Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = stability of nitrogen (N) utilization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3193 KiB  
Article
Effects of Nitrogen and Phosphorus Additions on the Stability of Soil Carbon Fractions in Subtropical Castanopsis sclerophylla Forests
by Yunze Dai, Xiaoniu Xu and LeVan Cuong
Forests 2025, 16(8), 1264; https://doi.org/10.3390/f16081264 - 2 Aug 2025
Viewed by 119
Abstract
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To [...] Read more.
Soil organic carbon (SOC) pool plays an extremely important role in regulating the global carbon (C) cycle and climate change. Atmospheric nitrogen (N) and phosphorus (P) deposition caused by human activities has significant impacts on soil C sequestration potential of terrestrial ecosystem. To investigate the effects of N and P deposition on soil C sequestration and C-N coupling relationship in broad-leaved evergreen forests, a 6-year field nutrient regulation experiment was implemented in subtropical Castanopsis sclerophylla forests with four different N and P additions: N addition (100 kg N·hm−2·year−1), N + P (100 kg N·hm−2·year−1 + 50 kg P·hm−2·year−1), P addition (50 kg P·hm−2·year−1), and CK (0 kg N·hm−2·year−1). The changes in the C and N contents and stable isotope distributions (δ13C and δ15N) of different soil organic fractions were examined. The results showed that the SOC and total nitrogen (STN) (p > 0.05) increased with N addition, while SOC significantly decreased with P addition (p < 0.05), and N + P treatment has low effect on SOC, STN (p > 0.05). By density grouping, it was found that N addition significantly increased light fraction C and N (LFOC, LFN), significantly decreased the light fraction C to N ratio (LFOC/N) (p < 0.05), and increased heavy fraction C and N (HFOC, HFN) accumulation and light fraction to total organic C ratio (LFOC/SOC, p > 0.05). Contrary to N addition, P addition was detrimental to the accumulation of LFOC, LFN and reduced LFOC/SOC. It was found that different reactive oxidized carbon (ROC) increased under N addition but ROC/SOC did not change, while N + P and P treatments increased ROC/SOC, resulting in a decrease in SOC chemical stability. Stable isotope analysis showed that N addition promoted the accumulation of new soil organic matter, whereas P addition enhanced the transformation and utilization of C and N from pre-existing organic matter. Additionally, N addition indirectly increased LFOC by significantly decreasing pH; significantly contributed to LFOC and ROC by increasing STN accumulation promoted by NO3-N and NH4+-N; and decreased light fraction δ13C by significantly increasing dissolved organic C (p < 0.05). P addition had directly significant negative effect on LFOC and SOC (p < 0.05). In conclusion, six-year N deposition enhances soil C and N sequestration while the P enrichment reduces the content of soil C, N fractions and stability in Castanopsis sclerophylla forests. The results provide a scientific basis for predicting the soil C sink function of evergreen broad-leaved forest ecosystem under the background of future climate change. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 345
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

