Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,932)

Search Parameters:
Keywords = stakeholder management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1414 KiB  
Review
Systems Thinking for Climate Change and Clean Energy
by Hassan Qudrat-Ullah
Energies 2025, 18(15), 4200; https://doi.org/10.3390/en18154200 - 7 Aug 2025
Abstract
Addressing climate change and advancing clean energy transitions demand holistic approaches that capture complex, interconnected system behaviors. This review focuses on the application of causal loop diagrams (CLDs) as a core systems-thinking methodology to understand and manage dynamic feedback within environmental, social, and [...] Read more.
Addressing climate change and advancing clean energy transitions demand holistic approaches that capture complex, interconnected system behaviors. This review focuses on the application of causal loop diagrams (CLDs) as a core systems-thinking methodology to understand and manage dynamic feedback within environmental, social, and technological domains. CLDs visually map the reinforcing and balancing loops that drive climate risks, clean energy adoption, and sustainable development, offering intuitive insights into system structure and behavior. Through a synthesis of empirical studies and case examples, this paper demonstrates how CLDs help identify leverage points in renewable energy policy, carbon management, and ecosystem resilience. Despite their strengths in simplifying complexity and enhancing stakeholder communication, challenges remain—including data gaps, model validation, and the integration of diverse knowledge systems. The review also examines recent innovations that improve CLD effectiveness, such as hybrid modeling approaches and digital tools that enhance transparency and decision support. By emphasizing CLDs’ unique capacity to reveal feedback mechanisms critical for climate action and energy planning, this study provides actionable recommendations for researchers, policymakers, and practitioners seeking to leverage systems thinking for transformative, sustainable solutions. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

45 pages, 2014 KiB  
Article
Innovative Business Models Towards Sustainable Energy Development: Assessing Benefits, Risks, and Optimal Approaches of Blockchain Exploitation in the Energy Transition
by Aikaterini Papapostolou, Ioanna Andreoulaki, Filippos Anagnostopoulos, Sokratis Divolis, Harris Niavis, Sokratis Vavilis and Vangelis Marinakis
Energies 2025, 18(15), 4191; https://doi.org/10.3390/en18154191 - 7 Aug 2025
Abstract
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy [...] Read more.
The goals of the European Union towards the energy transition imply profound changes in the energy field, so as to promote sustainable energy development while fostering economic growth. To achieve these changes, the incorporation of sustainable technologies supporting decentralisation, energy efficiency, renewable energy production, and demand flexibility is of vital importance. Blockchain has the potential to change energy services towards this direction. To optimally exploit blockchain, innovative business models need to be designed, identifying the opportunities emerging from unmet needs, while also considering potential risks so as to take action to overcome them. In this context, the scope of this paper is to examine the opportunities and the risks that emerge from the adoption of blockchain in four innovative business models, while also identifying mitigation strategies to support and accelerate the energy transition, thus proposing optimal approaches of exploitation of blockchain in energy services. The business models concern Energy Performance Contracting with P4P guarantees, improved self-consumption in energy cooperatives, energy efficiency and flexibility services for natural gas boilers, and smart energy management for EV chargers and HVAC appliances. Firstly, the value proposition of the business models is analysed and results in a comprehensive SWOT analysis. Based on the findings of the analysis and consultations with relevant market actors, in combination with the examination of the relevant literature, risks are identified and evaluated through a qualitative assessment approach. Subsequently, specific mitigation strategies are proposed to address the detected risks. This research demonstrates that blockchain integration into these business models can significantly improve energy efficiency, reduce operational costs, enhance security, and support a more decentralised energy system, providing actionable insights for stakeholders to implement blockchain solutions effectively. Furthermore, according to the results, technological and legal risks are the most significant, followed by political, economic, and social risks, while environmental risks of blockchain integration are not as important. Strategies to address risks relevant to blockchain exploitation include ensuring policy alignment, emphasising economic feasibility, facilitating social inclusion, prioritising security and interoperability, consulting with legal experts, and using consensus algorithms with low energy consumption. The findings offer clear guidance for energy service providers, policymakers, and technology developers, assisting in the design, deployment, and risk mitigation of blockchain-enabled business models to accelerate sustainable energy development. Full article
Show Figures

