that when the
distribution of the shear stress at the adhesive interface alternates positively and negatively,
the effect of the ultrasonic de-icing on the decrease in the adhesive strength of the ice is
obvious [21]. Therefore, based on this conclusion, the bending deformation of the leading
edge, alternating positively and negatively, was selected as the de-icing vibration mode for
the blade segment because the shear stress is high under the conditions that produce the
bending deformation.
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Figure 3. The first ten vibration modes of the blade segment. (a) The first vibration mode (428 Hz); (b) The second vibration
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mode (3641 Hz); (i) The ninth vibration mode (3687 Hz); (j) The tenth vibration mode (3998 Hz).

As shown in Figure 3g, in the seventh vibration mode, the bending amplitude of
the leading edge alternates positively and negatively, which meets the condition of the
de-icing vibration mode. However, for this vibration mode, the natural frequency is just
3474 Hz, which is far lower than the ultrasonic frequency (≥20,000 Hz). Therefore, the
vibration mode cannot satisfy the frequency of ultrasonic de-icing. According to the first ten
vibration modes, the vibration modes in the scope of ultrasonic frequency were calculated.
When the natural frequency was 22,779 Hz, the bending vibration mode met the conditions
for ultrasonic de-icing. The vibration mode is shown in Figure 4.
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Figure 4. Ultrasonic de-icing vibration mode.

As shown in Figure 4, the leading edge of the blade is in the bending vibration
mode. The amplitude of the bending deformation alternated positively and negatively.
In addition, along the direction of the wingspan, the amplitude of the bending deformation
was the same.
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For exciting the bending deformation of the blade segment as shown in Figure 4,
the PZT patches were located at the maximum amplitude of the leading edge. The computer
model of the blade segment with the PZT patches is shown in Figure 5.
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Figure 5. Blade model with the PZT patches.

As shown in Figure 5, the PZT patches were symmetrically located in the hollow
space of the leading edge of the blade. After the installation of the PZT patches, the natural
frequencies of the blade varied with the stiffness and mass of the leading edge. Therefore,
the vibration modes of the blade segment with the PZT patches were calculated in the
scope of the ultrasonic frequency again. In comparison with the simulation results of the
blade segment without the PZT patches, three kinds of vibration modes were selected,
and their natural frequencies were 21,935.6 Hz, 25,094 Hz and 27,896.9 Hz respectively.
In these vibration modes, the vibration amplitudes of the bending deformations of the
leading edges approximately alternated positively and negatively, which are shown
in Figure 6.
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3. De-Icing Experiment

According to the simulation results, the ultrasonic de-icing experiment on the icing
blade segment was conducted. The adhesive shear strength of ice on the blade segment
was measured.

3.1. Blade Sample

According to the simulation results, the sample of the blade segment with the PZT
patches was designed and machined, which is shown in Figure 7.
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As shown in Figure 7, the model of the piezoelectric ceramic was PZT4, which is
a type of powering piezoelectric ceramic and is often used in the design of transducers.
For making the vibration amplitude of the bending deformation alternate positively and
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negatively, the polarization directions of the neighboring PZT patches were different, which
were also laid out positively and negatively.

3.2. Experimental System

In this paper, a de-icing experimental system with an ultrasonic device for the blade
segment was designed and built. It was composed of two parts, which were the icing
sub-system and ultrasonic de-icing sub-system.

The icing sub-system is shown in Figure 8. It is a self-designed return flow icing wind
tunnel, which is composed of the steady flow section, the mix section, the test section, the
cooling system and the spraying system. The icing wind tunnel was used to simulate the
icing condition of the wind turbine. In real conditions for the icing of wind turbine blades
to occur, the water droplets in the low-temperature environment flow with the air and
impact the blade surface. The type of icing under this type of condition is different from
the one generated by water under the refrigerator condition. It is the reason that the icing
wind tunnel was used in the present study. There were three basic steps for designing the
icing wind tunnel.
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3.2.1. Design of the Reflux Tunnel

The kinetic energy of the flowing air in the reflux tunnel was provided by a centrifugal
fan, model CF-3.5, with 3 kW of power. The wind speed was modulated by a variable-
frequency drive (VFD), model YVF2-100S-4. The test section could be moved into different
sizes in order to change the wind speed. According to the power of the fan and the
maximum design wind speed, 20 m/s, the cross area of the test section was designed as
250 × 250 mm2.

