Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,832)

Search Parameters:
Keywords = stabilizing mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3830 KB  
Article
Study on Distribution Law of Vertical Earth Pressure on the Top of High-Fill Box Culvert in Gully Terrain Under Expanded Polystyrene Board Unloading
by Conglin Guo, Zhongju Feng, Siqi Wang, Jikun Wang, Wei Wang and Xiqing Wang
Appl. Sci. 2025, 15(24), 13169; https://doi.org/10.3390/app152413169 (registering DOI) - 15 Dec 2025
Abstract
This study quantifies vertical earth pressure on the roofs of box culverts under high fills in valley terrain using centrifuge model tests with expanded polystyrene (EPS) geofoam for load mitigation. We compare buried-type culverts with valley-terrain high-fill culverts and isolate the effects of [...] Read more.
This study quantifies vertical earth pressure on the roofs of box culverts under high fills in valley terrain using centrifuge model tests with expanded polystyrene (EPS) geofoam for load mitigation. We compare buried-type culverts with valley-terrain high-fill culverts and isolate the effects of the EPS installation height and panel thickness on the roof pressure and the associated concentration factor. The analysis of fill settlement elucidates the terrain-dependent load reduction mechanism and the efficacy of EPS panels. The results show that the roof pressure increases with EPS installation height but decreases and then plateaus once the panel thickness exceeds 75 cm; the load reduction benefit weakens when the installation height exceeds 2 m. Optimal performance is achieved with panels installed at 2 m and with a 75 cm thickness, which lowers applied loads while maintaining structural stability. These findings clarify soil–structure interactions in complex topography and provide practical guidance for deploying EPS in high-fill valley projects. Full article
14 pages, 1174 KB  
Review
eDNA–Amyloid Synergistic Interactions in Bacterial Biofilms: A Hidden Driver of Antimicrobial Resistance
by Weichen Gong, Xuefei Cheng, Julio Villena and Haruki Kitazawa
Int. J. Mol. Sci. 2025, 26(24), 12075; https://doi.org/10.3390/ijms262412075 - 15 Dec 2025
Abstract
Bacterial biofilms are critical contributors to chronic infections and antimicrobial resistance. Among the diverse extracellular matrix components, extracellular DNA (eDNA) and amyloid proteins have recently emerged as pivotal structural and functional molecules. Both individually contribute to biofilm stability and antibiotic tolerance, yet their [...] Read more.
Bacterial biofilms are critical contributors to chronic infections and antimicrobial resistance. Among the diverse extracellular matrix components, extracellular DNA (eDNA) and amyloid proteins have recently emerged as pivotal structural and functional molecules. Both individually contribute to biofilm stability and antibiotic tolerance, yet their cooperative roles remain underappreciated. This review aims to summarize current knowledge on the origins and functions of eDNA and amyloid proteins in biofilms, to highlight their molecular interactions, and to discuss how their synergistic effects promote biofilm-mediated resistance to antimicrobial agents. A comprehensive literature search was conducted using PubMed, Scopus, and Web of Science databases up to September 2025. Keywords included “biofilm”, “extracellular DNA”, “amyloid proteins”, “matrix”, and “antimicrobial resistance”. Relevant original research and review articles were systematically screened and critically analyzed to integrate emerging evidence on eDNA–amyloid interactions in bacterial biofilms. Current studies demonstrate that eDNA originates primarily from autolysis, active secretion, and host-derived DNA, while amyloid proteins are produced by multiple bacterial species, including Escherichia coli (curli), Pseudomonas aeruginosa (Fap), Bacillus subtilis (TasA), and Staphylococcus aureus (phenol-soluble modulins). Both molecules independently strengthen biofilm integrity and provide protective functions against antimicrobial agents. Importantly, recent