Design of Small Wind Turbine Blade Based on Optimal Airfoils S4110 and S1012 at Low Reynolds Numbers and Wind Speeds
Abstract
1. Introduction
2. Materials and Methods
2.1. Spalart–Allmaras Model
2.2. S4110 and S1012 Airfoil Model
2.3. Flow Region and Grid Generation
2.4. Analysis Methods on Qblade Program
3. Results
3.1. S4110 Airfoil
3.2. S1012 Airfoil
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature and Abbreviation List
| AoA | Angle of Attack |
| CFD | Computational Fluid Dynamics |
| SA | Spalart–Allmaras |
| SWT | Small wind turbines |
| CL | Coefficient lift |
| CD | Coefficient drag |
| Cm | Torque coefficient |
| NSE | Navier–Stokes |
| RE | Reynolds |
| RANS | Reynolds-averaged Navier–Stokes |
| TSR | Tip speed ratios |
References
- Paraschiv, L.S.; Paraschiv, S. Contribution of renewable energy (hydro, wind, solar and biomass) to decarbonization and transformation of the electricity generation sector for sustainable development. Energy Rep. 2023, 9, 535–544. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.; Liu, M.; Chen, G. The benefits and burdens of wind power systems in reaching China’s renewable energy goals: Implications from resource and environment assessment. J. Clean. Prod. 2024, 481, 144134. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Katinić, M.; Santa, R.; Marić, D. Wind Turbine Technology Trends. Appl. Sci. 2022, 12, 8653. [Google Scholar] [CrossRef]
- Sun, L.; Yin, J.; Bilal, A.R. Green financing and wind power energy generation: Empirical insights from China. Renew. Energy 2023, 206, 820–827. [Google Scholar] [CrossRef]
- GWEC. Global Wind Report 2024. 2024. Available online: https://www.gwec.net/reports?t=87193577191 (accessed on 2 August 2024).
- Wang, H.; Xiong, B.; Zhang, Z.; Zhang, H.; Azam, A. Small wind turbines and their potential for internet of things applications. iScience 2023, 26, 107674. [Google Scholar] [CrossRef]
- Davari, H.S.; Davari, M.S.; Kouravand, S.; Kurdkandi, M.K. Optimizing the Aerodynamic Efficiency of Different Airfoils by Altering Their Geometry at Low Reynolds Numbers. Arab. J. Sci. Eng. 2024, 49, 15253–15288. [Google Scholar] [CrossRef]
- Abdelghany, E.S.; Farghaly, M.B. Study the effect of wind speed on the dynamic stall behavior of horizontal axis wind turbine performance characteristics during yaw misalignment using analytical approach. Int. J. Renew. Energy Res. 2023, 13, 944–955. [Google Scholar] [CrossRef]
- Akbari, V.; Naghashzadegan, M.; Kouhikamali, R.; Yaïci, W. Comparative Study of the Blade Number and Airfoil Profile Impacts on the Twist/Chord Distribution of a Small Wind Turbine Blade. Int. J. Energy Res. 2023, 2023, 8164273. [Google Scholar] [CrossRef]
- Anitha, D.; Shamili, G.K.; Kumar, P.R.; Vihar, R.S. Air foil Shape Optimization Using Cfd and Parametrization Methods. Mater. Today Proc. 2018, 5, 5364–5373. [Google Scholar] [CrossRef]
- Akbari, V.; Naghashzadegan, M.; Kouhikamali, R.; Afsharpanah, F.; Yaïci, W. Multi-Objective Optimization and Optimal Airfoil Blade Selection for a Small Horizontal-Axis Wind Turbine (HAWT) for Application in Regions with Various Wind Potential. Machines 2022, 10, 687. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, F.; Ji, T.; Zhu, Z.; Zheng, Y. Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization. Comput. Methods Appl. Mech. Eng. 2021, 373, 113485. [Google Scholar] [CrossRef]
- Matyushenko, A.A.; Kotov, E.V.; Garbaruk, A.V. Calculations of flow around airfoils using two-dimensional RANS: An analysis of the reduction in accuracy. St. Petersburg Polytech. Univ. J. Phys. Math. 2017, 3, 15–21. [Google Scholar] [CrossRef]
- Kaya, M.N.; Kok, A.R.; Kurt, H. Comparison of aerodynamic performances of various airfoils from different airfoil families using CFD. Wind Struct. 2021, 32, 239–248. [Google Scholar] [CrossRef]
- Thin, D.V.; Duc, N.H.; Sang, L.Q. Aerodynamic analysis of naca 6409 airfoil in wind turbine by using panel method. TNU J. Sci. Technol. 2022, 227, 227–235. Available online: https://vjol.info.vn/index.php/tnu/article/view/69737 (accessed on 10 August 2024).