23 pages, 2173 KiB  
Article
Evaluation of Soil Quality and Balancing of Nitrogen Application Effects in Summer Direct-Seeded Cotton Fields Based on Minimum Dataset
by Yukun Qin, Weina Feng, Cangsong Zheng, Junying Chen, Yuping Wang, Lijuan Zhang and Taili Nie
Agronomy 2025, 15(8), 1763; https://doi.org/10.3390/agronomy15081763 - 23 Jul 2025
Viewed by 220
Abstract
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the [...] Read more.
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the cotton field soil quality evaluation system and a lack of reports on constructing a minimum dataset to evaluate the soil quality status of cotton fields. We aim to accurately and efficiently evaluate soil quality in cotton fields and screen nitrogen application measures that synergistically improve soil quality, cotton yield, and nitrogen fertilizer utilization efficiency. Taking the summer live broadcast cotton field in Jiangxi Province as the research object, four treatments, including CK without nitrogen application, CF with conventional nitrogen application, N1 with nitrogen reduction, and N2 with nitrogen reduction and organic fertilizer application, were set up for three consecutive years from 2022 to 2024. A total of 15 physical, chemical, and biological indicators of the 0–20 cm plow layer soil were measured in each treatment. A minimum dataset model was constructed to evaluate and verify the soil quality status of different nitrogen application treatments and to explore the physiological mechanisms of nitrogen application on yield performance and stability from the perspectives of cotton source–sink relationship, nitrogen use efficiency, and soil quality. The minimum dataset for soil quality evaluation in cotton fields consisted of five indicators: soil bulk density, moisture content, total nitrogen, organic carbon, and carbon-to-nitrogen ratio, with a simplification rate of 66.67% for the evaluation indicators. The soil quality index calculated based on the minimum dataset (MDS) was significantly positively correlated with the soil quality index of the total dataset (TDS) (R2 = 0.904, p < 0.05). The model validation parameters RMSE was 0.0733, nRMSE was 13.8561%, and the d value was 0.9529, all indicating that the model simulation effect had reached a good level or above. The order of soil quality index based on MDS and TDS for CK, CF, N1, and N2 treatments was CK < N1 < CF < N2. The soil quality index of N2 treatment under MDS significantly increased by 16.70% and 26.16% compared to CF and N1 treatments, respectively. Compared with CF treatment, N2 treatment significantly increased nitrogen fertilizer partial productivity by 27.97%, 31.06%, and 21.77%, respectively, over a three-year period while maintaining the same biomass, yield level, yield stability, and yield sustainability. Meanwhile, N1 treatment had the risk of significantly reducing both boll density and seed cotton yield. Compared with N1 treatment, N2 treatment could significantly increase the biomass of reproductive organs during the flower and boll stage by 23.62~24.75% and the boll opening stage by 12.39~15.44%, respectively, laying a material foundation for the improvement in yield and yield stability. Under CF treatment, the cotton field soil showed a high degree of soil physical property barriers, while the N2 treatment reduced soil barriers in indicators such as bulk density, soil organic carbon content, and soil carbon-to-nitrogen ratio by 0.04, 0.04, 0.08, and 0.02, respectively, compared to CF treatment. In summary, the minimum dataset (MDS) retained only 33.3% of the original indicators while maintaining high accuracy, demonstrating the model’s efficiency. After reducing nitrogen by 20%, applying 10% total nitrogen organic fertilizer could substantially improve cotton biomass, cotton yield performance, yield stability, and nitrogen partial productivity while maintaining soil quality levels. This study also assessed yield stability and sustainability, not just productivity alone. The comprehensive nitrogen fertilizer management (reducing N + organic fertilizer) under the experimental conditions has high practical applicability in the intensive agricultural system in southern China. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

31 pages, 6826 KiB  
Article
Machine Learning-Assisted NIR Spectroscopy for Dynamic Monitoring of Leaf Potassium in Korla Fragrant Pear
by Mingyang Yu, Weifan Fan, Junkai Zeng, Yang Li, Lanfei Wang, Hao Wang, Feng Han and Jianping Bao
Agronomy 2025, 15(7), 1672; https://doi.org/10.3390/agronomy15071672 - 10 Jul 2025
Viewed by 303
Abstract
Potassium (K), a critical macronutrient for the growth and development of Korla fragrant pear (Pyrus sinkiangensis Yu), plays a pivotal regulatory role in sugar-acid metabolism. Furthermore, K exhibits a highly specific response in near-infrared (NIR) spectroscopy compared to elements such as nitrogen (N) [...] Read more.
Potassium (K), a critical macronutrient for the growth and development of Korla fragrant pear (Pyrus sinkiangensis Yu), plays a pivotal regulatory role in sugar-acid metabolism. Furthermore, K exhibits a highly specific response in near-infrared (NIR) spectroscopy compared to elements such as nitrogen (N) and phosphorus (P). Given its fundamental impact on fruit quality parameters, the development of rapid and non-destructive techniques for K determination is of significant importance for precision fertilization management. By measuring leaf potassium content at the fruit setting, expansion, and maturity stages (decreasing from 1.60% at fruit setting to 1.14% at maturity), this study reveals its dynamic change pattern and establishes a high-precision prediction model by combining near-infrared spectroscopy (NIRS) with machine learning algorithms. “Near-infrared spectroscopy coupled with machine learning can enable accurate, non-destructive monitoring of potassium dynamics in Korla pear leaves, with prediction accuracy (R2) exceeding 0.86 under field conditions.” We systematically collected a total of 9000 leaf samples from Korla fragrant pear orchards and acquired spectral data using a benchtop near-infrared spectrometer. After preprocessing and feature extraction, we determined the optimal modeling method for prediction accuracy through comparative analysis of multiple models. Multiplicative scatter correction (MSC) and first derivative (FD) are synergistically employed for preprocessing to eliminate scattering interference and enhance the resolution of characteristic peaks. Competitive adaptive reweighted sampling (CARS) is then utilized to screen five potassium-sensitive bands, specifically in the regions of 4003.5–4034.35 nm, 4458.62–4562.75 nm, and 5145.15–5249.29 nm, among others, which are associated with O-H stretching vibration and changes in water status. A comparison between random forest (RF) and BP neural network indicates that the MSC + FD–CARS–BP model exhibits the optimal performance, achieving coefficients of determination (R2) of 0.96% and 0.86% for the training and validation sets, respectively, root mean square errors (RMSE) of 0.098% and 0.103%, a residual predictive deviation (RPD) greater than 3, and a ratio of performance to interquartile range (RPIQ) of 4.22. Parameter optimization revealed that the BPNN model achieved optimal stability with 10 neurons in the hidden layer. The model facilitates rapid and non-destructive detection of leaf potassium content throughout the entire growth period of Korla fragrant pears, supporting precision fertilization in orchards. Moreover, it elucidates the physiological mechanism by which potassium influences spectral response through the regulation of water metabolism. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