Figure 1

32 pages, 3396 KiB  
Article
Enhancing Smart and Zero-Carbon Cities Through a Hybrid CNN-LSTM Algorithm for Sustainable AI-Driven Solar Power Forecasting (SAI-SPF)
by Haytham Elmousalami, Felix Kin Peng Hui and Aljawharah A. Alnaser
Buildings 2025, 15(15), 2785; https://doi.org/10.3390/buildings15152785 - 6 Aug 2025
Abstract
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational [...] Read more.
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational data from Benban Solar Park in Egypt and Sakaka Solar Power Plant in Saudi Arabia, two of the world’s largest solar installations, the research highlights the effectiveness of hybrid AI techniques. The hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model outperformed other models, achieving a Mean Absolute Percentage Error (MAPE) of 2.04%, Root Mean Square Error (RMSE) of 184, Mean Absolute Error (MAE) of 252, and R2 of 0.99 for Benban, and an MAPE of 2.00%, RMSE of 190, MAE of 255, and R2 of 0.98 for Sakaka. This model excels at capturing complex spatiotemporal patterns in solar data while maintaining low computational CO2 emissions, supporting sustainable AI practices. The findings demonstrate the potential of hybrid AI models to enhance the accuracy and sustainability of solar power forecasting, thereby contributing to efficient, resilient, and zero-carbon urban environments. This research provides valuable insights for policymakers and stakeholders aiming to advance smart energy infrastructure. Full article
(This article belongs to the Special Issue Intelligent Automation in Construction Management)
Show Figures

Figure 1

26 pages, 516 KiB  
Article
Sustainability Struggle: Challenges and Issues in Managing Sustainability and Environmental Protection in Local Tourism Destinations Practices—An Overview
by Zorica Đurić, Drago Cvijanović, Vita Petek and Jasna Potočnik Topler
Sustainability 2025, 17(15), 7134; https://doi.org/10.3390/su17157134 - 6 Aug 2025
Abstract
This article aims to explore and analyze current issues and features of environmental protection in managing local tourism destinations based on the principles of sustainable development through the relevant literature and thus to provide an insight into major environmental measures and activities that [...] Read more.
This article aims to explore and analyze current issues and features of environmental protection in managing local tourism destinations based on the principles of sustainable development through the relevant literature and thus to provide an insight into major environmental measures and activities that should be implemented in practice, emphasizing the importance of environmental sustainability as a key factor in the development and success of local tourist destinations in today’s business environment. Qualitative methods were used, with the literature review based on content analysis by keywords. This particularly affects the business process efficiency and the participation of destination stakeholders and in many cases leads to a low level of environmentally sustainable destination practices. In addition to this theoretical approach, this study also has direct managerial implications for destination environmental business operations. An attractive and well-preserved environment is the primary factor of tourism and local tourism destination development and its success, as well as an integrated part of the tourism product. This study addresses a critical gap in the existing literature on environmental sustainability at local destinations, where prior work has often overlooked the integration of actionable, practice-oriented frameworks tailored for both researchers and practitioners. While theoretical insights into sustainable practices abound, there remains a scarcity of holistic analyses that bridge scholarly understanding with implementable strategies for on-the-ground application. To fill this void, our research provides a comprehensive overview and systematic analysis of current practices, with targeted emphasis on co-developing scalable frameworks for improving environmentally sustainable practices at local destinations. Full article
Show Figures

Figure 1

24 pages, 759 KiB  
Article
The Mediating Role of the Firm Image in the Relationship Between Integrated Reporting and Firm Value in GCC Countries
by Mohammed Saleem Alatawi, Zaidi Mat Daud and Jalila Johari
J. Risk Financial Manag. 2025, 18(8), 438; https://doi.org/10.3390/jrfm18080438 - 6 Aug 2025
Abstract
In the context of the GCC, the adoption of integrated reporting (IR) remains limited, due in part to weak regulatory enforcement, a lack of awareness of the strategic benefits of IR, and a strong focus on short-term financial results. This limited reporting context [...] Read more.
In the context of the GCC, the adoption of integrated reporting (IR) remains limited, due in part to weak regulatory enforcement, a lack of awareness of the strategic benefits of IR, and a strong focus on short-term financial results. This limited reporting context presents a significant challenge for firms to credibly demonstrate their value to the market and attract potential investors, thus communicating long-term value. Given these limitations, this study considers how IR contributes to firm value, but also examines the mediating role that firm image (FI) plays in this relationship as a reputational construct representing stakeholder perspectives of a firm’s transparency and accountability. The research employs a quantitative methodology, analysing secondary data from corporate governance and integrated reports spanning 2017–2018 to 2022–2023. Findings indicate a positive and robust relationship between integrated reporting and the firm’s value, which was assessed using Tobin’s Q. The findings highlight the significant mediating role of firm image, illustrating how IR practices, via increased transparency, accountability, and sustainability, enhance firm value. This study provides significant insights for researchers, policymakers, and corporate managers, highlighting the strategic relevance of IR in the GCC region. The findings demonstrate that integrated reporting improves transparency, accountability, and sustainability, thereby assisting corporate managers in utilising IR to enhance firm image and facilitate value creation. Policymakers can utilise these insights to develop regulatory frameworks that promote integrated reporting practices, thereby enhancing transparency and sustainable growth within the corporate sector. Full article
(This article belongs to the Special Issue Emerging Trends and Innovations in Corporate Finance and Governance)
Show Figures

Figure 1

493 KiB  
Proceeding Paper
Natural Hazards and Spatial Data Infrastructures (SDIs) for Disaster Risk Reduction
by Michail-Christos Tsoutsos and Vassilios Vescoukis
Eng. Proc. 2025, 87(1), 101; https://doi.org/10.3390/engproc2025087101 - 5 Aug 2025
Abstract
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This [...] Read more.
When there is an absence of disaster prevention measures, natural hazards can lead to disasters. An essential part of disaster risk management is the geospatial modeling of devastating hazards, where data sharing is of paramount importance in the context of early-warning systems. This research points out the usefulness of Spatial Data Infrastructures (SDIs) for disaster risk reduction through a literature review, focusing on the necessity of data unification and disposal. Initially, the principles of SDIs are presented, given the fact that this framework contributes significantly to the fulfilment of specific targets and priorities of the Sendai Framework for Disaster Risk Reduction 2015–2030. Thereafter, the challenges of SDIs are investigated in order to underline the main drawbacks stakeholders in emergency management have to come up against, namely the semantic misalignment that impedes efficient data retrieval, malfunctions in the interoperability of datasets and web services, the non-availability of the data in spite of their existence, and a lack of quality data, while also highlighting the obstacles of real case studies on national NSDIs. Thus, diachronic observations on disasters will not be made, despite these comprising a meaningful dataset in disaster mitigation. Consequently, the harmonization of national SDIs with international schemes, such as the Group on Earth Observations (GEO) and European Union’s space program Copernicus, and the usefulness of Artificial Intelligence (AI) and Machine Learning (ML) for disaster mitigation through the prediction of natural hazards are demonstrated. In this paper, for the purpose of disaster preparedness, real-world implementation barriers that preclude SDIs to be completed or deter their functionality are presented, culminating in the proposed future research directions and topics for the SDIs that need further investigation. SDIs constitute an ongoing collaborative effort intending to offer valuable operational tools for decision-making under the threat of a devastating event. Despite the operational potential of SDIs, the complexity of data standardization and coordination remains a core challenge. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