evidence shows that eDNA can act as a nucleation template for amyloid fibrillation, while amyloid fibers stabilize and protect eDNA from degradation, creating a dense extracellular network. This synergistic eDNA–amyloid assembly enhances biofilm robustness, impedes antibiotic penetration, sequesters antimicrobial peptides, protects persister cells, and facilitates horizontal gene transfer of resistance determinants. The interplay between eDNA and amyloid proteins represents a central but underexplored mechanism driving biofilm-mediated antimicrobial resistance. Understanding this cooperative network not only deepens our mechanistic insights into bacterial pathogenesis but also highlights novel therapeutic targets. Strategies that disrupt eDNA–amyloid interactions may offer promising avenues for combating persistent biofilm-associated infections. Full article
(This article belongs to the Section Molecular Microbiology)
22 pages, 1203 KB  
Article
Design of Small Wind Turbine Blade Based on Optimal Airfoils S4110 and S1012 at Low Reynolds Numbers and Wind Speeds
by Van Hung Bui, Minh Phap Vu, Quang Sang Le, Manh Quang Huy Than, Quoc Doan Pham and Quang Giap Dinh
Sustainability 2025, 17(24), 11243; https://doi.org/10.3390/su172411243 - 15 Dec 2025
Abstract
Wind turbines play an important role for renewable energy generation related to sustainable development. Selection of a suitable blade shape is a key factor in wind turbine design, especially in low wind speed conditions such as urban areas. In addition, two airfoil models [...] Read more.
Wind turbines play an important role for renewable energy generation related to sustainable development. Selection of a suitable blade shape is a key factor in wind turbine design, especially in low wind speed conditions such as urban areas. In addition, two airfoil models of the S-series, S4110 and S1012, are often selected based on their suitable aerodynamic properties with low Reynolds numbers, high applicability, and stable performance. However, there is no research design for wind turbine blades based on S4110 and S1012 under low wind conditions in countries around the world. The angle of attack was adjusted to observe variations in the key aerodynamic parameters while applying appropriate boundary conditions for different regions. The study results show that the overall performance of the optimized S4110 is better than that of the optimized S1012, particularly at larger angles of attack. The performance of the airfoil S4110 shows a strong improvement after optimization, with the aerodynamic performance from 17.35 at 3 m/s to 50.78 at 5 m/s. This paper proposed the airfoil combination usage of S4110 at the blade tip and S1012 at the blade root to form an optimal hybrid airfoil configuration for wind turbine blade, which can both take advantage of high aerodynamic efficiency in low wind conditions and ensure the necessary mechanical strength and stability for the entire wind turbine blade. The performance of the proposed small wind turbine blade model based on the optimal S4110 and S1012 airfoils was analyzed using the Qblade program. Its purpose is to create a new blade model for small wind turbines that moves beyond conventional applications to explore novel and integrated solutions for a sustainable energy future. Full article
(This article belongs to the Special Issue Advance in Renewable Energy and Power Generation Technology)
15 pages, 3599 KB  
Article
Semantic-Aware 3D GAN: CLIP-Guided Disentanglement for Efficient Cross-Category Shape Generation
by Weinan Cai, Zongji Wang, Yuanben Zhang, Zhihong Zeng, Xinming Li and Junyi Liu
Appl. Sci. 2025, 15(24), 13163; https://doi.org/10.3390/app152413163 - 15 Dec 2025
Abstract
Generative Adversarial Networks (GANs) have achieved remarkable success in image generation. Although GAN-based approaches have also advanced three-dimensional (3D) data synthesis, they exhibit stagnation when compared to other state-of-the-art 3D generative models. Current 3D GAN methods suffer from training efficiency, generation diversity, and [...] Read more.
