Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = starch-lipid complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2341 KiB  
Article
Lipid-Enriched Cooking Modulates Starch Digestibility and Satiety Hormone Responses in Traditional Nixtamalized Maize Tacos
by Julian de la Rosa-Millan
Foods 2025, 14(15), 2576; https://doi.org/10.3390/foods14152576 - 23 Jul 2025
Viewed by 625
Abstract
Traditional taco preparation methods, such as oil immersion and steaming, can significantly affect the nutritional and metabolic characteristics of the final product. This study evaluated tacos made with five commercial nixtamalized maize flours and four common fillings (chicharron, beef skirt, potato, and refried [...] Read more.
Traditional taco preparation methods, such as oil immersion and steaming, can significantly affect the nutritional and metabolic characteristics of the final product. This study evaluated tacos made with five commercial nixtamalized maize flours and four common fillings (chicharron, beef skirt, potato, and refried beans), processed using three different methods: Plain, Full-Fat, and Patted-Dry. We assessed their chemical composition, starch digestibility, and thermal properties, and measured satiety-related hormone responses in mice. Fillings had a stronger influence on protein, fat, and moisture content than tortilla type. Full-fat tacos exhibited increased amylose–lipid complex formation and a lower gelatinization enthalpy, whereas plain tacos retained more retrograded starch and a crystalline structure. In vitro digestion revealed that Plain tacos, especially those with plant-based fillings, had the highest resistant starch content and the lowest predicted glycemic index. Hierarchical clustering showed that resistant starch, moisture, and gelatinization onset temperature were closely linked in the Plain samples, whereas lipid-driven variables dominated in the Full-Fat tacos. In mice, tacos with a higher resistant starch content led to greater GLP-1 levels, lower ghrelin levels, and reduced insulin responses, suggesting improved satiety and glycemic control. Patted-Dry tacos showed intermediate hormonal effects, supporting their potential as a balanced, health-conscious alternative. These findings demonstrate how traditional preparation techniques can be leveraged to enhance the nutritional profile of culturally relevant foods, such as tacos. Full article
Show Figures

Graphical abstract

17 pages, 4413 KiB  
Article
Impact of Fatty Acid Types and Microwave Post-Treatment on the Physicochemical Properties of Water Caltrop Starch–Lipid Complexes
by Pei-Chang Lee and Lih-Shiuh Lai
Foods 2025, 14(13), 2254; https://doi.org/10.3390/foods14132254 - 25 Jun 2025
Viewed by 501
Abstract
This study investigates the effects of microwave post-treatment and fatty acid type on the physicochemical properties of starch–lipid complexes derived from water caltrop (Trapa taiwanensis Nakai) starch. Complexes were prepared using stearic acid (C18:0) or oleic acid (C18:1), [...] Read more.
This study investigates the effects of microwave post-treatment and fatty acid type on the physicochemical properties of starch–lipid complexes derived from water caltrop (Trapa taiwanensis Nakai) starch. Complexes were prepared using stearic acid (C18:0) or oleic acid (C18:1), followed by microwave post-treatment at varying durations. Morphological analysis revealed that the starch–stearic acid complex exhibited more plate-like structures and birefringent spots compared to the starch–oleic acid complex. The complexing index increased with extended microwave exposure, indicating enhanced complex formation. Fourier-transform infrared spectroscopy showed no significant variation in the 1047/1022 cm−1 absorption ratio, suggesting that the short-range molecular order remained unaffected. However, X-ray diffraction analysis indicated increased relative crystallinity, particularly in the stearic acid complex (10.4%) compared to the oleic acid complex (4.8%), likely due to the higher linearity and saturation of stearic acid. Differential scanning calorimetry confirmed the presence of both type I and type II crystallization in all samples. The starch–stearic acid complex exhibited greater thermal stability, promoted type II crystallization, and enhanced the ordered structure of type I crystallization. In contrast, microwave treatment had limited influence on the thermal properties of the starch–oleic acid complex. These findings demonstrate that microwave post-treatment facilitates starch–lipid complex formation and improves structural organization, particularly when saturated fatty acids are employed. Full article
(This article belongs to the Special Issue Research on the Structure and Physicochemical Properties of Starch)
Show Figures

Figure 1

16 pages, 1441 KiB  
Article
Effects of Tricholoma Matsutake-Derived Insoluble Fiber on the Pasting Properties, Structural Characteristics, and In Vitro Digestibility of Rice Flour
by Qin Qiu, Jing Chen, Dafeng Sun, Yongshuai Ma, Yujie Zhong, Junjie Yi, Ming Du, Man Zhou and Tao Wang
Foods 2025, 14(12), 2143; https://doi.org/10.3390/foods14122143 - 19 Jun 2025
Viewed by 485
Abstract
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively [...] Read more.
This study explores the effects of Tricholoma matsutake-derived insoluble dietary fiber (TMIDF) on the pasting behavior, structural properties, and in vitro digestibility of rice flour. The incorporation of 5% TMIDF significantly increased the peak viscosity (from 2573.21 to 2814.52 mPa·s) by competitively adsorbing water and forming a dense transient network, while simultaneously reducing the final viscosity (from 1998.27 to 1886.18 mPa·s) by inhibiting amylose recrystallization. Multi-scale structural analyses revealed that TMIDF enhanced V-type crystallinity and limited enzyme access via a porous fibrous matrix. Fourier-transform infrared spectroscopy and low-field nuclear magnetic resonance analyses confirmed that hydrogen bonding and water redistribution were key interaction mechanisms. TMIDF significantly lowered in vitro starch digestibility and increased resistant starch content by 16% (from 14.36% to 30.94%) through synergistic effects, including physical encapsulation of starch granules, formation of enzyme-resistant amylose-lipid complexes, and α-amylase inhibition (31.08%). These results demonstrate that TMIDF possesses a unique multi-tiered modulation mechanism, involving structural optimization, enzyme suppression, and diffusion control, which collectively surpasses the functional performance of conventional plant-derived insoluble dietary fibers. This research establishes a theoretical basis for applying fungal insoluble dietary fibers to develop low glycemic index functional foods, highlighting their dual role in improving processing performance and nutritional quality. Full article
Show Figures

Graphical abstract

17 pages, 991 KiB  
Article
Insights into the Formation of Ternary Complexes Among Wheat Starch, Lauric Acid and Protein: Effects of Plasma Pretreatment Times and Protein Types
by Bin Niu, Ziyu Wang and Yizhe Yan
Foods 2025, 14(11), 1922; https://doi.org/10.3390/foods14111922 - 28 May 2025
Viewed by 406
Abstract
Starch-lipid-protein ternary complexes have attracted more attention, and physical processing is gradually being applied to their preparation. This study was to understand the effect of atmospheric cold plasma (ACP) pretreatment times (1–4 min) and protein types (whey protein isolate (WPI), soy protein isolate [...] Read more.
Starch-lipid-protein ternary complexes have attracted more attention, and physical processing is gradually being applied to their preparation. This study was to understand the effect of atmospheric cold plasma (ACP) pretreatment times (1–4 min) and protein types (whey protein isolate (WPI), soy protein isolate (SPI), and egg white protein isolate (EWP)) on the wheat starch (WS)-lauric acid (LA)-protein ternary complexes. Experimental results indicated that one-minute ACP pretreatment of WS led to the increase in the amylose content to 30.02%, which produced the largest number of WS-LA-protein complexes (CI value of 69.21%, 67.41%, and 62.81% for WS-LA-WPI, WS-LA-SPI, and WS-LA-EWP complexes, respectively), resulting in the most ordered structure and higher enthalpy change. In vitro digestibility results based on starch showed that WS1-LA-protein complexes exhibited the lowest digestibility with the highest resistant starch content of 28.09%, 27.93%, and 27.41% for these three kinds of complexes, respectively. However, when the treatment time for WS was more than 1 min, a downward trend occurred, indicating that ACP pretreatment of WS for 1 min was the most beneficial for forming complexes. PCA results also verified that ACP pretreatment of WS for different times could significantly impact the generation and structure of ternary complexes. Moreover, protein types also affected the formation and physicochemical properties of ternary complexes. Notably, WPI, with the higher emulsifying property, formed a larger number (CI value of 69.21%), more ordered structure (Xv of 10.56%), and higher thermal stability of ternary complexes than SPI and EWP. This study presents a burgeoning technology to regulate the generation, structure, and functional properties of starch-lipid-protein complexes. Full article
Show Figures

Graphical abstract

12 pages, 1071 KiB  
Proceeding Paper
Comparative Study of the Impact of Stearin-Modified Starches from Maize, Ginger, and Sweet Potato on the Physicochemical Properties of Low-Fat Mayonnaise
by Emmanuel Panyoo Akdowa, Astaharam Didi and Tchiégang Clergé
Proceedings 2025, 118(1), 12; https://doi.org/10.3390/proceedings2025118012 - 20 May 2025
Viewed by 439
Abstract
The utilization of modified starches derived from ginger, sweet potatoes, and maize has been employed as a strategy to reduce the oil content in mayonnaise formulations. Amylose–lipid complexes and the native starches were synthesized, characterized, and subsequently incorporated into various mayonnaise formulations, replacing [...] Read more.
The utilization of modified starches derived from ginger, sweet potatoes, and maize has been employed as a strategy to reduce the oil content in mayonnaise formulations. Amylose–lipid complexes and the native starches were synthesized, characterized, and subsequently incorporated into various mayonnaise formulations, replacing 50 and 80 percent of the oil. The sensory analysis showed that the mayonnaises produced with 50% and 80% modified corn starch were particularly well received. However, when compared to conventional mayonnaises, the viscosity of the mayonnaises prepared with 50% and 80% modified maize starch was found to be remarkably low. This outcome demonstrates that when preparing low-fat mayonnaise, it is not possible to substitute tuber starches for fat. Full article
Show Figures

Figure 1

15 pages, 1264 KiB  
Article
Crab-Apple (Mulus asiatica Nakai) Peel Extract-Enhanced Potato Starch/κ-Carrageenan Bioactive Films: Structural Characterization, Antioxidant-Antimicrobial Efficacy, and Application in Meat Preservation
by Xiujie Lang, Ning Wang, Xuanzhe An and Cuntang Wang
Polymers 2025, 17(10), 1328; https://doi.org/10.3390/polym17101328 - 13 May 2025
Viewed by 448
Abstract
The development of biodegradable food packaging materials with active functionalities presents a sustainable alternative to conventional plastic films. This study developed a bioactive complex film through solvent casting technique using potato starch (PS) and κ-carrageenan (κC) as the matrix, incorporated with ethanol extract [...] Read more.
The development of biodegradable food packaging materials with active functionalities presents a sustainable alternative to conventional plastic films. This study developed a bioactive complex film through solvent casting technique using potato starch (PS) and κ-carrageenan (κC) as the matrix, incorporated with ethanol extract of crab-apple peel (EEC). Fourier-transform infrared analysis confirmed the formation of hydrogen bonds between the film-forming constituents. Scanning electron microscopy revealed that higher concentrations of EEC led to a relatively rough film surface. XRD indicated that the incorporation of EEC reduced the crystallinity of the potato starch. The addition of EEC significantly increased the a and b values of the complex film (p < 0.05), while the L value and opacity decreased significantly (p < 0.05). The TS, Young′s modulus, and WVP of the complex films decreased significantly with increasing EEC concentration (p < 0.05). The DPPH and ABTS radical scavenging abilities of PS-κC-EEC film were enhanced from 12.35% to 75.48% and from 10.26% to 72.52%, respectively. PS-κC-EEC film exhibited strong antimicrobial activity against Staphylococcus aureus and Escherichia coli. The application of the PS-κC-EEC film for the refrigerated preservation of pork demonstrated that the lipid oxidation level of wrapped pork was reduced. These results suggest that the fabricated PS-κC-EEC film could be utilized for the preservation of pork and extends its shelf life. Full article
(This article belongs to the Special Issue Functional Materials Based on Biodegradable Polymers)
Show Figures

Figure 1

18 pages, 4869 KiB  
Article
Andean Pseudocereal Flakes with Added Pea Protein Isolate and Banana Flour: Evaluation of Physical–Chemical, Microstructural, and Sensory Properties
by Briggith Leiva-Castro, Liliana Mamani-Benavente, Carlos Elías-Peñafiel, Raúl Comettant-Rabanal, Reynaldo Silva-Paz, Luis Olivera-Montenegro and Perla Paredes-Concepción
Foods 2025, 14(4), 620; https://doi.org/10.3390/foods14040620 - 13 Feb 2025
Cited by 1 | Viewed by 1319
Abstract
In order to obtain a highly nutritious extrudate, a combination of pseudocereals, vegetable protein, and banana flour, a fruit with high sensory acceptability, was used. The objective of the research was to produce a multi-component extrudate (ME) based on cañihua and quinoa with [...] Read more.
In order to obtain a highly nutritious extrudate, a combination of pseudocereals, vegetable protein, and banana flour, a fruit with high sensory acceptability, was used. The objective of the research was to produce a multi-component extrudate (ME) based on cañihua and quinoa with the addition of pea protein isolate and banana flour. The response variables evaluated were composition, expansion, hydration, colour, and hardness properties, as well as the microscopy and sensory characteristics of the flakes produced. These flakes were compared with three commercial extrudates, commercial quinoa-based extrudate (QE), commercial corn-based extrudate (CE), and commercial wheat-based extrudate (WE), which had similar characteristics. The ME showed a higher protein content compared to commercial extrudates (13.60%), and it had significant amounts of lipids, fibre, and ash. The expansion of the ME was like commercial quinoa but significantly lower than the CE and the WE in terms of expansion (p < 0.05). Regarding the absorption and solubility indices of the ME, these indicated that it had lower starch fragmentation compared to the commercial CE and WE. In addition, the instrumental hardness of the ME was higher than the commercial ones due to the complex nature of the product. Through scanning electron microscopy (SEM), it was observed that the ME showed some remaining extrusion-resistant starch granules from quinoa and cañihua with the presence of protein bodies. Finally, the flash profile described the ME as having a pronounced flavour, higher hardness, and lower sweetness, and the free sorting task allowed it to be differentiated from commercial extrudates based on its natural appearance and chocolate flavour. Full article
(This article belongs to the Topic Sustainable Food Production and High-Quality Food Supply)
Show Figures

Figure 1

25 pages, 7281 KiB  
Article
Revealing the Differences in Microbial Community and Quality of High-Temperature Daqu in the Southern Sichuan–Northern Guizhou Region
by Cheng Yan, Zhangjun Huang, Rongkun Tu, Liqiang Zhang, Chongde Wu, Songtao Wang, Ping Huang, Yunhang Zeng and Bi Shi
Foods 2025, 14(4), 570; https://doi.org/10.3390/foods14040570 - 8 Feb 2025
Cited by 1 | Viewed by 1093
Abstract
High-temperature Daqu is crucial to Jiang-flavor Baijiu production in the Southern Sichuan–Northern Guizhou region of China. However, the complex interplay among microorganisms, enzymes, and metabolites in the Daqu from this region requires further investigation. This study compared four high-temperature Daqu samples from this [...] Read more.
High-temperature Daqu is crucial to Jiang-flavor Baijiu production in the Southern Sichuan–Northern Guizhou region of China. However, the complex interplay among microorganisms, enzymes, and metabolites in the Daqu from this region requires further investigation. This study compared four high-temperature Daqu samples from this region, analyzing their physicochemical properties, enzyme activities, volatile compounds, and microbial community composition and function, and exploring the influence of microorganisms on the saccharification and aroma-formation function of Daqu in combination with correlation analysis. The microbial communities in the Daqu samples exhibited functional redundancy, with Desmospora sp. 8437 being consistently dominant (3.6–7.3%). Members of the family Bacillaceae were the principal factors contributing to the differences in starch degradation capacity, protein degradation capacity, and pyrazine content among the Daqu samples, mainly through the amylases and proteases they produce. Kroppenstedtia spp. were principal factors causing the differences in aldehyde and ketone contents, primarily via the lipid degradation enzymes they synthesize. Overall, the bacterial community composition of Daqu greatly influenced its characteristics. This study provided a theoretical basis for understanding the diversity of high-temperature Daqu in the Southern Sichuan–Northern Guizhou region. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

15 pages, 13093 KiB  
Article
Structural Particularities of Gall Neoformations Induced by Monarthropalpus flavus in the Leaves of Buxus sempervirens
by Irina Neta Gostin, Irinel Eugen Popescu and Cristian Felix Blidar
Plants 2025, 14(3), 453; https://doi.org/10.3390/plants14030453 - 4 Feb 2025
Viewed by 1241
Abstract
The boxwood leafminer Monarthropalpus flavus (Diptera, Cecidomyiidae) has historically been considered a leafminer, but some researchers suggested it induced galls on Buxus species leaves. The larvae of M. flavus create small blister-like galls on Buxus sempervirens leaves, causing tissue hypertrophy and hyperplasia. Histological [...] Read more.
The boxwood leafminer Monarthropalpus flavus (Diptera, Cecidomyiidae) has historically been considered a leafminer, but some researchers suggested it induced galls on Buxus species leaves. The larvae of M. flavus create small blister-like galls on Buxus sempervirens leaves, causing tissue hypertrophy and hyperplasia. Histological examination reveals that M. flavus larvae cause the formation of small blister galls, which involve tissue reorganization in the mesophyll. Unlike typical leafminers, which only disrupt existing tissues, M. flavus induces the appearance of a neo-formed tissue, near the larval chamber. This tissue, originating primarily from spongy parenchyma cells, significantly increases as the leaf thickens. Various histochemical analyses show that the new tissue contains starch, lipids, terpenes, and proteins, providing evidence of reprogramming in the plant’s metabolism. The study concludes that M. flavus induces rudimentary galls, not simply mines, due to the formation of new tissue, whose cells have cytological characteristics distinct from those found in non-galled leaves. However, despite some gall-like features, it does not create new vascular elements, distinguishing it from more complex galls formed by other gall-inducing species. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

20 pages, 11368 KiB  
Article
Aroma Compound Release from Starches of Different Origins: A Physicochemical Study
by Maria-Magdalini Emmanouil, Alexandra Skartsila, Pelagia Katsou, Lampros Farmakis, Athanasia Koliadima and John Kapolos
Appl. Sci. 2025, 15(3), 1536; https://doi.org/10.3390/app15031536 - 3 Feb 2025
Viewed by 1237
Abstract
Sensory properties, particularly aroma, play a crucial role in consumers’ acceptance and perceived quality of food. The release and the perception of aroma compounds is affected by their interaction with nonvolatile ingredients of foods, such as proteins, lipids, and polysaccharides. These interactions, whether [...] Read more.
Sensory properties, particularly aroma, play a crucial role in consumers’ acceptance and perceived quality of food. The release and the perception of aroma compounds is affected by their interaction with nonvolatile ingredients of foods, such as proteins, lipids, and polysaccharides. These interactions, whether reversible or irreversible, significantly influence aroma retention and release. Starch, a common food constituent, has been found to interact with aroma compounds, impacting flavor dynamics through processes like complexation and encapsulation. In this study, reversed-flow gas chromatography (RF-GC) is employed for the estimation of the release behavior of polar (diacetyl) and non-polar (dl-limonene) aroma compounds from starches of various origins (corn, wheat, rice, and potato). The results show that aroma compound release is influenced by the matrix composition, environmental conditions, and physicochemical properties of both starch and aroma compounds. The temperature-dependent mass transfer coefficients and activation energies reveal the strong influence of polar and non-polar characteristics on aroma compound behavior. Additionally, significant variations in retention and release are observed based on the starch type and the type of bonds involved in aroma compound interactions, underscoring the critical role of thermodynamic and kinetic parameters in flavor dynamics. Full article
Show Figures

Figure 1

18 pages, 6871 KiB  
Article
Impact of Ultrasonic-Assisted Preparation of Water Caltrop Starch–Lipid Complex: Structural and Physicochemical Properties
by Kuan-Wei Huang and Lih-Shiuh Lai
Foods 2025, 14(2), 240; https://doi.org/10.3390/foods14020240 - 14 Jan 2025
Cited by 3 | Viewed by 1180
Abstract
This study investigates the effect of ultrasonic-assisted preparation on the structural and physicochemical properties of water caltrop starch-palmitic acid complexes as a function of ultrasound intensity and treatment time. All samples exhibited the characteristic birefringence of starch-lipid complexes under the polarized microscope, and [...] Read more.
This study investigates the effect of ultrasonic-assisted preparation on the structural and physicochemical properties of water caltrop starch-palmitic acid complexes as a function of ultrasound intensity and treatment time. All samples exhibited the characteristic birefringence of starch-lipid complexes under the polarized microscope, and flake-like and irregular structure under scanning electron microscope (SEM), indicating the formation of complexes through ultrasonic-assisted preparation. X-ray diffraction pattern further confirmed the transition from the original A-type structure for native starch to V-type structure for starch-lipid complexes, and the relative crystallinity of starch-lipid complexes increased as the ultrasound intensity and treatment time increased. Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) analysis indicated a decreasing trend in absorbance ratio at wavenumber of 1022 cm−1/995 cm−1, suggesting that the increase in the complex promoted the self-assembly within the short-range ordered structure, leading to the formation of bonds between the complexes. However, rapid-visco analysis (RVA) demonstrated that the viscosity generally decreased as the ultrasound intensity and treatment time increased, possibly due to the reduction in molecular weight by ultrasound. Differential scanning calorimetric (DSC) analysis revealed that the control starch-lipid complex without ultrasound treatment (US-0-0) exhibited two distinct endothermic peaks above 90 °C, representing Type I (95–105 °C) and Type II (110–120 °C) V-type complexes. However, ultrasound-treated samples showed only one peak around 95–105 °C and increased enthalpy (∆H), which was likely due to the breakdown of amylose and amylopectin, leading to more complex formation with palmitic acid, while the resulting shorter chains in the ultrasound-modified sample favor the formation of Type I complexes. Full article
(This article belongs to the Special Issue Functional Carbohydrate Products: From Structure to Application)
Show Figures

Figure 1

14 pages, 4085 KiB  
Article
Phenotypic and Complete Reference Whole Genome Sequence Analyses of Two Paenibacillus spp. Isolates from a Gray Wolf (Canis lupus) Gastrointestinal Tract
by Jessika L. Bryant, Jennifer McCabe, C. Cristoph Klews, MiCayla Johnson, Ariel N. Atchley, Thomas W. Cousins, Maya Barnard-Davidson, Kristina M. Smith, Mark R. Ackermann, Michael Netherland, Nur A. Hasan, Peter A. Jordan, Evan S. Forsythe, Patrick N. Ball and Bruce S. Seal
Vet. Sci. 2025, 12(1), 51; https://doi.org/10.3390/vetsci12010051 - 13 Jan 2025
Cited by 1 | Viewed by 1489
Abstract
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic [...] Read more.
Inflammatory bowel disease (IBD) is increasing among mammals around the world, and domestic dogs are no exception. There is no approved cure for canine IBD with limited treatment options. Novel probiotic bacteria discovery from free-ranging animals for the treatment of IBD in domestic pets can likely yield promising probiotic candidates. Consequently, the overall aim was to isolate bacteria from free-ranging animals that could potentially be utilized as novel probiotics. Two bacteria identified as unique Paenibacillus spp. strains by small ribosomal RNA (16S) gene sequencing were isolated from the gastrointestinal tract of a North American Gray Wolf (Canis lupus). The bacteria were typed as Gram-variable, and both were catalase/oxidase positive as well as sensitive to commonly used antibiotics. The bacteria digested complex carbohydrates and lipids by standard assays. The isolated bacteria also inhibited the growth of Staphylococcus aureus and Micrococcus luteus. The whole genome sequence (WGS) length of bacterial isolate ClWae17B was 6,939,193 bp, while ClWae19 was 7,032,512 bp, both similar in size to other Paenibacillus spp. The genomes of both bacteria encoded enzymes involved with the metabolism of complex starches and lipids, such as lyases and pectinases, along with encoding antimicrobials such as lanthipeptides, lasso peptides, and cyclic-lactone-autoinducers. No pernicious virulence genes were identified in the WGS of either bacterial isolate. Phylogenetically, the most closely related bacteria based on 16S gene sequences and WGS were P. taichungensis for ClWae17B and P. amylolyticus for ClWae19. WGS analyses and phenotypic assays supported the hypothesis that the isolates described constitute two novel candidate probiotic bacteria for potential use in dogs. Full article
Show Figures

Graphical abstract

11 pages, 1809 KiB  
Article
Impact of Cooking on Starch Digestibility in Foxtail Millets
by Xiaojiao Cheng, Yujue Wang, Simeng Li, Shiqing Huang and Shujun Wang
Foods 2024, 13(24), 3983; https://doi.org/10.3390/foods13243983 - 10 Dec 2024
Viewed by 1127
Abstract
While the digestibility of millet starch has been studied considerably, the effects of cooking on starch digestibility in millet remain insufficiently understood. This study investigated the effects of cooking on in vitro enzymatic starch digestion in eight cooked millet flour cultivars by seeking [...] Read more.
While the digestibility of millet starch has been studied considerably, the effects of cooking on starch digestibility in millet remain insufficiently understood. This study investigated the effects of cooking on in vitro enzymatic starch digestion in eight cooked millet flour cultivars by seeking its correlations with the changes in composition (moisture, total starch, protein, lipids, total dietary fiber, and phenolics), structure, and physicochemical properties. Compared to raw flours, cooked flours had a similar content of total starch and protein, a lower content of moisture, lipids, and total phenolic content, and a higher content of total dietary fiber. Cooking disrupted starch granules and crystalline structures in all eight millets, promoting the formation of starch–lipid complexes and reducing the paste viscosity (except for CS07). The in vitro starch digestion of eight millet flours were lower than that of rice flour. Correlation analysis results revealed that in vitro starch digestibility in cooked millet flours was related to the amounts of starch–lipid complexes and the total dietary fiber content. These findings demonstrated that interactions between starch and other components during cooking are the key determinants for the digestion of starch in cooked foods. Full article
Show Figures

Figure 1

22 pages, 9427 KiB  
Article
Resistant Starch Type 5 Formation by High Amylopectin Starch–Lipid Interaction
by Fernanda G. Castro-Campos, Edgar A. Esquivel-Fajardo, Eduardo Morales-Sánchez, Mario E. Rodríguez-García, Oscar Yael Barron-Garcia, Cristian Felipe Ramirez-Gutierrez, Guadalupe Loarca-Piña and Marcela Gaytán-Martínez
Foods 2024, 13(23), 3888; https://doi.org/10.3390/foods13233888 - 2 Dec 2024
Cited by 3 | Viewed by 2626
Abstract
The formation of resistant starch type 5 (RS5), primarily associated with amylose–lipid complexes, is typically attributed to starches with high-amylose content due to their affinity for lipid interactions. Recently, studies have also investigated the potential of amylopectin-rich starches to form amylopectin–lipid complexes (ALCs), [...] Read more.
The formation of resistant starch type 5 (RS5), primarily associated with amylose–lipid complexes, is typically attributed to starches with high-amylose content due to their affinity for lipid interactions. Recently, studies have also investigated the potential of amylopectin-rich starches to form amylopectin–lipid complexes (ALCs), expanding RS5 sources. This study explores the capacity of waxy corn starch (WS), which is rich in amylopectin, to develop ALCs with oleic acid (10% w/w) under different thermal and mechanical conditions. Specifically, WS was treated at temperatures of 80 °C, 85 °C, and boiling, with stirring times of 0 and 45 min. Results demonstrated significant ALC formation, reaching a peak complexation index (CI) of 59% under boiling conditions with 45 min of stirring. Differential scanning calorimetry (DSC) identified a notable endothermic transition at 110 °C, indicating strong ALC interactions. FTIR spectra further evidenced starch–lipid interactions through bands at 2970 cm−1 and 2888 cm−1. X-ray diffraction (XRD) analysis confirmed the presence of orthorhombic nanocrystals in native WS, with ALC samples exhibiting a V-type diffraction pattern, supporting effective complexation. This study advances knowledge on starch–lipid interactions, suggesting ALCs as a promising RS5 form with potential food industry applications due to its structural resilience and associated health benefits. Full article
Show Figures

Graphical abstract

6 pages, 612 KiB  
Proceeding Paper
Effect of Alkaline Extrusion Temperature on Rheological Properties of Andean Corn Dough
by Natalia Ester Dominguez, María Alejandra Gimenez, Cristina Noemi Segundo, Ileana de los Angeles Gremasqui, Manuel Oscar Lobo and Norma Cristina Samman
Biol. Life Sci. Forum 2024, 37(1), 19; https://doi.org/10.3390/blsf2024037019 - 25 Nov 2024
Viewed by 570
Abstract
The application of alkaline extrusion in whole corn flour not only produces partial gelatinization of starch but also favors interactions between its components and releases natural hydrocolloids, modifying the rheological properties and suitability for application in gluten-free pastas or bakery products. The intensity [...] Read more.
The application of alkaline extrusion in whole corn flour not only produces partial gelatinization of starch but also favors interactions between its components and releases natural hydrocolloids, modifying the rheological properties and suitability for application in gluten-free pastas or bakery products. The intensity of these modifications and therefore their rheological quality depend on the extrusion conditions. This work aimed to study the effect of alkaline extrusion temperature (70, 80 and 90 °C) at 40% feed humidity on the rheological properties of Cuzco corn flour and its dough. The increase in extrusion temperature had a significant effect (p < 0.05) on the degree of gelatinization of the flours (increase from 31.74 to 71.64%), which impacted their viscous properties. The degree of gelatinization, the formation of amylose–lipid–protein complexes and the soluble fiber content modified the rheological properties of the dough, decreasing the elastic modulus with increasing extrusion temperature. The most cohesive and elastic doughs were obtained at a lower temperature (70 °C), which presented greater resistance to kneading. This study will expand the use of whole Andean corn flour in gluten-free dough to obtain pastas and/or bakery products, reducing the use of food additivess. Full article
(This article belongs to the Proceedings of VI International Congress la ValSe-Food)
Show Figures

Figure 1

Back to TopTop