The Geomechanics of the Dangkhar Landslide, Himachal Pradesh, India
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Geology, Geomorphology and Climate
3.2. Seismotectonics and Landsliding
3.3. Dangkhar Landslide Characteristics
3.3.1. Morphologic Features, Geology and Structure
3.3.2. Block Theory and Analysis
3.3.3. Potential Triggering Mechanisms
4. Geochronology and Deformation History
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kieffer, D.S.; Steinbauer, C. Geotechnical remediation strategies. In The Ancient Monastic Complex of Dangkhar; Neuwirth, H., Ed.; Verlag der Technischen Universität: Graz, Austria, 2012; pp. 197–227. [Google Scholar] [CrossRef]
- Kieffer, D.S.; Kaspar, M. The Dangkhar Landslide: A world class mega-event. In Proceedings of the EGU General Assembly, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Kaspar, M.; Kieffer, D.S. Preliminary engineering geological characterization of the ca. 20 km³ Dangkhar Landslide in the Spiti Valley, Himachal Pradesh, India. In Engineering Geology for Society and Territory; Lollino, G., Giordan, D., Crosta, G.B., Corominas, J., Azzam, R., Wasowski, J., Sciarra, N., Eds.; Springer: Cham, Switzerland, 2015; Volume 2, pp. 891–894. [Google Scholar] [CrossRef]
- Kaspar, M.; Kieffer, D.S. Geologic, Geomorphologic, and Climatic Preparatory Conditions for the Evolution of the Dangkhar Landslide, Himachal Pradesh, India. J. Geol. Soc. India 2022, 98, 903–910. [Google Scholar] [CrossRef]
- Bhargava, O.N. An updated introduction to the Spiti geology. J. Pal. Soc. India 2008, 53, 113–129. [Google Scholar]
- Catt, J.A. Quaternary Geology for Scientists and Engineers; Wiley: Chichester, UK, 1988; 340p. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10.2.1; Environmental Systems Research Institute: Redlands, CA, USA, 2013. [Google Scholar]
- ASTER GDEM Entity ID ASTGDEMV2_0N32E078 and ASTGDEMV2_0N31E078. Downloaded from US Geological Survey Earth Explorer. ASTER GDEM is a Product of NASA and METI. Available online: https://earthexplorer.usgs.gov/ (accessed on 17 October 2011).
- Guth, P.L. Geomorphometry in MICRODEM. In Geomorphometry: Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Developments in Soil Science Series; Elsevier: Amsterdam, The Netherlands, 2009; pp. 351–366. [Google Scholar] [CrossRef]
- International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory: A suggested method for reporting a landslide. Bull. Int. Assoc. Eng. Geol. 1990, 41, 5–12. [CrossRef]
- Goodman, R.E.; Shi, G.-H. Block Theory and its Application to Rock Engineering; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Ameta, S.S. Some observations on geomorphology of the Spiti Valley, Lahaul and Spiti district, Himachal Pradesh. Himal. Geol. 1979, 9, 646–656. [Google Scholar]
- Bhargava, O.N. Holocene tectonics south of the lndus Suture, Lahaul-Ladakh Himalaya, India: A consequence of Indian Plate motion. Tectonophysics 1990, 174, 315–320. [Google Scholar] [CrossRef]