- Septiyana, A.; Hidayat, K.; Rizaldi, A.; Wijaya, Y.G. Comparative Study Of Wing Lift Distribution Analysis Using Numerical Method. Indones. J. Aerosp. 2020, 18, 129–139. [Google Scholar] [CrossRef]
- Flores, G.A.M.; Hallak, P.H.; Araújo, A.M.S.; Fronczak, J.; Cury, A.A. Aerodynamic and aeroelastic analysis of the NACA0012 airfoil using CFD. In Proceedings of the XLIII Ibero-Latin-American Congress on Computational Methods in Engineering, ABMEC, Foz do Iguacu, Brazil, 21–25 November 2022; Available online: https://publicacoes.softaliza.com.br/cilamce2022/article/view/5284/4351 (accessed on 10 August 2024).
- Xiao, S.; Chen, Z. Investigation of Flow over the Airfoil NACA 0010-35 with Various Angle of Attack. MATEC Web Conf. 2018, 179, 03020. [Google Scholar] [CrossRef]
- Veer, R.; Shinde, K.; Gaikwad, V.; Sonawane, P.; Sonawane, Y. Study and Analyse Airfoil Section using CFD. Int. J. Eng. Res. Technol. 2017, 6, 47–51. [Google Scholar] [CrossRef]
- Sanei, M.; Razaghi, R. Numerical investigation of three turbulence simulation models for S809 wind turbine airfoil. Proc. Inst. Mech. Eng. A J. Power Energy 2018, 232, 1037–1048. [Google Scholar] [CrossRef]
- Luong, N.D. A critical review on potential and current status of wind energy in Vietnam. Renew. Sustain. Energy Rev. 2015, 43, 440–448. [Google Scholar] [CrossRef]
- Giap, L.N.; Khanh, N.B.; Trung, B.T.; An, T.N.T.; Vinh, T.T.; Tu, L.T. A Study of the Development Strategy of the Wind Power Sector in Vietnam. Eng. Technol. Appl. Sci. Res. 2024, 14, 15351–15355. [Google Scholar] [CrossRef]
- Thin, D.V.; Duc, N.H.; Sang, L.Q. Analysis of Aerodynamic Parameters of the S1210 Wind Turbine Airfoil under the Condition of Low Reynolds Number. Univ. Danang-J. Sci. Technol. 2022, 20, 77–81. Available online: https://jst-ud.vn/jst-ud/article/view/7754 (accessed on 15 August 2024).
- Long, P.T.; Dao, N.V. Research on Designing Small Wind Turbine Blades Operating in Low Wind Speed Conditions. Univ. Danang-J. Sci. Technol. 2018, 9, 41–45. Available online: https://jst-ud.vn/jst-ud/article/view/1304 (accessed on 15 August 2024).
- Nguyen, N.V.; Hoang, V.M.; Nguyen, N.L. Research on improving aerodynamic performance of an UAV airfoil using numerical simulation method. J. Sci. Technol. 2016, 35, 35–38. Available online: https://www.haui.edu.vn/media/28/ufpdf28494.pdf (accessed on 15 August 2024).
- Sang, L.Q.; Phengpom, T.; Thin, D.V.; Duc, N.H.; Hang, L.T.T.; Huyen, C.T.T.; Huong, N.T.T.; Tran, Q.T. A Method to Design an Efficient Airfoil for Small Wind Turbines in Low Wind Speed Conditions Using XFLR5 and CFD Simulations. Energies 2024, 17, 4113. [Google Scholar] [CrossRef]
- Spalart, P.R.; Allmaras, S.R. One-equation turbulence model for aerodynamic flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992. [Google Scholar] [CrossRef]
- Liu, X.; Gao, W.; Zuo, Y.; Sun, D.; Zhang, W.; Zhang, Z.; Liu, S.; Dong, J.; Wang, S.; Xu, H.; et al. Simulation of Control Process of Fluid Boundary Layer on Deposition of Travertine Particles in Huanglong Landscape Water Based on Computational Fluid Dynamics Software (CFD). Water 2025, 17, 638. [Google Scholar] [CrossRef]
- Surve, M.; Deshmukh, P.D.; Purohit, H. Design and Analysis of New Airfoil and Blade for Micro-Capacity Horizontal Axis Wind Turbine Using QBlade Tool. In Proceedings of the 5th International Conference on Advances in Science and Technology (ICAST), Mumbai, India, 2–3 December 2022; pp. 531–536. [Google Scholar] [CrossRef]
- Lubosny, Z. Wind Turbine Operation in Electric Power Systems; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Umar, D.A.; Yaw, C.T.; Koh, S.P.; Tiong, S.K.; Alkahtani, A.A.; Yusaf, T. Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas. Energies 2022, 15, 3033. [Google Scholar] [CrossRef]