24 pages, 1779 KiB  
Article
Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau
by Xianzhi Wang, Bingxue Zhou and Qian Yang
Agronomy 2025, 15(7), 1602; https://doi.org/10.3390/agronomy15071602 - 30 Jun 2025
Viewed by 384
Abstract
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of [...] Read more.
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of rhizosphere soil microorganisms in alfalfa (Medicago sativa L.) of different ages and their relationships with soil physicochemical properties. This study used Biolog EcoPlates to evaluate the carbon metabolism activity, functional diversity, and carbon-source utilization preferences of rhizosphere soil microbial communities in 5-, 7-, and 9-year-old alfalfa grasslands on the semi-arid Loess Plateau of western China. We analyzed the relationships between soil physicochemical properties and microbial carbon metabolism characteristics, considering their potential covariation. The results showed that, with the extension of alfalfa planting years, the rhizosphere soil water content decreased significantly, pH decreased slightly, but soil organic carbon, total nitrogen, and total phosphorus contents increased significantly. The rhizosphere soil microbial community of 9-year-old alfalfa exhibited the highest carbon metabolism activity, Shannon diversity index, and carbon-source utilization. Rhizosphere soil microorganisms from different-aged alfalfa showed significantly different preferences for carbon-source utilization, with microorganisms from 9-year-old alfalfa preferentially utilizing carbon sources such as N-acetyl-D-glucosamine, D-mannitol, and D-cellobiose. Redundancy analysis revealed that soil water content was among the most important factors influencing the carbon metabolism activity of rhizosphere soil microbial communities while acknowledging that the relative contributions of soil water content, organic carbon, and nitrogen require careful interpretation, owing to their potential collinearity. This study demonstrates that, under rain-fed conditions in the semi-arid Loess Plateau, the continuous cultivation of alfalfa for nine years led to a significant decrease in soil water content but enhanced the rhizosphere soil nutrient status and microbial carbon metabolism activity, with no apparent signs of microbial functional degradation, although soil water depletion was observed. These findings highlight the complex interactions among multiple soil factors in influencing microbial carbon metabolism, providing valuable microbiological insights for understanding the sustainability of alfalfa grasslands and a theoretical basis for the scientific management of alfalfa grasslands in the semi-arid Loess Plateau region. Future research should consider longer planting periods to determine the critical age of alfalfa grassland degradation under semi-arid conditions and its associated microbial mechanisms. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