Generative Adversarial Networks (GANs) have achieved remarkable success in image generation. Although GAN-based approaches have also advanced three-dimensional (3D) data synthesis, they exhibit stagnation when compared to other state-of-the-art 3D generative models. Current 3D GAN methods suffer from training efficiency, generation diversity, and generalization in their original architectures. Among those challenges, cross-category training and generation are especially important in causing the degradation of synthesized results. In this paper, we propose a novel 3D generation framework to explore the capability boundaries of 3D GANs. The method features a novel style-based mechanism for controlling shape generation, a corresponding training procedure, and a CLIP-guided joint optimization scheme. This approach effectively mitigates generation diversity issues while maintaining generation quality and training stability. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
20 pages, 633 KB  
Article
Are Low-Income Households in Sri Lanka Adequately Food Secure? An Empirical Analysis with Special Reference to the Rural Sector in Sri Lanka
by N. P. Dammika Padmakanthi, Roshini Jayaweera, Anupama Dias and Dhanushka Thamarapani
Soc. Sci. 2025, 14(12), 717; https://doi.org/10.3390/socsci14120717 - 15 Dec 2025
Abstract
This study estimates the prevalence of food insecurity and coping mechanisms among low-income rural households in Sri Lanka, collecting primary data from 400 households in the Ayagama Divisional Secretariat in Rathnapura District. The results uncover that around 38.1% of the households faced food [...] Read more.
This study estimates the prevalence of food insecurity and coping mechanisms among low-income rural households in Sri Lanka, collecting primary data from 400 households in the Ayagama Divisional Secretariat in Rathnapura District. The results uncover that around 38.1% of the households faced food scarcity within a year prior to the survey date, with 77.9% being uncertain about maintaining a nutritious diet in the next 30 days. Notably, household dietary diversity scores reveal that they are either moderately (62%) or severely (22.3%) lacking essential nutrients, irrespective of the gender of the household head. The leading cause is the unaffordability of protein-rich foods and certain fruits. Coping strategies are primarily short-term and consumption-based, such as purchasing food on credit and reducing meal sizes, which propagate future food insecurity. The findings underscore the need for government interventions that combine short-term safety nets with long-term agricultural productivity improvements, alongside nutrition-sensitive practices and market stabilisation to enhance food availability and affordability. Consequently, targeted social protection programmes for vulnerable groups, combined with livelihood support and climate-resilient agriculture, could reduce reliance on harmful coping mechanisms. Lastly, this study proposes integrating food security goals within broader development frameworks and community initiatives as pivotal for long-term stability and resilience. Full article
19 pages, 1981 KB  
Article
Mechanical Behaviour of Dental Luting Cements: Static, Dynamic, and Finite Element Studies
by Tamás Tarjányi, Csongor Mészáros, Rebeka Anna Kiss, Zsolt Tóth and István Pelsőczi
Dent. J. 2025, 13(12), 601; https://doi.org/10.3390/dj13120601 - 15 Dec 2025
Abstract
Background/Objectives: The long-term clinical success of dental luting cements largely depends on their mechanical performance. This study systematically compared six commonly used definitive dental cements by assessing key mechanical characteristics such as compressive strength and fatigue resistance. Methods: The tested materials included Adhesor [...] Read more.