3.2.2. Design of the Cooling System

A refrigeration compressor, model is BITZER KP-4TES9Y, with 6.62 kW of power,
was selected to cool the air in the wind tunnel. According to the volume of the wind
tunnel, the refrigerating capacity at −20 ◦C was 7.76 kW and the wind speed was 22 m/s.
Therefore, the above conditions met the demands of the icing test.

3.2.3. Design of the Spray System

The spray system was located in the mix section. A high-pressure mist nozzle was
used in the spray system. The diameter of its orifice was 0.1 mm. The distilled water was
pumped by a water pump. In the study, the water pressure was 4 MPa, and the flow rate
of the nozzle was 19~20 mL/min. Under these conditions, the Medium Volume Diameter
(MVD) was approximately 50 µm.

The working parameters of the icing wind tunnel are listed in Table 1.
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Table 1. Working parameters of the icing wind tunnel.

Working Parameters Values

Cross-section of the test section 250 × 250 mm2

Temperature 0 ◦C~−20 ◦C
Wind speed 0~20 m/s

Diameter of the water droplet 50 µm

As listed in Table 1, the icing wind tunnel system met the icing temperature conditions
for glaze ice, mixing ice and rime ice, and the scope of the wind speed was wide, which
met the working conditions of the wind turbine.

The ultrasonic de-icing sub-system included the adhesion measurement device and
the ultrasonic excitation device. Until now, seldom research has been carried out to measure
the adhesive strength of ice accreting on the blade surface. In the present study, an adhesion
measurement device was designed and used to measure the adhesive strength of the ice
on the airfoil blade segment. The ultrasonic excitation device was used to excite the
ultrasonic vibration of the blade. The ultrasonic de-icing sub-system was used to measure
the adhesive strength of the ice on the airfoil blade segment under ultrasonic vibration,
which is shown in Figure 9.
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As shown in Figure 9a, the ultrasonic excitation device was composed of the signal
generator and the ultrasonic power amplifier. The signal generator, model RIGOL DG1022Z,
was used to generate the high-frequency signal. The ultrasonic power amplifier, model
LONG YI DGR-3001, was used to amplify the voltage and the power of the signal from
the signal generator and excite the PZT patches. Under the excitation of the PZT patches,
the blade segment vibrated. From Figure 9b, the shear method was used to measure the
adhesive strength of the ice on the blade segment surface. After the process of the icing test,
the icing blade was mounted on the slider, which moved along the parallel rails. The slider
was driven by the screwdriver where two pressure sensors were mounted symmetrically.
When the icing blade went through the airfoil hole matched with the blade, the ice adhering
to the blade surface was squeezed by the shear force. The maximum value of the shear
force could be acquired by the pressure sensors, which was also the maximum adhesive
shear strength of the ice. The brand-new measurement method proposed an opportunity
to research the effect of ultrasonic vibration on the adhesive characteristic of ice.

3.3. Measurement of the Natural Frequency

Before conducting the icing test, the natural frequencies of the blade sample with the
PZT patches were measured by the impedance analyzer, model ZX70A. The measurement
results provided the reference for the ultrasonic de-icing test, which are shown in Figure 10.
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As shown in Figure 10a, there were many natural frequencies for the blade segment
in the scope of 0~100 kHz. According to the simulation results, three scopes of the nat-
ural frequencies, which were 20~22 kHz, 25~26 kHz and 27~28 kHz, were measured in
detail again, and the measurements are shown in Figure 10b–d, respectively. The natural
frequencies, which were measured in these scopes, are listed in Table 2.
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Table 2. Natural frequencies of the blade.

Simulation Results Measurement Results

21,935.6 Hz 21,228 Hz
25,094 Hz 25,604 Hz

27,896.9 Hz 27,254 Hz
21,935.6 Hz 21,228 Hz

As listed in Table 2, there are discrepancies between the simulation results and the
measurement results. Two factors contributed to the discrepancies.