20 pages, 10830 KiB  
Article
An Experimental Study of Glycerol Carbonate Synthesis over g-C3N4 Catalysts
by Mirna Lea Charif, Dragoș Mihael Ciuparu, Ioana Lavinia Lixandru Matei, Gabriel Vasilievici, Ionuț Banu, Marian Băjan, Dorin Bomboș, Cristina Dușescu-Vasile, Iuliana Veronica Ghețiu, Cașen Panaitescu and Rami Doukeh
Appl. Sci. 2025, 15(11), 6236; https://doi.org/10.3390/app15116236 - 1 Jun 2025
Viewed by 2523
Abstract
This study examines a catalyst based on graphitic carbon nitride (g-C3N4) for synthesizing glycerol carbonate through the coupling reaction of glycerol and CO2. In this research, we focus on simultaneously improving CO2 emission reduction and glycerol [...] Read more.
This study examines a catalyst based on graphitic carbon nitride (g-C3N4) for synthesizing glycerol carbonate through the coupling reaction of glycerol and CO2. In this research, we focus on simultaneously improving CO2 emission reduction and glycerol valorization by co-doping g-C3N4 with phosphorus (P), sulfur (S), magnesium (Mg), and lithium (Li) for a better catalytic performance. The catalysts were prepared through a one-step thermal condensation process and characterized using XRD, SEM, TGA, FTIR, and nitrogen adsorption–desorption techniques. The co-doping further enhanced the surface chemical properties, Lewis acidity, basicity, and thermal stability, evidenced by the lower crystallinity, wider pore, and better catalytic performance as assessed through glycerol carbonylation reaction, optimized using a Box–Behnken design. The MgPSCN catalyst exhibited the highest glycerol conversion (68.72%) and glycerol carbonate yield (44.90%) at 250 °C, using 50 mg catalyst and 10 bar pressure. The model accuracy was validated by ANOVA (R2 > 0.99; p values < 0.0001). The results indicated that doping significantly enhanced the catalytic performance, most likely due to improved electron charge transfer and structural distortions within the g-C3N4 framework. Such a process highlights the potential of co-doped g-C3N4 catalysts for the sustainable glycerol utilization and valorization of CO2 through a scalable pathway toward green chemical synthesis—an approach that comes in line with worldwide decarbonization goals. Full article
Show Figures

Figure 1

26 pages, 7848 KiB  
Article
The Impact of Inundation and Nitrogen on Common Saltmarsh Species Using Marsh Organ Experiments in Mississippi
by Kelly M. San Antonio, Wei Wu, Makenzie Holifield and Hailong Huang
Water 2025, 17(10), 1504; https://doi.org/10.3390/w17101504 - 16 May 2025
Viewed by 420
Abstract
Sea level rise is an escalating threat to saltmarsh ecosystems as increased inundation can lead to decreased biomass, lowered productivity, and plant death. Another potential stressor is elevated nitrogen often brought into coastal regions via freshwater diversions. Nitrogen has a controversial impact on [...] Read more.
Sea level rise is an escalating threat to saltmarsh ecosystems as increased inundation can lead to decreased biomass, lowered productivity, and plant death. Another potential stressor is elevated nitrogen often brought into coastal regions via freshwater diversions. Nitrogen has a controversial impact on belowground biomass, potentially affecting saltmarsh stability. In this study, we examined the effects of inundation and nitrogen on common saltmarsh plants (Spartina alterniflora and Spartina patens) placed within two marsh organs (a collection of PVC pipes at different levels, the varied elevation levels expose the plants to different inundation amounts) located in the Pascagoula River, Mississippi, USA, with six rows and eight replicates in each row. We randomly fertilized four replicates in each row with 25 g/m2 of NH4+-N every two-three weeks during the growing season in 2021 and 2022. We concurrently collected vegetative traits such as plant height and leaf count to better understand strategies saltmarshes utilize to maximize survival or growth. We harvested half of the vegetation in Year 1 and the remaining in Year 2 to evaluate the impact of inundation and nitrogen on above- and belowground biomass at different temporal scales. We developed Bayesian models that show inundation had a largely positive impact on S. alterniflora and a mostly negative impact S. patens, suggesting that S. alterniflora will adapt better to increasing inundation than S. patens. Additionally, fertilized plants from both species had higher aboveground biomass than non-fertilized plants for both years, with nitrogen addition only showing impact on belowground biomass in the long term. Our results highlight the importance of long-term study to facilitate more-informed restoration and conservation efforts in coastal wetlands while accounting for climate change and sea level rise. Full article
(This article belongs to the Special Issue New Insights into Sea Level Dynamics and Coastal Erosion)
Show Figures