Background/Objectives: The long-term clinical success of dental luting cements largely depends on their mechanical performance. This study systematically compared six commonly used definitive dental cements by assessing key mechanical characteristics such as compressive strength and fatigue resistance. Methods: The tested materials included Adhesor Zinc Phosphate (AphC), Harvard Zinc Phosphate (HphC), polycarboxylate cement (CaC), glass ionomer cement (GIC), resin-modified glass ionomer cement (RMGIC), and resin cement (ReC). Both static and dynamic compressive load tests were performed using an Instron ElectroPuls E3000 dynamic testing instrument. During static testing, 77 samples were subjected to an increasing load up to 1500 N. Dynamic tests on 78 samples involved cyclic loading over seven phases from 50 N to 1600 N, with 1500 cycles per phase at 10 Hz. Results: Static load results indicated that GIC, CaC, and phosphate cements exhibited similar performance and were significantly weaker compared to RMGIC and ReC. In the dynamic fatigue tests, most ReC and RMGIC samples maintained integrity throughout the entire protocol, demonstrating markedly superior mechanical reliability. Finite element analysis (FEA) further confirmed the experimental observations, revealing more homogenous stress distribution and lower peak stresses in ReC and RMGIC compared with the conventional cements. Conclusions: Overall, the resin-based and resin-modified glass ionomer cements showed the highest compressive strength and fatigue resistance, indicating superior long-term mechanical stability compared to the conventional cements. These findings support the clinical use of resin-based cements as reliable luting agents for definitive fixation in high-load prosthodontic applications. Full article
(This article belongs to the Special Issue Advances in Esthetic Dentistry)
38 pages, 830 KB  
Article
Dynamics of a Wind-Driven Lotka–Volterra Amensalism System with Non-Selective Harvesting: Theoretical Analysis and Ecological Implications
by Qin Yue, Taimiao Bi and Fengde Chen
Eng 2025, 6(12), 367; https://doi.org/10.3390/eng6120367 - 15 Dec 2025
Abstract
This study investigates the dynamic behavior of a Lotka–Volterra amensalism system subject to non-selective harvesting, regulated by wind speed. We develop a coupled windharvesting population model that captures the dual regulatory mechanism of wind as an environmental factor on the marine ecosystem: it [...] Read more.
This study investigates the dynamic behavior of a Lotka–Volterra amensalism system subject to non-selective harvesting, regulated by wind speed. We develop a coupled windharvesting population model that captures the dual regulatory mechanism of wind as an environmental factor on the marine ecosystem: it weakens the amensalistic interaction between species by enhancing the dilution of inhibitory substances while simultaneously suppressing human harvesting intensity by impeding fishing operations. Using stability theory and the Lyapunov function method, we systematically analyze the existence and stability of equilibrium points and explore the ecological state transitions driven by varying wind speed. The results show that the system admits four possible equilibrium states. Among them, the positive equilibrium, whenever it exists, is globally asymptotically stable. As wind speed increases, the system undergoes sequential ecological regime shifts: from extinction of both species to dominance by a single species and finally to stable coexistence of both species. Numerical simulations confirm the theoretical findings and reveal the intrinsic mechanism by which wind promotes biodiversity: by reducing harvesting pressure and mitigating the amensalistic effect. The concept of critical wind speed proposed in this work offers a quantitative basis for managing wind conditions in marine protected areas and designing adaptive harvesting strategies, holding significant implications for marine conservation and sustainable fishery development. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

35 pages, 1545 KB  
Review
Local Scour Around Tidal Stream Turbine Foundations: A State-of-the-Art Review and Perspective
by Ruihuan Liu, Ying Li, Qiuyang Yu and Dongzi Pan
J. Mar. Sci. Eng. 2025, 13(12), 2376; https://doi.org/10.3390/jmse13122376 - 15 Dec 2025
Abstract
Local scour around support structures has remained a critical barrier to tidal stream turbine deployment in energetic marine channels since loss of embedment and bearing capacity has undermined stability and delayed commercialization. This review identifies key mechanisms, practical implications, and forward-looking strategies related [...] Read more.