(1) The differences in the size and the material properties between the blade model and
the blade sample. For the blade sample, the material property is not completely the
same as the one in the simulation, such as the density, the Yang’s Elastic Modulus
and the Poisson’s ratio. In addition, the manufacturing error also led to the size
discrepancy between the model and the sample;

(2) The differences in the size, the material properties and the assembly method between
the PZT patch model and the PZT patch sample. The material properties of the
PZT patch sample are different from the one in the simulation model, such as the
permittivity, the density, the piezoelectric constant, the stiffness matrix, and so on.
In addition, the PZT patch samples also have discrepancies with each other because
of the error of the processing technique. With regards to the PZT assembly, the PZT
patches were pasted on the inner surface of the leading edge with epoxy resin. There
was a glue sheet between the PZT patch and the blade. However, in the process of
the simulation, the PZT patches should ideally be connected with the blade by the
VGLUE command. Therefore, there was a discrepancy between the simulation model
and the sample.

3.4. Experimental Scheme

According to the measurement results of the natural frequencies, the experimental
scheme on the ultrasonic de-icing test of the airfoil blade segment is listed in Table 3.

Table 3. Experimental scheme on the icing test of the airfoil blade.

Experimental Conditions Values

Experimental temperature −12 ◦C
Wind speed 5 m/s

Excitation frequency 21,228 Hz, 25,604 Hz, 27,254 Hz
Excitation voltage Vp–p 400V

Angle of attack 0◦

As listed in Table 3, the ultrasonic de-icing test of the airfoil blade was carried out
under the rime ice condition, and the adhesive strength of the ice on the blade surface was
measured under the different excitation frequencies in order to validate the de-icing effect
of ultrasonic vibration.

3.5. Experimental Results

According to the experimental scheme, the de-icing test of the blade segment was
conducted. The ice accreting on the blade surface is shown in Figure 9b. As shown in
Figure 9b, the ice mainly covered the leading edge for the static blade segment. The type of
ice in the study is mixing ice, which is composed of glaze ice and rime ice. In the initial
stage of icing the test, the type of ice was rime ice. With the increases in the icing time
and the thickness of the ice, the type of ice gradually became glaze ice. The reason for this
result is that when the water droplets made contact with the blade surface directly at the
initial icing stage, they froze in a short time due to the high heat transfer coefficient of the
aluminum material which was 237 W/(m·K). The rapid decrease in the temperature makes
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the water droplet freeze fast. Therefore, the type of ice formed was rime ice. With the
increase in the thickness of the ice, when the water droplets made contact with the ice, they
did not freeze instantly due to the low heat transfer of the ice which was 2.22 W/(m·K);
therefore, the ice formed was glaze ice.

In the process of icing, the icing shape was captured by a high-speed camera, model
Phantom v5.1. The time interval of acquisition is 2 min. The profile of ice at each acquisition
time was drawn and is shown in Figure 11. As shown in Figure 11, the ice grew layer by
layer with the maximum thickness of the ice located at the forefront of the leading edge.
The icing surface was located at a ratio of 10% of the chord length.
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The variation of the icing area is shown in Figure 12. The icing area was the area of
the cross-section of ice as shown in Figure 11.
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As shown in Figure 12, the icing area grew approximately linearly with the icing time.
A fit curve was drawn by the Least Square Method based on the experimental results. From
the fitting result, the growth rate of the ice area was approximately 18.35.

After the icing test, the adhesive strength of the ice, under different excitation frequen-
cies, was measured by the self-designed de-icing device shown in Figure 9. According to
the measurements of the shear force and the area of the ice covering on the blade surface,
the adhesive shear stress was calculated by Equation (1):

τ = F/S (1)

where τ is the shear stress of the ice; F is the shear force of the ice covering the blade surface;
S is the area of ice covering the blade surface.

According to Equation (1), the shear stresses of the ice under the different excitation
frequencies were calculated and are listed in Table 4. The variation of the adhesive shear
stress with excitation frequency is shown in Figure 13.

Table 4. Adhesive shear stress under the excitation frequencies.

Excitation Frequency (Hz) Mean Value of Adhesive Shear Stress (MPa)

0 0.14
21,228 0.084
25,604 0.089
27,254 0.13
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As shown in Figure 13, under the no vibration condition, the adhesive shear stress
of the ice was approximately 0.14 MPa. This research finding shows that the adhesive
strength of the ice, generated under the dynamic flow field, was lower than for the glaze
ice, which was frozen by water under the static air condition, which was approximately
from 0.3~1.7 MPa [30]. The reason for this result is that the space-filling efficiency of the ice
generated by the water droplets was lower than that generated by the water. According to
the results of the icing test, the type of ice generated in the icing wind tunnel was mixing
ice, which was composed of rime ice and glaze ice. For the rime ice, generated from the
water droplets, there was space between the iced water droplets. This led to the decrease
in the contact area of the ice and the strength of the ice, which resulted in the low adhesive
shear stress. In contrast, for the glaze ice generated in the refrigeration system, generated
from the continuous flow of water, there was no space in the body of ice, and the contact
area with the substrate was large.
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Moreover, when the icing blade vibrated under the different ultrasonic frequencies,
the adhesive shear stresses were all lower than without ultrasonic vibration. This vali-
dated that ultrasonic vibration has the de-icing effect. When the excitation frequency was
21.228 kHz, the adhesive shear stress was the lowest, which was approximately 0.084 MPa.
The experimental result validated the simulation result shown in Figure 6a. In this vibra-
tion mode, the leading edge symmetrically bent along the blade chord without any other
types of bending modes along the span. Meanwhile, the PZT patches were located at the
maximum bending amplitude. In this case, the bending deformation was the largest, which
resulted in the high shear stress at the adhesive interface. In contrast, for the vibration
mode in Figure 6b, although the leading edge symmetrically bent along the blade chord,
there was bending deformation along the span, which may have decreased the adhesive
shear stress of the ice along the span. Additionally, for the vibration mode in Figure 6c,
the leading edge asymmetrically bent along the blade chord, and the PZT patches were not
located at the maximum bending amplitude. That was why the adhesive shear stress was
the highest among these vibration modes.

4. Conclusions

In this paper, the adhesive strength of ice on the airfoil blade and the ultrasonic
de-icing method of the blade were researched, and several conclusions are summarized
as follows:

(1) An airfoil blade segment with a hollow structure was designed, and the model analy-
sis of it was calculated. The bending vibration mode, in which the vibration amplitude
alternates positively and negatively, was selected as the de-icing vibration mode;

(2) A return-flow icing wind tunnel was built, and a device for measuring the adhesive
strength of the ice covering the blade surface was designed and manufactured. Three
natural frequencies of the blade segment, 21,228 Hz, 25,604 Hz and 27,254 Hz, were
measured and selected as the experimental frequencies for the ultrasonic de-icing test;

(3) The adhesive shear stresses of the ices under the different frequencies were measured
and calculated. The adhesive shear stress of the ice, generated under the dynamic
flow field condition, was lower than the glaze ice, generated by the freezing of the
water under the static air condition. Under the ultrasonic vibration condition, the
adhesive shear stress decreased. When the frequency was 21.228 kHz, the adhesive
shear stress was lowest, which was approximately 0.084 MPa.

5. Future Work

In this paper, we have researched the effect of ultrasonic vibration on the adhesive
characteristics of ice covering the airfoil blade surface. The research findings show that
ultrasonic vibration can reduce the adhesive strength of the ice, resulting in the de-icing
effect. However, the proposed methodology is only suited to the research of a static blade
in an icing wind tunnel. The experimental process was divided into two steps, which were
the icing process and the measurement of the adhesive strength of the ice. However, this
resulted in an insignificant effect on the measuring accuracy. In future work, a dynamic
measurement system needs to be developed so the process of icing on the rotating blade
can be tested and the adhesive strength of the ice can also be measured by centrifugal force
at the same time.
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