Figure 1

19 pages, 2929 KiB  
Article
Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China
by Hui Li, Yi Yang, Xiaohang Weng, Yongbin Zhou, Songzhu Zhang, Liying Liu and Jiubo Pei
Forests 2025, 16(5), 720; https://doi.org/10.3390/f16050720 - 23 Apr 2025
Viewed by 363
Abstract
Mongolian pine (Pinus sylvestris var. Mongolia) has been widely utilized as a key species for afforestation projects within the Three-North Shelterbelt of Liaoning Province in China. Its impressive ecological resilience has made it a favorite choice for this endeavor. However, as [...] Read more.
Mongolian pine (Pinus sylvestris var. Mongolia) has been widely utilized as a key species for afforestation projects within the Three-North Shelterbelt of Liaoning Province in China. Its impressive ecological resilience has made it a favorite choice for this endeavor. However, as the stands mature and climate conditions shift, some areas are experiencing premature decline or even mortality. Ecological stoichiometry is capable of uncovering the supply and equilibrium of plant and soil nutrients within ecosystems and is extensively utilized in the identification of limiting elements. Therefore, studying its ecological stoichiometry and internal stability dynamics is of crucial significance for clarifying the nutrient cycling process in the Mongolian pine region and alleviating the decline situation. The eastern and northwestern regions of Liaoning differ significantly in precipitation and soil nutrient availability. This study examines Mongolian pine plantations in both regions, analyzing the carbon (C), nitrogen (N), and phosphorus (P) content in plant tissues, soil, microbial biomass, and stoichiometric ratio under distinct environmental conditions. In order to provide a theoretical basis for alleviating the decline of artificial poplar forests and healthy management. Results indicate that (1) leaf C, N, and P contents in the eastern Liaoning region averaged 496.67, 15.19, and 1.66 g·kg−1, respectively, whereas those in northwestern Liaoning were 514.16, 14.82, and 1.23 g·kg−1, respectively. Soil C, N, and P concentrations exhibited notable regional differences, with eastern Liaoning recording 34.54, 2.62, and 0.48 g·kg−1, compared to significantly lower values in northwestern Liaoning (7.74, 0.77, and 0.21 g·kg−1). Similarly, microbial biomass C, N, and P were higher in eastern Liaoning (18.63, 5.09, and 7.72 mg·kg−1) than in northwestern Liaoning (10.18, 3.46, and 4.38 mg·kg−1). (2) The stoichiometric ratio of soil in the Mongolian pine plantations is higher than that in northwestern Liaoning, but the stoichiometric ratio of plants shows the opposite trend. Specifically, microbial carbon-to-nitrogen (MBC/MBN) ratios are higher in eastern Liaoning, whereas microbial carbon-to-phosphorus (MBC/MBP) and nitrogen-to-phosphorus (MBN/MBP) ratios are greater in northwestern Liaoning. Correlation analysis of plant–soil–microbe stoichiometry indicates that plant growth in both regions is co-limited by nitrogen, with Mongolian pine exhibiting strong internal stability. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

13 pages, 3236 KiB  
Article
Detection of Ammonia Nitrogen in Neutral Aqueous Solutions Based on In Situ Modulation Using Ultramicro Interdigitated Array Electrode Chip
by Yuqi Liu, Nan Qiu, Zhihao Zhang, Yang Li and Chao Bian
Chemosensors 2025, 13(4), 138; https://doi.org/10.3390/chemosensors13040138 - 9 Apr 2025
Viewed by 2374
Abstract
In this study, an in situ electrochemical modulation method based on an ultramicro interdigitated array electrode (UIAE) sensor chip was developed for the detection of ammonia nitrogen (NH3-N) in neutral aqueous solutions. One comb of the UIAE was used as the [...] Read more.
In this study, an in situ electrochemical modulation method based on an ultramicro interdigitated array electrode (UIAE) sensor chip was developed for the detection of ammonia nitrogen (NH3-N) in neutral aqueous solutions. One comb of the UIAE was used as the working electrode for both the modulating and sensing functions, while the other comb was used as the counter electrode. Utilizing its enhanced mass transfer and proximity effects, the feasibility of in situ modulation of the solution environment near the UIAE chip to generate an electrochemical response for NH3-N was investigated using electrochemical methods. The proposed method enhances the concentration of hydroxide ions and active chloride in the local solution near the sensor chip. These reactive species play a key role in improving the sensor’s electrocatalytic oxidation capability toward ammonia nitrogen, facilitating the sensitive detection of ammonia nitrogen in neutral environments. A linear relationship was displayed, ranging from 0.15–2.0 mg/L (as nitrogen) with a sensitivity of 3.7936 µA·L·mg−1 (0.0664 µA µM−1 mm−2), which was 2.45 times that in strong alkaline conditions without modulation. Additionally, the relative standard deviation of the measurement remained below 2.9% over five days of repeated experiments, indicating excellent stability. Full article
(This article belongs to the Special Issue Advancements of Chemosensors and Biosensors in China—2nd Edition)
Show Figures