Local scour around support structures has remained a critical barrier to tidal stream turbine deployment in energetic marine channels since loss of embedment and bearing capacity has undermined stability and delayed commercialization. This review identifies key mechanisms, practical implications, and forward-looking strategies related to local scour. It highlights that rotor operation, small tip clearance, and helical wakes can significantly intensify near-bed shear stress and erosion relative to monopile foundations without turbine rotation. Scour behavior is compared across monopile, tripod, jacket, and gravity-based foundations under steady flow, reversing tides, and combined wave and current conditions, revealing their influence on depth and morphology. The review further assesses coupled interactions among waves, oscillatory currents, turbine-induced flow, and seabed response, including sediment transport, transient pore pressure, and liquefaction risk. Advances in prediction methods spanning laboratory experiments, high-fidelity simulations, semi-empirical models, and data-driven techniques are synthesized, and mitigation strategies are evaluated across passive, active, and eco-integrated approaches. Remaining challenges and specific research needs are outlined, including array-scale effects, monitoring standards, and integration of design frameworks. The review concludes with future directions to support safe, efficient, and sustainable turbine deployment. Full article
(This article belongs to the Special Issue Marine Renewable Energy and Environment Evaluation)
29 pages, 4753 KB  
Article
Hyperspectral Image Classification with Multi-Path 3D-CNN and Coordinated Hierarchical Attention
by Wenyi Hu, Wei Shi, Chunjie Lan, Yuxia Li and Lei He
Remote Sens. 2025, 17(24), 4035; https://doi.org/10.3390/rs17244035 - 15 Dec 2025
Abstract
Convolutional Neural Networks (CNNs) have been extensively applied for the extraction of deep features in hyperspectral imagery tasks. However, traditional 3D-CNNs are limited by their fixed-size receptive fields and inherent locality. This restricts their ability to capture multi-scale objects and model long-range dependencies, [...] Read more.
Convolutional Neural Networks (CNNs) have been extensively applied for the extraction of deep features in hyperspectral imagery tasks. However, traditional 3D-CNNs are limited by their fixed-size receptive fields and inherent locality. This restricts their ability to capture multi-scale objects and model long-range dependencies, ultimately hindering the representation of large-area land-cover structures. To overcome these drawbacks, we present a new framework designed to integrate multi-scale feature fusion and a hierarchical attention mechanism for hyperspectral image classification. Channel-wise Squeeze-and-Excitation (SE) and Convolutional Block Attention Module (CBAM) spatial attention are combined to enhance feature representation from both spectral bands and spatial locations, allowing the network to emphasize critical wavelengths and salient spatial structures. Finally, by integrating the self-attention inherent in the Transformer architecture with a Cross-Attention Fusion (CAF) mechanism, a local-global feature fusion module is developed. This module effectively captures extended-span interdependencies present in hyperspectral remote sensing images, and this process facilitates the effective integration of both localized and holistic attributes. On the Salinas Valley dataset, the proposed method delivers an Overall Accuracy (OA) of 0.9929 and an Average Accuracy (AA) of 0.9949, attaining perfect recognition accuracy for certain classes. The proposed model demonstrates commendable class balance and classification stability. Across multiple publicly available hyperspectral remote sensing image datasets, it systematically produces classification outcomes that significantly outperform those of established benchmark methods, exhibiting distinct advantages in feature representation, structural modeling, and the discrimination of complex ground objects. Full article
37 pages, 2833 KB  
Article
Sustainable Land-Use Policy: Land Price Circuit Breaker
by Jianhua Wang
Sustainability 2025, 17(24), 11232; https://doi.org/10.3390/su172411232 - 15 Dec 2025
Abstract
Rising residential land prices push up housing prices and worsen credit misallocation. These patterns emerge amid cyclical real estate fluctuations and heavy land-based public finance. Such pressures undermine macroeconomic stability and sustainable land-use. The land price circuit breaker is widely applied with a [...] Read more.
Rising residential land prices push up housing prices and worsen credit misallocation. These patterns emerge amid cyclical real estate fluctuations and heavy land-based public finance. Such pressures undermine macroeconomic stability and sustainable land-use. The land price circuit breaker is widely applied with a price cap and state dependence, yet its trigger mechanism and interaction with inflation targeting remain underexplored. This study addresses three core questions. First, how does the circuit breaker’s discrete trigger and rule-switching logic differ from traditional static price ceilings? Second, can the mechanism, via the collateral channel, restrain excessive land price hikes, improve credit allocation, and, thereby, stabilize land price dynamics and long-run macroeconomic performance? Third, how does the circuit breaker interact with inflation targeting, and through which endogenous channels does a strict target dampen housing prices and raise activation probability? This study develops a multi-sector DSGE model with an embedded land price circuit breaker. The price cap is modeled as an occasionally binding constraint. A dynamic price band and trigger indicator capture the policy’s switch between slack and binding states. The framework incorporates interactions among local governments, the central bank, developers, and households. It also links firms and the secondary housing market. Under different inflation-targeting rules, this study uses impulse responses, an event study, and welfare analysis to assess trigger conditions and macroeconomic effects. The findings are threefold. First, a strict inflation target increases the probability of a circuit breaker being triggered. It channels housing-demand shocks toward land prices and creates a “nominal anchor–relative price constraint” linkage. Second, once activated, the circuit breaker narrows the gap between land price and house-price growth. It weakens the procyclicality of collateral values. It also restrains credit expansion by impatient households. These effects redirect credit toward firms, improve corporate financing, reduce the decline in investment, and accelerate output recovery. Third, the circuit breaker limits new land supply and shifts demand toward the secondary housing market. This generates a supply-side effect that releases existing stock and stabilizes prices, thereby weakening the amplification mechanism of housing cycles. This study identifies the endogenous trigger logic and cross-market transmission of the land price circuit breaker under a strict inflation target. It shows that the mechanism is not merely a price-management tool in the land market but a systemic policy variable that links the real estate, finance, and fiscal sectors. By dampening real estate procyclicality, improving credit allocation, and stabilizing macroeconomic fluctuations, the mechanism offers new insights for sustainable land-use policy and macroeconomic stabilization. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
24 pages, 2759 KB  
Review
Harnessing High-Valent Metals for Catalytic Oxidation: Next-Gen Strategies in Water Remediation and Circular Chemistry
by Muhammad Qasim, Sidra Manzoor, Muhammad Ikram Nabeel, Sabir Hussain, Raja Waqas, Collin G. Joseph and Jonathan Suazo-Hernández
Catalysts 2025, 15(12), 1168; https://doi.org/10.3390/catal15121168 - 15 Dec 2025
Abstract
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review [...] Read more.
High-valent metal species (iron, manganese, cobalt, copper, and ruthenium) based advanced oxidation processes (AOPs) have emerged as sustainable technologies for water remediation. These processes offer high selectivity, electron transfer efficiency, and compatibility with circular chemistry principles compared to conventional systems. This comprehensive review discusses recent advances in the synthesis, stabilization, and catalytic applications of high-valent metals in aqueous environments. This study highlights their dual functionality, not only as conventional oxidants but also as mechanistic mediators within redox cycles that underpin next-generation AOPs. In this review, the formation mechanisms of these species in various oxidant systems are critically evaluated, highlighting the significance of ligand design, supramolecular confinement, and single-atom engineering in enhancing their stability. The integration of high-valent metal-based AOPs into photocatalysis, sonocatalysis, and electrochemical regeneration is explored through a newly proposed classification framework, highlighting their potential in the development of energy efficient hybrid systems. In addition, this work addresses the critical yet underexplored area of environmental fate, elucidating the post-oxidation transformation pathways of high-valent species, with particular attention to their implications for metal recovery and nutrient valorization. This review highlights the potential of high-valent metal-based AOPs as a promising approach for zero wastewater treatment within circular economies. Future frontiers, including bioinspired catalyst design, machine learning-guided optimization, and closed loop reactor engineering, will bridge the gap between laboratory research and real-world applications. Full article
(This article belongs to the Topic Wastewater Treatment Based on AOPs, ARPs, and AORPs)
Show Figures

Graphical abstract

25 pages, 1307 KB  
Article
Influence of Manganese–Zinc Ferrite and Ageing on EMI Absorption Shielding Performance and Properties of Rubber Composites
by Ján Kruželák, Michaela Džuganová, Lucia Balcerčíková and Rastislav Dosoudil
J. Compos. Sci. 2025, 9(12), 700; https://doi.org/10.3390/jcs9120700 - 15 Dec 2025
Abstract
Magnetic soft manganese–zinc ferrite in a concentration scale ranging from 100 to 500 phr was incorporated into acrylonitrile-butadiene rubber. The work was focused on the investigation of manganese–zinc ferrite content on electromagnetic interference shielding effectiveness and mechanical properties of composites. The rubber-based products [...] Read more.
Magnetic soft manganese–zinc ferrite in a concentration scale ranging from 100 to 500 phr was incorporated into acrylonitrile-butadiene rubber. The work was focused on the investigation of manganese–zinc ferrite content on electromagnetic interference shielding effectiveness and mechanical properties of composites. The rubber-based products used in industrial practice should not only provide good utility and functional properties but should also exhibit good stability towards degradation factors, like oxygen and ozone. Therefore, the samples were exposed to the thermo-oxidative and ozone ageing conditions, and the influence of both factors on the composites’ properties was evaluated. The results demonstrated that the incorporation of ferrite into the rubber matrix resulted in the fabrication of composites with absorption-shielding performance. It was demonstrated that the higher the ferrite content, the lower the absorption-shielding ability. Electrical and thermal conductivity showed an increasing trend with increasing content of ferrite. On the other hand, the study of mechanical properties implied that ferrite acts as a non-reinforcing filler, leading to a decrease in tensile characteristics. Thermo-oxidative ageing tests revealed that ferrite, mainly in high amounts, could accelerate the degradation processes in composites. Though the absorption-shielding performance of composites after ageing corresponded to that of their equivalents before ageing, it can also be concluded that the higher the amount of ferrite in the rubber matrix, the lower the composites’ stability against ozone ageing. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
42 pages, 846 KB  
Review
Photoresponsive TiO2/Graphene Hybrid Electrodes for Dual-Function Supercapacitors with Integrated Environmental Sensing Capabilities
by María C. Cotto, José Ducongé, Francisco Díaz, Iro García, Carlos Neira, Carmen Morant and Francisco Márquez
Batteries 2025, 11(12), 460; https://doi.org/10.3390/batteries11120460 - 15 Dec 2025
Abstract
This review critically examines photoresponsive supercapacitors based on TiO2/graphene hybrids, with a particular focus on their emerging dual role as energy-storage devices and environmental sensors. We first provide a concise overview of the electronic structure of TiO2 and the key [...] Read more.
This review critically examines photoresponsive supercapacitors based on TiO2/graphene hybrids, with a particular focus on their emerging dual role as energy-storage devices and environmental sensors. We first provide a concise overview of the electronic structure of TiO2 and the key attributes of graphene and related nanocarbons that enable efficient charge separation, transport, and interfacial engineering. We then summarize and compare reported device architectures and electrode designs, highlighting how morphology, graphene integration strategies, and illumination conditions govern specific capacitance, cycling stability, rate capability, and light-induced enhancement in performance. Particular attention is given to the underlying mechanisms of photo-induced capacitance enhancement—including photocarrier generation, interfacial polarization, and photodoping—and to how these processes can be exploited to embed sensing functionality in working supercapacitors. We review representative studies in which TiO2/graphene systems operate as capacitive sensors for humidity, gases, and volatile organic compounds, emphasizing quantitative figures of merit such as sensitivity, response/recovery times, and stability under repeated cycling. Finally, we outline current challenges in materials integration, device reliability, and benchmarking, and propose future research directions toward scalable, multifunctional TiO2/graphene platforms for self-powered and environmentally aware electronics. This work is intended as a state-of-the-art summary and critical guide for researchers developing next-generation photoresponsive supercapacitors with integrated sensing capability. Full article
12 pages, 1388 KB  
Article
Inactivated Enterovirus 71 Particle Aggregation Stability: Dynamic Light Scattering Analysis and Stabilizer Identification
by Anna Yang, Dongsheng Yang, Deqin Pang, Jie Yang, Wenhui Wang, Yaxin Du, Xin Wan, Shengli Meng, Jing Guo and Shuo Shen
Vaccines 2025, 13(12), 1247; https://doi.org/10.3390/vaccines13121247 - 15 Dec 2025
Abstract
Background: Inactivated enterovirus 71 (EV71) vaccines play a vital role in preventing severe cases of hand, foot, and mouth disease, with their quality and stability determined by the degree of viral particle aggregation. Objective: This study aimed to use dynamic light scattering (DLS) [...] Read more.
Background: Inactivated enterovirus 71 (EV71) vaccines play a vital role in preventing severe cases of hand, foot, and mouth disease, with their quality and stability determined by the degree of viral particle aggregation. Objective: This study aimed to use dynamic light scattering (DLS) for monitoring EV71 particle size, comprehensively evaluate the effects of environmental stresses on viral aggregation, and identify suitable stabilizing agents. Methods: The DLS technique was validated. Using this method, the effects of pH, ionic strength, freeze–thaw cycles, temperature, and mechanical stresses on viral particle size were assessed. Additionally, the ability of different buffer salts and stabilizers to inhibit stress-induced aggregation was systematically evaluated. Results: The DLS method exhibited robust performance. EV71 particles were stable at pH 7.0–7.5. Exposure to 47 °C and magnetic stirring promoted viral aggregation. Phosphate buffer and citrate buffer exhibited the highest inhibitory effects on heat-induced aggregation and stirring-induced aggregation, respectively. M199 and Tween 80 efficiently mitigated heat-induced particle aggregation and shear stress-induced particle aggregation, respectively. Conclusions: This study demonstrated the performance of DLS in viral aggregation monitoring. Additionally, this study revealed tailored stabilization strategies, providing key insights for vaccine formulation and quality control. Full article
(This article belongs to the Special Issue Nanoparticle-Based Delivery Systems for Vaccines)
Show Figures

Graphical abstract

22 pages, 507 KB  
Review
The Role of Bioactive Glasses in Caries Prevention and Enamel Remineralization
by Rosana Farjaminejad, Samira Farjaminejad, Franklin Garcia-Godoy and Mahsa Jalali
Appl. Sci. 2025, 15(24), 13157; https://doi.org/10.3390/app152413157 - 15 Dec 2025
Abstract
Bioactive glasses (BGs) are promising materials for enamel remineralization and caries management due to their ion-releasing ability and capacity to promote apatite formation. However, their clinical translation remains limited. Conventional BGs, such as 45S5, exhibit excellent bioactivity but are mechanically weak, prone to [...] Read more.
Bioactive glasses (BGs) are promising materials for enamel remineralization and caries management due to their ion-releasing ability and capacity to promote apatite formation. However, their clinical translation remains limited. Conventional BGs, such as 45S5, exhibit excellent bioactivity but are mechanically weak, prone to rapid ion burst release, and lack long-term stability. Recent advances—including secondary oxide incorporation (e.g., B2O3, ZnO), polymer–glass hybrids, and nanostructured systems like mesoporous BGs and RegeSi have improved reactivity, mechanical performance, and remineralization depth, though their durability under oral conditions is not yet established. BGs also display antibacterial activity by elevating local pH and releasing ions that inhibit cariogenic bacteria, but their broader ecological impact on the oral microbiome remains poorly understood. Emerging approaches such as halogen-modified BGs, particularly fluoride- and chloride-doped formulations, show dual benefits for remineralization and antimicrobial action, though supporting evidence is largely confined to in vitro studies. The absence of standardized protocols for assessing remineralization, ion release, and biofilm interaction further complicates cross-study comparisons and slows clinical adoption. Future progress will require interdisciplinary collaboration, standardized evaluation methods, and rigorous clinical validation to ensure that next-generation BGs can be safely and effectively integrated into dental practice. Full article
Show Figures

Figure 1

Back to TopTop