16 pages, 1207 KiB  
Article
Study of Multi-Stakeholder Mechanism in Inter-Provincial River Basin Eco-Compensation: Case of the Inland Rivers of Eastern China
by Zhijie Cao and Xuelong Chen
Sustainability 2025, 17(15), 7057; https://doi.org/10.3390/su17157057 - 4 Aug 2025
Viewed by 215
Abstract
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research [...] Read more.
Based on a comprehensive review of the current research status of ecological compensation both domestically and internationally, combined with field survey data, this study delves into the issue of multi-stakeholder participation in the ecological compensation mechanisms of the Xin’an River Basin. This research reveals that the joint participation of multiple stakeholders is crucial to achieving the goals of ecological compensation in river basins. The government plays a significant role in macro-guidance, financial support, policy guarantees, supervision, and management. It promotes the comprehensive implementation of ecological environmental protection by formulating relevant laws and regulations, guiding the public to participate in ecological conservation, and supervising and punishing pollution behaviors. The public, serving as the main force, forms strong awareness and behavioral habits of ecological protection through active participation in environmental protection, monitoring, and feedback. As participants, enterprises contribute to industrial transformation and green development by improving resource utilization efficiency, reducing pollution emissions, promoting green industries, and participating in ecological restoration projects. Scientific research institutions, as technology enablers, have effectively enhanced governance efficiency through technological research and innovation, ecosystem value accounting to provide decision-making support, and public education. Social organizations, as facilitators, have injected vitality and innovation into watershed governance by extensively mobilizing social forces and building multi-party collaboration platforms. Communities, as supporters, have transformed ecological value into economic benefits by developing characteristic industries such as eco-agriculture and eco-tourism. Based on the above findings, further recommendations are proposed to mobilize the enthusiasm of upstream communities and encourage their participation in ecological compensation, promote the market-oriented operation of ecological compensation mechanisms, strengthen cross-regional cooperation to establish joint mechanisms, enhance supervision and evaluation, and establish a sound benefit-sharing mechanism. These recommendations provide theoretical support and practical references for ecological compensation worldwide. Full article
Show Figures

Figure 1

19 pages, 338 KiB  
Review
Harnessing Artificial Intelligence and Human Resource Management for Circular Economy and Sustainability: A Conceptual Integration
by Rubee Singh, Amit Joshi, Hiranya Dissanayake, Deshika Nainanayake and Vikas Kumar
Sustainability 2025, 17(15), 7054; https://doi.org/10.3390/su17157054 - 4 Aug 2025
Viewed by 266
Abstract
In response to global sustainability challenges and digital transformation, this conceptual paper explores the intersection of Artificial Intelligence (AI), Human Resource Management (HRM), and Circular Economy (CE). Drawing on Resource-Based View, Stakeholder Theory, Institutional Theory, and the Socio-Technical Systems perspective, we propose an [...] Read more.
In response to global sustainability challenges and digital transformation, this conceptual paper explores the intersection of Artificial Intelligence (AI), Human Resource Management (HRM), and Circular Economy (CE). Drawing on Resource-Based View, Stakeholder Theory, Institutional Theory, and the Socio-Technical Systems perspective, we propose an integrated framework in which AI and HRM function as complementary enablers of sustainable, circular transformation. The framework identifies enablers (e.g., green HRM, digital infrastructure), barriers (e.g., ethical concerns, skill gaps), and contextual mediators. This study contributes to sustainability and digital innovation literature and suggests practical pathways for ethically aligning workforce and AI capabilities in CE adoption. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

22 pages, 337 KiB  
Review
Contract Mechanisms for Value-Based Technology Adoption in Healthcare Systems
by Aydin Teymourifar
Systems 2025, 13(8), 655; https://doi.org/10.3390/systems13080655 - 3 Aug 2025
Viewed by 118
Abstract
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and [...] Read more.
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and waste associated with the adoption of health technology. This narrative review examines the dual impact of healthcare technology and evaluates how contract mechanisms can serve as strategic tools for promoting cost-effective, outcome-oriented integration. Drawing from healthcare management, and supply chain literature, this paper analyzes various payment and contract models, including performance-based, bundled, cost-sharing, and revenue-sharing agreements, through the lens of stakeholder alignment. It explores how these mechanisms influence provider behavior, patient access, and system sustainability. The study contends that well-designed contract mechanisms can align stakeholder incentives, reduce inefficiencies, and support the delivery of high-value care across diverse healthcare settings. We provide concrete examples to illustrate how various contract mechanisms impact the integration of health technologies in practice. Full article
(This article belongs to the Special Issue Operations Management in Healthcare Systems)
25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 223
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

35 pages, 782 KiB  
Systematic Review
A Systematic Literature Review on PHM Strategies for (Hydraulic) Primary Flight Control Actuation Systems
by Leonardo Baldo, Andrea De Martin, Giovanni Jacazio and Massimo Sorli
Actuators 2025, 14(8), 382; https://doi.org/10.3390/act14080382 - 2 Aug 2025
Viewed by 126
Abstract
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and [...] Read more.
Prognostic and Health Management (PHM) strategies are gaining increasingly more traction in almost every field of engineering, offering stakeholders advanced capabilities in system monitoring, anomaly detection, and predictive maintenance. Primary flight control actuators are safety-critical elements within aircraft flight control systems (FCSs), and currently, they are mainly based on Electro-Hydraulic Actuators (EHAs) or Electro-Hydrostatic Actuators (EHSAs). Despite the widespread diffusion of PHM methodologies, the application of these technologies for EHAs is still somewhat limited, and the available information is often restricted to the industrial sector. To fill this gap, this paper provides an in-depth analysis of state-of-the-art EHA PHM strategies for aerospace applications, as well as their limitations and further developments through a Systematic Literature Review (SLR). An objective and clear methodology, combined with the use of attractive and informative graphics, guides the reader towards a thorough investigation of the state of the art, as well as the challenges in the field that limit a wider implementation. It is deemed that the information presented in this review will be useful for new researchers and industry engineers as it provides indications for conducting research in this specific and still not very investigated sector. Full article
Show Figures

Figure 1

25 pages, 1105 KiB  
Review
Review and Decision-Making Tree for Methods to Balance Indoor Environmental Comfort and Energy Conservation During Building Operation
by Shan Lin, Yu Zhang, Xuanjiang Chen, Chengzhi Pan, Xianjun Dong, Xiang Xie and Long Chen
Sustainability 2025, 17(15), 7016; https://doi.org/10.3390/su17157016 - 1 Aug 2025
Viewed by 276
Abstract
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it [...] Read more.
Effective building operation requires a careful balance between energy conservation and indoor environmental comfort. Although numerous methods have been developed to reduce energy consumption during the operational phase, their objectives and applications vary widely. However, the complexity of building energy management makes it challenging to identify the most suitable methods that simultaneously achieve both comfort and efficiency goals. Existing studies often lack a systematic framework that supports integrated decision-making under comfort constraints. This research aims to address this gap by proposing a decision-making tree for selecting energy conservation methods during building operation with an explicit consideration of indoor environmental comfort. A comprehensive literature review is conducted to identify four main energy-consuming components during building operation: the building envelope, HVAC systems, lighting systems, and plug loads and appliances. Three key comfort indicators—thermal comfort, lighting comfort, and air quality comfort—are defined, and energy conservation methods are categorized into three strategic groups: passive strategies, control optimization strategies, and behavioural intervention strategies. Each method is assessed using a defined set of evaluation criteria. Subsequently, a questionnaire survey is administered for the calibration of the decision tree, incorporating stakeholder preferences and expert judgement. The findings contribute to the advancement of understanding regarding the co-optimization of energy conservation and occupant comfort in building operations. Full article
(This article belongs to the Special Issue Novel Technologies and Digital Design in Smart Construction)
Show Figures

Figure 1

12 pages, 277 KiB  
Article
Exploring the Implementation of Gamification as a Treatment Modality for Adults with Depression in Malaysia
by Muhammad Akmal bin Zakaria, Koh Ong Hui, Hema Subramaniam, Maziah Binti Mat Rosly, Jesjeet Singh Gill, Lim Yee En, Yong Zhi Sheng, Julian Wong Joon Ip, Hemavathi Shanmugam, Chow Soon Ken and Benedict Francis
Medicina 2025, 61(8), 1404; https://doi.org/10.3390/medicina61081404 - 1 Aug 2025
Viewed by 188
Abstract
Background and Objectives: Depression is a leading cause of disability globally, with treatment challenges including limited access, stigma, and poor adherence. Gamification, which applies game elements such as points, levels, and storytelling into non-game contexts, offers a promising strategy to enhance engagement [...] Read more.
Background and Objectives: Depression is a leading cause of disability globally, with treatment challenges including limited access, stigma, and poor adherence. Gamification, which applies game elements such as points, levels, and storytelling into non-game contexts, offers a promising strategy to enhance engagement and augment traditional treatments. Our research is the first study designed to explore the implementation of gamification within the Malaysian context. The objective was to explore the feasibility of implementation of gamification as an adjunctive treatment for adults with depression. Materials and Methods: Focus group discussions were held with five mental health professionals and ten patients diagnosed with moderate depression. The qualitative component assessed perceptions of gamified interventions, while quantitative measures evaluated participants’ depressive and anxiety symptomatology. Results: Three key themes were identified: (1) understanding of gamification as a treatment option, (2) factors influencing its acceptance, and (3) characteristics of a practical and feasible intervention. Clinicians saw potential in gamification to boost motivation, support psychoeducation, and encourage self-paced learning, but they expressed concerns about possible addiction, stigma, and the complexity of gameplay for some patients. Patients spoke of gaming as a source of comfort, escapism, and social connection. Acceptance was shaped by engaging storylines, intuitive design, balanced difficulty, therapist guidance, and clear safety measures. Both groups agreed that gamification should be used in conjunction with standard treatments, be culturally sensitive, and be presented as a meaningful therapeutic approach rather than merely as entertainment. Conclusions: Gamification emerges as an acceptable and feasible supplementary approach for managing depression in Malaysia. Its success depends on culturally sensitive design, robust clinical oversight, and seamless integration with existing care pathways. Future studies should investigate long-term outcomes and establish guidelines for the safe and effective implementation of this approach. We recommend targeted investment into culturally adapted gamified tools, including training, policy development, and collaboration with key stakeholders to realistically implement gamification as a mental health intervention in Malaysia. Full article
(This article belongs to the Section Psychiatry)
32 pages, 3202 KiB  
Article
An Integrated Framework for Urban Water Infrastructure Planning and Management: A Case Study for Gauteng Province, South Africa
by Khathutshelo Godfrey Maumela, Tebello Ntsiki Don Mathaba and Mahalieo Kao
Water 2025, 17(15), 2290; https://doi.org/10.3390/w17152290 - 1 Aug 2025
Viewed by 276
Abstract
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the [...] Read more.
Effective water infrastructure planning and management is key to sustainable water supply globally. This research assesses water infrastructure planning and management in Gauteng, South Africa, amid growing challenges from rapid urbanisation, high water demand, climate change, and resource scarcity. These challenges threaten the achievement of Sustainable Development Goals 6 and 11; hence, an integrated approach is required for water sustainability. The study responds to a gap in the literature, which often treats planning and management separately, by adopting an integrated, multi-institutional approach across the water value chain. A mixed-methods triangulation strategy was employed for data collection whereby surveys provided quantitative data, while two sets of structured interviews were conducted: the first round to determine causal relationships among the critical success factors and the second round to validate the proposed framework. The findings reveal a misalignment between infrastructure planning and implementation, contributing to infrastructure backlogs and a short- to medium-term focus. Infrastructure management is further constrained by inadequate system redundancy, leading to ineffective maintenance. External factors such as delayed adoption of 4IR technologies, lack of climate resilient strategies, and fragmented institutional coordination exacerbate these issues. Using Decision-Making Trial and Evaluation Laboratory (DEMATEL) analysis, the study identified Strategic Alignment and a Value-Driven Approach as the most influential critical success factors in water asset management. The research concludes by proposing an integrated water infrastructure and planning framework that supports sustainable water supply. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

26 pages, 1103 KiB  
Article
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 - 1 Aug 2025
Viewed by 242
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice [...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

Back to TopTop