Figure 1

13 pages, 1188 KiB  
Article
Optimization of FeSO4-Al2(SO4)3 Composite Flocculant for Enhanced Phosphorus Removal in Wastewater Treatment: A Response Surface Methodology Study
by Jiancheng Tu, Yanping Zhang, Liling Chen, Xin Chen, Yiping Li, Xiaohong Min, Qiu Chen, Tao Chen, Kunlei Wang and Yiqiang Luo
Processes 2025, 13(3), 882; https://doi.org/10.3390/pr13030882 - 17 Mar 2025
Viewed by 571
Abstract
The persistent challenge of achieving cost-effective total phosphorus (TP) removal in wastewater treatment necessitates innovative coagulant development. While polyaluminum chloride (PAC) demonstrates efficacy in eliminating total nitrogen (TN), ammonia nitrogen (NH4+-N), suspended solids (SSs), and pH stabilization, its limitations in [...] Read more.
The persistent challenge of achieving cost-effective total phosphorus (TP) removal in wastewater treatment necessitates innovative coagulant development. While polyaluminum chloride (PAC) demonstrates efficacy in eliminating total nitrogen (TN), ammonia nitrogen (NH4+-N), suspended solids (SSs), and pH stabilization, its limitations in attaining economical TP removal remain unresolved. This study introduces a novel FeSO4-Al2(SO4)3 composite coagulant to address PAC’s shortcomings through systematic formulation optimization. Utilizing single-variable experiments and response surface methodology (RSM), we determined the optimal reagent combinations under simulated high-efficiency sedimentation tank conditions. The results revealed that the FeSO4-Al2(SO4)3 composite achieved a TP removal efficiency approximately 40% greater than the PAC at equivalent dosages. A cost–benefit analysis indicated an approximate 50% reduction in the chemical expenditure relative to conventional PAC-based systems. The optimized formulation demonstrated synergistic effects between the Fe2+ and Al3+ ions, enhancing the charge neutralization and sweep flocculation mechanisms. These findings establish FeSO4-Al2(SO4)3 as a technically and economically viable alternative for TP-centric wastewater treatment, with implications for process sustainability. Further investigations should validate the long-term operational stability across diverse water matrices and assess the environmental impacts of residual metal ions. Full article
Show Figures

Figure 1

14 pages, 3683 KiB  
Article
Monodisperse Hierarchical N-Doped Carbon Microspheres with Uniform Pores as a Cathode Host for Advanced K–Se Batteries
by Hyun-Jin Kim, Jeong-Ho Na and Seung-Keun Park
Batteries 2025, 11(3), 101; https://doi.org/10.3390/batteries11030101 - 7 Mar 2025
Cited by 2 | Viewed by 970
Abstract
K–Se batteries offer high energy density and cost-effectiveness, making them promising candidates for energy storage systems. However, their practical applications are hindered by Se aggregation, sluggish ion diffusion, and significant volumetric expansion. To address these challenges, monodisperse hierarchical N-doped carbon microspheres (NCHS) with [...] Read more.
K–Se batteries offer high energy density and cost-effectiveness, making them promising candidates for energy storage systems. However, their practical applications are hindered by Se aggregation, sluggish ion diffusion, and significant volumetric expansion. To address these challenges, monodisperse hierarchical N-doped carbon microspheres (NCHS) with uniformly sized pores were synthesized as cathode hosts. The flower-like microstructure, formed by the assembly of two-dimensional building blocks, mitigated Se aggregation and facilitated uniform distribution within the pores, enhancing Se utilization. Nitrogen doping, introduced during synthesis, strengthened chemical bonding between selenium and the carbon host, suppressed side reactions, and accelerated reaction kinetics. These synergistic effects enabled efficient ion transport, improved electrolyte accessibility, and enhanced redox reactions. Additionally, the uniform particle and pore sizes of NCHS effectively mitigated volumetric expansion and surface accumulation, ensuring long-term cycling stability and superior electrochemical performance. Se-loaded NCHS (Se@NCHS) exhibited a high discharge capacity of 199.4 mA h g−1 at 0.5 C after 500 cycles with 70.4% capacity retention and achieved 188 mA h g−1 at 3.0 C, outperforming conventional carbon hosts such as Super P. This study highlights the significance of structural and chemical modifications in optimizing cathode materials and offers valuable insights for developing high-performance energy storage systems. Full article
Show Figures