- Ronit, K.S.; Ahmed, M.R. Blade design and performance testing of a small wind turbine rotor for low wind speed applications. Renew. Energy 2013, 50, 812–819. [Google Scholar] [CrossRef]
- Ahmed Mohamed, E.A.E.; Abdellatif, O.E.; Osman, A.M. Experimental and numerical investigation into effect of different blade configurations on performance of small-scale wind turbines. Energy Rep. 2021, 7, 138–143. [Google Scholar] [CrossRef]















| Specifications | S4110 | S1012 |
|---|---|---|
| The straight line that connects the first and last points, Chord () | 1 m | 1 m |
| Max thickness, T | 0.084 m at 26.6% Chord | 0.12 m at 37.3% Chord |
| Max camber, M | 0.031 m at 45.4% Chord | 0 m at 0% Chord |
| Wind Speed (m/s) | 3 m/s | 4 m/s | 5 m/s | ||||||
|---|---|---|---|---|---|---|---|---|---|
| AoA | 0° | 6° | 12° | 0° | 6° | 12° | 0° | 6° | 12° |
| Optimized S4110 (CL) | 0.495 | 1.108 | 1.564 | 0.500 | 1.222 | 1.606 | 0.503 | 1.123 | 1.606 |
| Optimized S1012 (CL) | 0.067 | 0.715 | 1.208 | 0.073 | 0.727 | 1.241 | 0.075 | 0.733 | 1.263 |
| Optimized S4110 (CD) | 0.016 | 0.023 | 0.044 | 0.015 | 0.020 | 0.037 | 0.015 | 0.022 | 0.039 |
| Optimized S1012 (CD) | 0.015 | 0.020 | 0.042 | 0.014 | 0.019 | 0.039 | 0.014 | 0.018 | 0.036 |
| Optimized S4110 (CL/CD) | 29.64 | 46.79 | 35.80 | 32.66 | 54.02 | 43.27 | 32.66 | 50.78 | 40.55 |
| Optimized S1012 (CL/CD) | 4.29 | 35.17 | 28.72 | 4.913 | 37.50 | 32.06 | 5.292 | 39.26 | 34.66 |
| Position of Proposed Hybrid Airfoil | Airfoil | Note |
|---|---|---|
| Cylinder (yellow) | Location: The root of the blade, close to the axis of rotation. Characteristics: cylindrical shape, without a clear aerodynamic profile. Role: Increases durability and load-bearing capacity at the blade root area. Transmits torque from the blade to the axis of rotation, ensuring a solid mechanical connection between the blade and the turbine shaft system. Reduces the risk of failure due to concentrated stress. | |
| Root (red) | S1012 | Large thickness, anti-stall, ensure mechanical strength |
| Transition (green) | Location: Located between the Cylinder and Blade Airfoil regions. Characteristics: Transition from cylindrical shape to aerodynamic shape. There is a gradual change in the blade shape. Role: Provides a smooth transition between two regions with different functions. Ensures better aerodynamic performance by minimizing airflow turbulence. Maintains the continuity of the blade structure, limiting mechanical weaknesses. | |
| Tip (blue) | S4110 | The design tapers towards the wingtips. Increase CL/CD at low wind speed, and energy exploitation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, V.H.; Vu, M.P.; Le, Q.S.; Than, M.Q.H.; Pham, Q.D.; Dinh, Q.G. Design of Small Wind Turbine Blade Based on Optimal Airfoils S4110 and S1012 at Low Reynolds Numbers and Wind Speeds. Sustainability 2025, 17, 11243. https://doi.org/10.3390/su172411243
Bui VH, Vu MP, Le QS, Than MQH, Pham QD, Dinh QG. Design of Small Wind Turbine Blade Based on Optimal Airfoils S4110 and S1012 at Low Reynolds Numbers and Wind Speeds. Sustainability. 2025; 17(24):11243. https://doi.org/10.3390/su172411243
Chicago/Turabian StyleBui, Van Hung, Minh Phap Vu, Quang Sang Le, Manh Quang Huy Than, Quoc Doan Pham, and Quang Giap Dinh. 2025. "Design of Small Wind Turbine Blade Based on Optimal Airfoils S4110 and S1012 at Low Reynolds Numbers and Wind Speeds" Sustainability 17, no. 24: 11243. https://doi.org/10.3390/su172411243
APA StyleBui, V. H., Vu, M. P., Le, Q. S., Than, M. Q. H., Pham, Q. D., & Dinh, Q. G. (2025). Design of Small Wind Turbine Blade Based on Optimal Airfoils S4110 and S1012 at Low Reynolds Numbers and Wind Speeds. Sustainability, 17(24), 11243. https://doi.org/10.3390/su172411243