- Phartiyal, B.; Sharma, A.; Srivastava, P.; Ray, Y. Chronology of relict lake deposits in the Spiti River, NW Trans Himalaya: Implications of Late Pleistocene–Holocene climate tectonic perturbations. Geomorphology 2009, 108, 264–272. [Google Scholar] [CrossRef]
- Sciunnach, D.; Garzanti, E. Subsidence history of the Tethys Himalaya. Earth. Sci. Rev. 2012, 111, 179–198. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Verma, V. Spiti: A Buddhist Land in Western Himalaya; BR Publishing Corporation: Delhi, India, 1997; 176p. [Google Scholar]
- Srivastava, P.; Ray, Y.; Phartiyal, B.; Sharma, A. Late Pleistocene-Holocene morphosedimentary architecture, Spiti River, arid Higher Himalaya. Int. J. Earth Sci. 2013, 102, 1967–1984. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Rawat, S.; Gupta, A.K.; Sangode, S.J.; Srivastava, P.; Nainwal, H.C. Late Pleistocene-Holocene vegetation and Indian Summer Monsoon record from the Lahaul, Northwest Himalaya, India. Quat. Sci. Rev. 2015, 114, 167–181. [Google Scholar] [CrossRef]
- Owen, L.A.; Gualtieri, L.; Finkel, R.C.; Caffee, M.W.; Benn, D.I.; Sharma, M.C. Cosmogenic radionuclide dating of glacial landforms in the Lahul Himalaya, Northern India: Defining the timing of Late Quaternary glaciation. J. Quat. Sci. 2001, 16, 555–563. [Google Scholar] [CrossRef]
- Neumayer, J.; Wiesmayr, G.; Janda, C.; Grasemann, B.; Draganits, E. Eohimalayan fold and thrust belt in the NW-Himalaya (Lingti-Pin Valleys): Shortening and depth to detachment calculation. Austrian J. Earth Sci. 2004, 95–96, 28–36. [Google Scholar]
- Bhargava, O.N.; Bassi, U.K. Geology of Spiti Kinnaur Himachal Himalaya. Geol. Surv. India Mem. 1998, 124, 1–210. [Google Scholar]
- Hughes, P.D.; Gibbard, P.L.; Ehlers, J. Timing of glaciation during the last glacial cycle: Evaluating the concept of a global ‘Last Glacial Maximum’ (LGM). Earth Sci. Rev. 2013, 125, 171–198. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Ranhotra, P.S.; Shah, S.K. Temporal and spatial variations of Late Pleistocene-Holocene climate of the Western Himalaya based on pollen records and their implications to monsoon dynamics. J. Geol. Soc. India 2006, 68, 507–515. [Google Scholar]
- Eugster, P.; Scherler, D.; Thiede, R.C.; Codilean, A.T.; Strecker, M.R. Rapid Last Glacial Maximum deglaciation in the Indian Himalaya coeval with midlatitude glaciers: New insights from 10Be-dating of ice-polished bedrock surfaces in the Chandra Valley, NW Himalaya. Geophys. Res. Lett. 2016, 43, 1589–1597. [Google Scholar] [CrossRef]
- Anoop, A.; Prasad, S.; Krishnan, R.; Naumann, R.; Dulski, P. Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quat. Int. 2013, 313–314, 74–84. [Google Scholar] [CrossRef]
- Owen, L.A.; England, J. Observations on rock glaciers in the Himalayas and Karakoram Mountains of northern Pakistan and India. Geomorphology 1998, 26, 199–213. [Google Scholar] [CrossRef]
- Owen, L.A. Latest Pleistocene and Holocene glacier fluctuations in the Himalaya and Tibet. Quat. Sci. Rev. 2009, 28, 2150–2164. [Google Scholar] [CrossRef]
- BMTPC. Vulnerability Atlas Seismic Zones of India, 3rd ed.; GSI, GOI, MoH & UPA: New Delhi, India, 2019; 457p.