Graphical abstract

19 pages, 24487 KiB  
Article
Upcycling of Waste Durian Peel into Valued Fe/N Co-Doped Porous Materials as Peroxymonosulfate Activator for Terramycin Oxidation
by Kewang Zheng, Rui Liu, Lihang Shen, Wei Li and Caiqin Qin
Molecules 2025, 30(5), 1005; https://doi.org/10.3390/molecules30051005 - 21 Feb 2025
Viewed by 510
Abstract
Nitrogen-doped graphene-coated Fe nanoparticles (EC@N6Fe0.6-700) were synthesized through the pyrolysis of a durian peel-supported urea ferric salt mixture. These materials were subsequently utilized to activate peroxymonosulfate (PMS) for oxidation of terramycin (TEC). The incorporation of an optimal amount of [...] Read more.
Nitrogen-doped graphene-coated Fe nanoparticles (EC@N6Fe0.6-700) were synthesized through the pyrolysis of a durian peel-supported urea ferric salt mixture. These materials were subsequently utilized to activate peroxymonosulfate (PMS) for oxidation of terramycin (TEC). The incorporation of an optimal amount of urea and ferric nitrate during the synthesis of materials significantly improves the catalytic activity of the resulting catalysts after pyrolysis. Using EC@N6Fe0.6-700 catalyst at a concentration of 0.10 g L−1, 98.55% oxidation of 20 mg L−1 TEC is achieved within 60 min. Additionally, EC@N6Fe0.6-700 exhibits exceptionally low metal leaching, with levels remaining below 0.25 mg L−1. The EC@N6Fe0.6-700 shows remarkable stability during oxidation and effectively resists interference, reusability, and robust stability throughout the oxidation process. The mechanism of the EC@N6Fe0.6-700/PMS/TEC system is determined, and the 1O2 is the main reactive oxygen species (ROSs). The XPS analysis confirms that the primary active sites are Fe0, as well as nitrogen-doped regions within the carbon matrix. This research demonstrates that by integrating iron and nitrogen with durian peel, it is possible to develop a PMS activator with satisfactory oxidation performance for the degradation of environmental pollutants. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 10501 KiB  
Article
Rational Design of Metal-Free Nitrogen-Doped Carbon for Controllable Reduction of CO2 to Syngas
by Guangbin An, Kang Wang, Min Yang, Jiye Zhang, Haijian Zhong, Liang Wang and Huazhang Guo
Molecules 2025, 30(4), 953; https://doi.org/10.3390/molecules30040953 - 18 Feb 2025
Cited by 3 | Viewed by 794
Abstract
The electrocatalytic reduction of CO2 (ECO2RR) to syngas with tunable CO/H2 ratios offers a promising route for sustainable energy conversion and chemical production. Here, we report a series of N-doped carbon black (NCBx) catalysts with tailored nitrogen species that [...] Read more.
The electrocatalytic reduction of CO2 (ECO2RR) to syngas with tunable CO/H2 ratios offers a promising route for sustainable energy conversion and chemical production. Here, we report a series of N-doped carbon black (NCBx) catalysts with tailored nitrogen species that enable precise control over the composition of syngas. Among the catalysts, NCB3 exhibits the optimal performance, achieving high CO selectivity (64.14%) and activity (1.9 mA cm−2) in an H-type cell at −0.9 V. Furthermore, NCB3 produces syngas with a wide range of CO/H2 ratios (0.52 to 4.77) across the applied potentials (−0.5 to −1.0 V). Stability tests confirm the robust durability of NCB3, which maintains consistent activity and selectivity over prolonged electrolysis. This work demonstrates the critical role of nitrogen species in tuning ECO2RR pathways and establishes a strategy for designing efficient and stable carbon-based catalysts for CO2 utilization and syngas production. Full article
Show Figures