- Ni, J.; Barazangi, M. Active tectonics of the Western Tethyan Himalaya above the underthrusting Indian plate: The upper Sutlej River basin as a pull-apart structure. Tectonophysics 1985, 112, 277–295. [Google Scholar] [CrossRef]
- Geological Survey of India. Active fault mapping of Spiti Valley Fault by micro-earthquake survey. Rec. Geol. Surv. 2009, 141, 143. [Google Scholar]
- Anoop, A.; Prasad, S.; Basavaiah, N.; Brauer, A.; Shahzad, F.; Deenadayalan, K. Tectonic versus climate influence on landscape evolution: A case study from the upper Spiti valley, NW Himalaya. Geomorphology 2012, 145–146, 32–44. [Google Scholar] [CrossRef]
- Shanker, S.D. On the seismic hazard in Himachal Pradesh and Uttarakhand states. Geosciences 2018, 8, 21–31. [Google Scholar]
- Shedlock, K.M.; Giardini, D.; Grünthal, G.; Zhang, P. The GSHAP global seismic hazard map. Seismol. Res. Lett. 2000, 71, 679–689. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationship among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Singh, R.P.; Aman, A.; Prasad, Y.J.J. Attenuation relations for strong seismic ground motion in the Himalayan region. Pure Appl. Geophys. 1996, 147, 161–180. [Google Scholar] [CrossRef]
- Jain, S.K.; Roshan, A.D.; Arlekar, J.N.; Basu, P.C. Empirical attenuation relationships for the Himalayan earthquakes based on Indian strong motion data. In Proceedings of the 6th International Conference on Seismic Zonation, Palm Springs, CA, USA, 12–15 November 2000. [Google Scholar]
- Bookhagen, B.; Thiede, R.C.; Strecker, M.R. Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya. Geology 2005, 33, 149–152. [Google Scholar] [CrossRef]
- Hintersberger, E.; Thiede, R.C.; Strecker, M.R.; Hacker, B.R. East-west extension in the NW Indian Himalaya. GSA Bull. 2010, 122, 1499–1515. [Google Scholar] [CrossRef]
- Geological Survey of India. Rangrik landslide, Lahul-Spiti District, Himachal Pradesh. Rec. Geol. Surv. India 2009, 143, 25–26. [Google Scholar]
- Eberhardt, E.; Bonzanigo, L.; Loew, S. Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part II. Mitigation measures and numerical modelling of deep drainage at Campo Vallemaggia. Can. Geotech. J. 2007, 44, 1181–1199. [Google Scholar] [CrossRef]
- Soldati, M. Deep-Seated Gravitational Slope Deformation. In Encyclopedia of Natural Hazards; Bobrowsky, P.T., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 151–155. [Google Scholar] [CrossRef]
- Chigira, M. Long-term gravitational deformation of rocks by rock mass creep. Eng. Geol. 1992, 32, 157–184. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Penna, I.; Pedrazzini, A.; Baroň, I.; Crosta, G.B. An introductory review on gravitational-deformation induced structures, fabrics and modeling. Tectonophysics 2013, 605, 1–12. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.; Zanchi, A. Structural constraints on deep-seated slope deformation kinematics. Eng. Geol. 2001, 59, 83–102. [Google Scholar] [CrossRef]
- Krautblatter, M.; Funk, D.; Günzel, F.K. Why permafrost rocks become unstable: A rock-ice-mechanical model in time and space. Earth Surf. Process. Landf. 2013, 38, 876–887. [Google Scholar] [CrossRef]
- Newmark, N. Effects of earthquakes on dams and embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef]
- Chowdhury, R.N. Hazard of landsliding during earthquakes—Critical overview of assessment methods. In Proceedings of the 12th World Conference on Earthquake Engineering (12WCEE), Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- McColl, S.T. Paraglacial rock-slope stability. Geomorphology 2012, 153–154, 1–16. [Google Scholar] [CrossRef]
- Moser, M.; Amann, F.; Meier, J.; Weidner, S. Tiefgreifende Hangdeformationen der Alpen: Erscheinungsformen—Kinematik—Maßnahmen; Springer Spektrum: Wiesbaden, Germany, 2017; 290p. [Google Scholar] [CrossRef]
- Dortch, J.M.; Owen, L.A.; Haneberg, W.C.; Caffee, M.W.; Dietsch, C.; Kamp, U. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 2009, 28, 1037–1054. [Google Scholar] [CrossRef]
- Bonzanigo, L.; Oppizzi, P.; Tornaghi, M.; Uggeri, A. Hydrodynamics and rheology: Key factors in mechanisms of large landslides. In Proceedings of the ECI Conference on Geohazards, Lillehammer, Norway, 18–22 June 2006. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Crosta, G.B.; Stead, D. Slope Tectonics: A short introduction. In Slope Tectonics; Jaboyedoff, M., Ed.; Geological Society: London, UK, 2011; Volume 351, pp. 1–10. [Google Scholar] [CrossRef]
- Hewitt, K.; Clague, J.J.; Orwin, J.F. Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci. Rev. 2008, 87, 1–38. [Google Scholar] [CrossRef]
- van Husen, D. Die Ostalpen in den Eiszeiten. In Aus der Geologischen Geschichte Österreichs; Geologische Bundesanstalt: Vienna, Austria, 1987; Volume 2, pp. 1–24. [Google Scholar]
- Kaspar, M.; Kieffer, D.S.; Leis, A. The Dangkhar Breccia: Insights on the formation from remote, field and laboratory based investigations. Mitt. Österr. Min. Ges. 2019, 165, 52–53. [Google Scholar]
- Taylor, P.J.; Mitchell, W.A. Late Quaternary glacial history of the Zanskar Range, Northwest Indian Himalaya. Quat. Int. 2000, 65–66, 81–99. [Google Scholar] [CrossRef]
- Fang, K.; Dong, A.; Tang, H.; An, P.; Wang, Q.; Jia, S.; Zhang, B. Development of an easy-assembly and low-cost multismartphone photogrammetric monitoring system for rock slope hazards. Int. J. Rock Mech. Min. Sci. 2024, 174, 105655. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Z.; Tang, H.; Wang, L.; Huo, X.; Cui, Z.; Li, S.; Zhang, B.; Lin, Z. Experimental investigation on shear strength deterioration at the interface between different rock types under cyclic loading. J. Rock Mech. Geot. Eng. 2014; in press. [Google Scholar] [CrossRef]
- Chauhan, M.S.; Mazari, R.K.; Rajagopalan, G. Vegetation and climate in upper Spiti region, Himachal Pradesh during late Holocene. Curr. Sci. 2000, 79, 373–377. [Google Scholar]
Fault Name | Total Fault Length (km) | Ruptured Fault Segment Length (km) | Mw max. | Distance to Study Area (km) | PGA (g) [39] | PGA (g) [38] |
---|---|---|---|---|---|---|
SVF | 35 | 12 | 6.3 | 1 | 0.92 | 1.23 |
KCF | 124 | 41 | 7.0 | 46 | 0.08 | 0.20 |
SFC-1 | 34 | 11 | 6.3 | 16 | 0.11 | 0.22 |
SFC-2 | 8 | 3 | 5.4 | 6 | 0.14 | 0.22 |
SFC-3 | 6 | 2 | 5.3 | 4 | 0.17 | 0.26 |
TMF | 82 | 27 | 6.8 | 66 | 0.05 | 0.13 |
LPF | 75 | 25 | 6.7 | 60 | 0.05 | 0.14 |
KNF | 20 | 7 | 5.9 | 56 | 0.03 | 0.08 |
SF | 50 | 17 | 6.5 | 68 | 0.04 | 0.11 |
MPF | 75 | 25 | 6.7 | 60 | 0.05 | 0.14 |
CF | 38 | 13 | 6.3 | 72 | 0.03 | 0.09 |
KF | 730 | 243 | 7.8 | 141 | 0.05 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaspar, M.; Kieffer, D.S. The Geomechanics of the Dangkhar Landslide, Himachal Pradesh, India. Geotechnics 2024, 4, 655-672. https://doi.org/10.3390/geotechnics4020035
Kaspar M, Kieffer DS. The Geomechanics of the Dangkhar Landslide, Himachal Pradesh, India. Geotechnics. 2024; 4(2):655-672. https://doi.org/10.3390/geotechnics4020035
Chicago/Turabian StyleKaspar, Markus, and D. Scott Kieffer. 2024. "The Geomechanics of the Dangkhar Landslide, Himachal Pradesh, India" Geotechnics 4, no. 2: 655-672. https://doi.org/10.3390/geotechnics4020035
APA StyleKaspar, M., & Kieffer, D. S. (2024). The Geomechanics of the Dangkhar Landslide, Himachal Pradesh, India. Geotechnics, 4(2), 655-672. https://doi.org/10.3390/geotechnics4020035