Figure 1

23 pages, 27679 KiB  
Article
Material Characterization of (C+N) Austenitic Stainless Steel Manufactured by Laser Powder Bed Fusion
by Jakob Blankenhagen, Johannes Diller, Dorina Siebert, Patrick Hegele, Christina Radlbeck and Martin Mensinger
Metals 2025, 15(2), 134; https://doi.org/10.3390/met15020134 - 28 Jan 2025
Viewed by 1083
Abstract
The potential of an optimization process with respect to reduced mass can be used to the full extent by utilizing a high-strength material as it is, among others, strength-dependent. For the additive manufacturing process, Powder Bed Fusion of Metals using a Laser Beam [...] Read more.
The potential of an optimization process with respect to reduced mass can be used to the full extent by utilizing a high-strength material as it is, among others, strength-dependent. For the additive manufacturing process, Powder Bed Fusion of Metals using a Laser Beam (PBF-LB/M), 316L is commonly used. PBF-LB/M/316L has its benefits, like good material properties, such as availability, corrosion resistance, strength, and ductility. Nevertheless, a higher-strength material is required to fully take advantage of the optimization process and achieve a greater reduction in the mass of manufactured parts. The high-strength austenitic stainless steel investigated in this study is Printdur® HSA. Its main alloying elements are manganese, chromium, molybdenum, carbon, and nitrogen. The steel obtains its high strength properties from the alloyed carbon and nitrogen via solid solution hardening and improving the austenite stability. Therefore, it is defined as (C+N) steel. The datasheet of the powder manufacturer describes a yield strength (Rp0.2; 0.2% offset proof stress) of 915 MPa, an ultimate tensile strength of 1120 MPa, and an elongation at fracture of 30%. These are clear benefits in comparison to PBF-LB/M/316L. Since there are no further investigations made on Printdur® HSA, a thorough investigation of material behavior, fatigue life, and microstructure is needed. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Alloys)
Show Figures

Graphical abstract

16 pages, 4114 KiB  
Article
Oat Nutrition, Traits, and Yield as Affected by the Interaction of Nitrogen Rates and Plant Density in Sandy Soil
by Zhiling Lin, Jianqiang Deng, Kai Gao and Zhixin Zhang
Agronomy 2025, 15(1), 150; https://doi.org/10.3390/agronomy15010150 - 9 Jan 2025
Cited by 1 | Viewed by 1067
Abstract
Optimizing plant density and nutrient availability is essential for sustaining high forage yields and promoting environmental health, especially in semi-arid regions with sandy soil. Nonetheless, the mechanisms by which stoichiometric features govern nutrient utilization and forage output are still unidentified. We executed a [...] Read more.
Optimizing plant density and nutrient availability is essential for sustaining high forage yields and promoting environmental health, especially in semi-arid regions with sandy soil. Nonetheless, the mechanisms by which stoichiometric features govern nutrient utilization and forage output are still unidentified. We executed a two-year field experiment, integrating six nitrogen rates (0 (N0), 104 (N1), 138 (N2), 173 (N3), 207 (N4), and 242 (N5) kg N ha−1) and four planting densities (3 (D1), 3.5 (D2), 4 (D3), and 4.5 (D4) million plants ha−1). The C, N, and P contents, along with the C:N:P stoichiometry of different oat organs (leaf, stem, and root) and soil, were determined. It was found that the growth of oats in this area was limited by soil N. The pasture biomass increased nonlinearly with increasing planting density and N rate, and the maximum thresholds for C, N, and P uptake were 389.43 g kg−1, 11.19 g kg−1, and 3.10 g kg−1 at N3, respectively. The maximum thresholds for C, N, and P uptake were 356.45, 9.47, and 2.78 g kg−1 at D3, respectively, with an optimal biomass of 9221.74 kg ha−1; at a planting density of D3, the maximum thresholds for C, N, and P uptake were 329.39, 8.54, and 2.47 g kg−1, with an optimal biomass of 6276.10 kg ha−1. SEM showed that N rate and density increases significantly changed the ecological balance of the soil. The C:N and C:P ratios in oat leaves tend towards lower values, while the N:P ratio tends towards higher values; in contrast, the C:N and C:P ratios in oat stems tend towards higher values, and the N:P ratio tends towards lower values. The nutrient use strategy maintains the stoichiometric balance at the organ level, which in turn improves the accumulation of oat biomass. The best NUE was obtained at an N rate and density of N3D3 with a 144% biomass increase as compared to N0D2. This study provides new insights into nutrient allocation, usage strategies, and the stability of oats in actual sandy land production. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop