Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China
Abstract
:1. Introduction
2. Overview of the Study Area and Research Methodology
2.1. Overview of the Study Area
2.2. Research Method
2.2.1. Study the Sample Area Setting
2.2.2. Methods of Collecting Plant Samples
2.2.3. Methods of Soil Sample Collection
2.2.4. Methods for Determination of Physical and Chemical Properties of Plants and Soils
2.2.5. Methods for Determination of Soil MBC, MBN, and MBP Content
2.2.6. Homeostasis Index Calculation Method for Nutrient Content and Stoichiometry of Plants and Soil Microorganisms
2.3. Statistical Analysis of Data
3. Results
3.1. Leaf C, N, and P Contents and Stoichiometric Characteristics of Mongolian Pine Plantation Forests in Different Regions
3.2. Soil C, N, and P Contents and Stoichiometric Characteristics of Mongolian Pine Plantation Forests in Different Regions
3.3. Microbial C, N, and P Contents and Stoichiometric Characteristics of Mongolian Pine Plantation Forests in Different Regions
3.4. Correlation Analysis of Plant–Soil–Microorganism C, N, P Content and Stoichiometric Ratio of Mongolian Pine Plantation Forests in Different Regions
3.5. Homeostasis and RDA Analysis of Plant–Soil–Microorganism C, N, and P Contents and Stoichiometric Ratios in Mongolian Pine Plantation Forests in Different Regions
4. Discussion
4.1. Leaf-Soil-Microbial C, N, and P Contents of the Mongolian Pine Plantation
4.2. Leaf–Soil—The Microbial Stoichiometric Ratio of the Mongolian Pine Plantation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, T.; Shi, Z.; Niu, J.; Zhang, W. Research Progresses and Prospects of Terrestrial Ecological Stoichiometry in China. Soil 2016, 48, 29–35. [Google Scholar] [CrossRef]
- Wang, S.; Yu, G. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecol. Sin. 2008, 28, 3937–3947. [Google Scholar]
- Yang, J.-W.; Zhang, Q.-L.; Song, W.-Q.; Zhang, X.; Li, Z.-S.; Zhang, Y.-D.; Wang, X.-C. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var. mongolica to climate change in Daxing’an Mountains, Northeast China. Ying Yong Sheng Tai Xue Bao 2021, 32, 3415–3427. [Google Scholar] [CrossRef]
- Elser, J.J.; Sterner, R.W.; Gorokhova, E.; Fagan, W.F.; Markow, T.A.; Cotner, J.B.; Harrison, J.F.; Hobbie, S.E.; Odell, G.M.; Weider, L.W. Biological Stoichiometry from Genes to Ecosystems. Ecol. Lett. 2000, 3, 540–550. [Google Scholar] [CrossRef]
- Zhou, Y.; Boutton, T.W.; Wu, X.B. Soil C:N:P Stoichiometry Responds to Vegetation Change from Grassland to Woodland. Biogeochemistry 2018, 140, 341–357. [Google Scholar] [CrossRef]
- Chen, X.; Feng, J.; Ding, Z.; Tang, M.; Zhu, B. Changes in Soil Total, Microbial and Enzymatic C-N-P Contents and Stoichiometry with Depth and Latitude in Forest Ecosystems. Sci. Total Environ. 2022, 816, 151583. [Google Scholar] [CrossRef]
- de Souza Oliveira Filho, J.; Vieira, J.N.; Ribeiro da Silva, E.M.; Beserra de Oliveira, J.G.; Pereira, M.G.; Brasileiro, F.G. Assessing the Effects of 17 Years of Grazing Exclusion in Degraded Semi-Arid Soils: Evaluation of Soil Fertility, Nutrients Pools and Stoichiometry. J. Arid Environ. 2019, 166, 1–10. [Google Scholar] [CrossRef]
- Fanin, N.; Fromin, N.; Buatois, B.; Hättenschwiler, S. An Experimental Test of the Hypothesis of Non-Homeostatic Consumer Stoichiometry in a Plant Litter–Microbe System. Ecol. Lett. 2013, 16, 764–772. [Google Scholar] [CrossRef]
- Zechmeister-Boltenstern, S.; Keiblinger, K.M.; Mooshammer, M.; Peñuelas, J.; Richter, A.; Sardans, J.; Wanek, W. The Application of Ecological Stoichiometry to Plant–Microbial–Soil Organic Matter Transformations. Ecol. Monogr. 2015, 85, 133–155. [Google Scholar] [CrossRef]
- Hessen, D.O.; Elser, J.J.; Sterner, R.W.; Urabe, J. Ecological Stoichiometry: An Elementary Approach Using Basic Principles. Limnol. Oceanogr. 2013, 58, 2219–2236. [Google Scholar] [CrossRef]
- Wang, C.; Ji, P.; Liu, X.; Xu, W.; Zhang, Z.; Huang, X. Ecological C,N and P stoichiometry of the needles, twigs and fine roots in pure and mixed stands of Larix principis-rupprechtii. J. Arid. Land Resour. Environ. 2020, 34, 176–181. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The Vegetation N:P Ratio: A New Tool to Detect the Nature of Nutrient Limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Menezes, R.S.C.; Sampaio, E.; Giongo, V.; Pérez-Marin, A.M. Biogeochemical Cycling in Terrestrial Ecosystems of the Caatinga Biome. Braz. J. Biol. 2012, 72, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Spor, A.; Hénault, C.; Bru, D.; Bizouard, F.; Jones, C.M.; Sarr, A.; Maron, P.-A. Loss in Microbial Diversity Affects Nitrogen Cycling in Soil. ISME J. 2013, 7, 1609–1619. [Google Scholar] [CrossRef]
- Wu, W.; Wang, F.; Xia, A.; Zhang, Z.; Wang, Z.; Wang, K.; Dong, J.; Li, T.; Wu, Y.; Che, R.; et al. Meta-Analysis of the Impacts of Phosphorus Addition on Soil Microbes. Agric. Ecosyst. Environ. 2022, 340, 108180. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, G.; Zhang, D.; Liu, S.; Chu, G.; Yan, J. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chin. J. Plant Ecol. 2010, 34, 64–71. [Google Scholar] [CrossRef]
- Sun, H.; Koal, P.; Gerl, G.; Schroll, R.; Gattinger, A.; Joergensen, R.G.; Munch, J.C. Microbial Communities and Residues in Robinia- and Poplar-Based Alley-Cropping Systems under Organic and Integrated Management. Agroforest. Syst. 2018, 92, 35–46. [Google Scholar] [CrossRef]
- Lin, S.; Zeng, Y.; Yang, W.; Chen, B.; Ruan, M.; Yin, X.; Yang, X.; Wang, W. Effects of straw and biochar addition on carbon, nitrogen and phosphorus ecological stoichiometry in Jasminum sambac plant and soil. Chin. J. Plant Ecol. 2023, 47, 530–545. [Google Scholar] [CrossRef]
- Li, H.; Huo, Y.; Weng, X.; Zhou, Y.; Sun, Y.; Zhang, G.; Songzhu, Z.; Liu, L.; Pei, J. Regulation of the Growth of Mongolian Pine (Pinus sylvestris var. mongolica) by Calcium-Water Coupling in a Semiarid Region. Ecol. Indic. 2022, 137, 108736. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Sun, X.; Zeng, D.; Hu, Y. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions. Acta Ecol. Sin. 2018, 38, 7189–7197. [Google Scholar] [CrossRef]
- Wu, X.; Jiang, F.; Li, X.; Xue, Y.; Qiu, S. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land. Ying Yong Sheng Tai Xue Bao 2004, 15, 2225–2228. [Google Scholar] [PubMed]
- Zhu, J.; Tan, H.; Kang, H.; Xu, M. Comparison of Foliar Nutrient Concentrations between Natural and Artificial Forests of Pinus sylvestris var. mongolica on Sandy Land, China. J. For. Res. 2006, 17, 177–184. [Google Scholar] [CrossRef]
- Chen, F.; Zeng, D.; Chen, G.; Yu, Z.; Zhao, Q. Available nitrogen in forest soil of Pinus sylvestris var. mongolica plantations in Zhanggutai sandy lands. J. Beijing For. Univ. 2005, 27, 6–11. [Google Scholar]
- Jiang, J.; Li, Y.; Lei, Z. Spatial Characteristics of Soil Organic Carbon in Matured Pinus Sylvestris var. Mongolica Forest under Different Climatic Conditions. Chin. J. Soil Sci. 2021, 52, 42–46. [Google Scholar] [CrossRef]
- Bian, Z.; Li, X.; Yu, M. The plant diversity of agro-landscapes in typical maize planting areas in the Northeast Plain, China-A case study of Changtu County. Chin. J. Eco-Agric. 2018, 26, 480–492. [Google Scholar] [CrossRef]
- Miyazawa, M.; Pavan, M.A.; Block, M.F.M. Determination of Ca, Mg, K, Mn, Cu, Zn, Fe, and P in Coffee, Soybean, Corn, Sunflower, and Pasture Grass Leaf Tissues by a HCl Extraction Method. Commun. Soil Sci. Plant Anal. 1984, 15, 141–147. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Lu, R.-K. Soil and Agro-Chemistry Analytical Methods; Chinese Agricultural Science and Technology Press: Beijing, China, 1999; Volume 15. [Google Scholar]
- Su, B. Adaptation and Trade-Off of Artificial Robinia Pseudoacacia Plantation to Soil Water and Nutrient on the Loess Plateau. Ph.D. Thesis, University of Chinese Academy of Sciences and Ministry of Education, Beijing, China, 2022. [Google Scholar]
- Wang, S.; Du, Y.; Liu, S.; Pan, J.; Wu, F.; Wang, Y.; Wang, Y.; Li, H.; Dong, Y.; Wang, Z.; et al. Response of C:N:P Stoichiometry to Long-Term Drainage of Peatlands: Evidence from Plant, Soil, and Enzyme. Sci. Total Environ. 2024, 919, 170688. [Google Scholar] [CrossRef]
- Kaisermann, A.; de Vries, F.T.; Griffiths, R.I.; Bardgett, R.D. Legacy Effects of Drought on Plant–Soil Feedbacks and Plant–Plant Interactions. New Phytol. 2017, 215, 1413–1424. [Google Scholar] [CrossRef]
- Wu, W.; He, X.; Zhou, Q. Review on N:P Stoichiometry in Eco-system. J. Desert Res. 2010, 30, 296–302. [Google Scholar]
- Zhu, W.; Xu, Y.; Wang, Z.; Du, A. Soil-microbial stoichiometry of Eucalyptus urophylla×E. grandis plantation at different growth stages. J. Zhejiang A F Univ. 2021, 38, 692–702. [Google Scholar] [CrossRef]
- Post, W.M.; Pastor, J.; Zinke, P.J.; Stangenberger, A.G. Global Patterns of Soil Nitrogen Storage. Nature 1985, 317, 613–616. [Google Scholar] [CrossRef]
- Ren, S.; Yu, G.; Jiang, C.; Fang, H.; Sun, X. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China. Chin. J. Appl. Ecol. 2012, 23, 581–586. [Google Scholar] [CrossRef]
- Ning, Z.-Y.; Li, Y.-L.; Yang, H.-L.; Sun, D.-C.; Bi, J.-D. Carbon, Nitrogen and Phosphorus Stoichiometry in Leaves and Fine Roots of Dominant Plants in Horqin Sandy Land. Chin. J. Plant Ecol. 2017, 41, 1069. [Google Scholar] [CrossRef]
- Oleksyn, J. Global Patterns of Plant Leaf N and P in Relation to Temperature and Latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf Nitrogen and Phosphorus Stoichiometry across 753 Terrestrial Plant Species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef]
- Li, Y.; Mao, W.; Zhao, X.; Zhang, T. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, north China. Huan Jing Ke Xue 2010, 31, 1716–1725. [Google Scholar]
- Dise, N.B.; Matzner, E.; Forsius, M. Evaluation of Organic Horizon C:N Ratio as an Indicator of Nitrate Leaching in Conifer Forests across Europe. Environ. Pollut. 1998, 102, 453–456. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, R.; Yan, J.; Sha, L.; Han, S. C: N: P Stoichiometric Characteristics of Four Forest Types’ Dominant Tree Species in China. Chin. J. Plant Ecol. 2011, 35, 587–595. [Google Scholar]
- Han, Z.; Lei, Z.; Wang, G.; Gao, Z.; Liu, Y. Effects of annual growth on soil carbon, nitrogen and phosphorus in mature pinus sylvestris var. mongolica plantations. J. Anhui Agric. Sci. 2024, 52, 105–109. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Y.; Zhao, Y.; Huang, Y.; Guo, X.; Cao, M. Analysis on Spatial Distribution Characteristics and Driving Forcesof Soil Organic Carbon Density in Dry Farming Region. Trans. Chin. Soc. Agric. Mach. 2019, 50, 255–262. [Google Scholar]
- Persson, J.; Fink, P.; Goto, A.; Hood, J.M.; Jonas, J.; Kato, S. To Be or Not to Be What You Eat: Regulation of Stoichiometric Homeostasis among Autotrophs and Heterotrophs. Oikos 2010, 119, 741–751. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, T.; Huang, L.; Zhang, K.; Zhang, J. Root Distribution and Soil and Microbial Ecological Stoichiometry Characteristics of Pinus sylvestris in Sandy Land. J. Shanxi Agric. Sci. 2023, 51, 912–920. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Yao, X.; Zeng, W.; Wang, W. Latitudinal and Depth Patterns of Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus in Grasslands of an Agro-Pastoral Ecotone. Land Degrad. Dev. 2021, 32, 3833–3846. [Google Scholar] [CrossRef]
- Liu, D. Relationship between soil distribution and climatic condition in China. Acta Pedol. Sin. 1983, 20, 60–68. [Google Scholar]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological Stoichiometry of Plant Production: Metabolism, Scaling and Ecological Response to Global Change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, S.; Yan, S. Research Advances on the Factors Influencing the Activity and Community Structure of Soil Microorganism. Chin. J. Soil Sci. 2006, 37, 170–176. [Google Scholar] [CrossRef]
- Wardle, D.A. A Comparative Assessment of Factors Which Influence Microbial Biomass Carbon and Nitrogen Levels in Soil. Biol. Rev. 1992, 67, 321–358. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Rao, X.; Wang, X.; Liang, C.; Lin, Y.; Zhou, L.; Cai, X.; Fu, S. Carbon Storage and Allocation Pattern in Plant Biomass among Different Forest Plantation Stands in Guangdong, China. Forests 2015, 6, 794–808. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Liu, S.; Wang, X.; Zhang, Y.; Liu, T.; Zhou, L.; Zhang, W.; Fu, S. Reforestation Makes a Minor Contribution to Soil Carbon Accumulation in the Short Term: Evidence from Four Subtropical Plantations. For. Ecol. Manag. 2017, 384, 400–405. [Google Scholar] [CrossRef]
- Dai, X.; Fu, X.; Kou, L.; Wang, H.; Clinton, C. C:N:P Stoichiometry of Rhizosphere Soils Differed Significantly among Overstory Trees and Understory Shrubs in Plantations in Subtropical China. Can. J. For. Res. 2018, 48, 1398–1405. [Google Scholar] [CrossRef]
- Elser, J.J.; Acharya, K.; Kyle, M.; Cotner, J.; Makino, W.; Markow, T.; Watts, T.; Hobbie, S.; Fagan, W.; Schade, J.; et al. Growth Rate–Stoichiometry Couplings in Diverse Biota. Ecol. Lett. 2003, 6, 936–943. [Google Scholar] [CrossRef]
- Aerts, R. Nitrogen Partitioning between Resorption and Decomposition Pathways: A Trade-Off between Nitrogen Use Efficiency and Litter Decomposibility? Oikos 1997, 80, 603–606. [Google Scholar] [CrossRef]
- Güsewell, S. N: P Ratios in Terrestrial Plants: Variation and Functional Significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef] [PubMed]
- Wang, X. Leaf-Litter-Soil Eco-stoichiometric Relationship of Different Forest Types in Xianren Cave. Master’s Thesis, Liaoning Normal Univesity, Liaoning, China, 2020. [Google Scholar]
- Lei, H. Carbon, Nitrogen and Phosphorus Stoichiometry of Main Protective Forests in Horqin Sandy Land. Master’s Thesis, Liaoning Technical University, Liaoning, China, 2019. [Google Scholar]
- Yang, H.; Tu, C.; Li, Q.; Yang, L.; Cao, J. Analysis of C, N and P stoichiometry of secondary forest in different landforms in karst area. J. South. Agric. 2015, 46, 777–781. [Google Scholar]
- Zhu, Q.; Xing, X.; Zhang, H.; An, S. Soil ecological stoichiometry under different vegetation area on loess hilly-gully region. Acta Ecol. Sin. 2013, 33, 4674–4682. [Google Scholar] [CrossRef]
- Vergutz, L.; Manzoni, S.; Porporato, A.; Novais, R.F.; Jackson, R.B. Global Resorption Efficiencies and Concentrations of Carbon and Nutrients in Leaves of Terrestrial Plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef]
- Gao, S.; Li, J.; Xu, M.; Chen, X.; Dai, J. Leaf N and P Stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China. Acta Ecol. Sin. 2007, 27, 947–952. [Google Scholar]
- Qin, J.; Kong, H.; Liu, H. Stoichiometric characteristics of soil C,N,P and K in different Pinus massoniana forests. J. Northwest A F Univ. (Nat. Sci. Ed.) 2016, 44, 68–76, 82. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Liptzin, D. C:N:P Stoichiometry in Soil: Is There a “Redfield Ratio” for the Microbial Biomass? Biogeochemistry 2007, 85, 235–252. [Google Scholar] [CrossRef]
- Xu, X.; Thornton, P.E.; Post, W.M. A Global Analysis of Soil Microbial Biomass Carbon, Nitrogen and Phosphorus in Terrestrial Ecosystems. Glob. Ecol. Biogeogr. 2013, 22, 737–749. [Google Scholar] [CrossRef]
Sample | Longitude | Latitude | Altitude/m | Slope/° | Slope Aspect | DBH/cm |
---|---|---|---|---|---|---|
East of Liaoning-1 | 124°39′7469″ | 41°58′9934″ | 230 | 14 | East | 18.153 |
East of Liaoning-2 | 124°39′6889″ | 41°58′9871″ | 231 | 20 | South | 18.153 |
East of Liaoning-3 | 124°39′6815″ | 41°58′9759″ | 232 | 20 | South | 19.745 |
East of Liaoning-4 | 124°39′6711″ | 41°58′9825″ | 241 | 20 | South | 22.611 |
East of Liaoning-5 | 124°39′6655″ | 41°58′9598″ | 236 | 14 | North | 19.786 |
East of Liaoning-6 | 124°39′676″ | 41°58′9656″ | 238 | 12 | North | 20.382 |
East of Liaoning-7 | 124°39′697″ | 41°58′9872″ | 231 | 5 | Southeast | 20.701 |
East of Liaoning-8 | 124°39′7032″ | 41°58′9861″ | 237 | 2 | North | 18.287 |
East of Liaoning-9 | 124°41′7120″ | 41°59′0022″ | 246 | 11 | North | 22.771 |
East of Liaoning-10 | 124°41′7120″ | 41°59′0022″ | 246 | 11 | North | 19.790 |
East of Liaoning-11 | 124°41′7091″ | 41°58′9976″ | 257 | 11 | North | 20.064 |
East of Liaoning-12 | 124°41′7052″ | 41°59′0058″ | 248 | 13 | Northwest | 19.108 |
East of Liaoning-13 | 124°41′6994″ | 41°59′0065″ | 244 | 13 | Northwest | 19.745 |
East of Liaoning-14 | 124°41′7022″ | 41°59′0171″ | 257 | 15 | Northwest | 21.159 |
East of Liaoning-15 | 124°41′7034″ | 41°59′0177″ | 247 | 17 | Northwest | 19.427 |
Northwest of Liaoning-1 | 123°50′4520″ | 43°14′8631″ | 120 | 8 | South | 23.567 |
Northwest of Liaoning-2 | 123°50′4865″ | 43°14′8425″ | 121 | 3 | South | 25.032 |
Northwest of Liaoning-3 | 123°50′5254″ | 43°14′8380″ | 116 | 3 | Northeast | 26.847 |
Northwest of Liaoning-4 | 123°50′5728″ | 43°14′8387″ | 117 | 3 | Northeast | 29.490 |
Northwest of Liaoning-5 | 123°50′5764″ | 43°14′8011″ | 124 | 3 | South | 33.758 |
Northwest of Liaoning-6 | 123°49′6017″ | 43°17′6013″ | 152 | 10 | East | 21.656 |
Northwest of Liaoning-7 | 123°48′5738″ | 43°17′6182″ | 146 | 10 | South | 23.635 |
Northwest of Liaoning-8 | 123°49′5748″ | 43°17′6297″ | 147 | 10 | South | 21.976 |
Northwest of Liaoning-9 | 123°49′5722″ | 43°17′6499″ | 150 | 3 | East | 22.930 |
Northwest of Liaoning-10 | 123°49′5609″ | 43°17′6630″ | 148 | 3 | East | 25.259 |
Northwest of Liaoning-11 | 123°49′5430″ | 43°17′7001″ | 146 | 3 | East | 23.436 |
Northwest of Liaoning-12 | 123°49′9602″ | 43°18′1005″ | 156 | 7 | Northwest | 21.745 |
Northwest of Liaoning-13 | 123°49′9514″ | 43°18′1078″ | 158 | 5 | South | 22.930 |
Northwest of Liaoning-14 | 123°49′9575″ | 43°18′1525″ | 155 | 5 | North | 19.745 |
Northwest of Liaoning-15 | 123°49′9575″ | 43°18′1658″ | 152 | 5 | North | 20.867 |
log10(y) | log10(x) | 1/H | R2 | p | Grade | |
---|---|---|---|---|---|---|
Leaf | Leaf TC | Soil TC | 0.147 | 0.083 | 0.299 | strict internal stability |
Leaf TN | Soil TN | 0.275 | 0.073 | 0.33 | strict internal stability | |
Leaf TP | Soil TP | −0.076 | 0.018 | 0.635 | strict internal stability | |
Leaf TC/TN | Soil TC/TN | 0.001 | 7.627 | 0.975 | strict internal stability | |
Leaf TC/TP | Soil TC/TP | −0.018 | 0.001 | 0.925 | strict internal stability | |
Leaf TN/TP | Soil TN/TP | 0.27 | 0.077 | 0.316 | strict internal stability | |
Soil microbial biomass | MBC | Soil TC | −0.001 | 0.001 | 0.931 | strict internal stability |
MBN | Soil TN | 0.058 | 0.003 | 0.849 | strict internal stability | |
MBP | Soil TP | −0.435 | 0.411 | 0.469 | strict internal stability | |
MBC/MBN | Soil TC/TN | −0.325 | 0.085 | 0.291 | strict internal stability | |
MBC/MBP | Soil TC/TP | −0.219 | 0.017 | 0.642 | strict internal stability | |
MBN/MBP | Soil TN/TP | −0.021 | 0.001 | 0.963 | strict internal stability |
log10(y) | log10(x) | 1/H | R2 | p | Grade | |
---|---|---|---|---|---|---|
Leaf | Leaf TC | Soil TC | 0.151 | 0.052 | 0.416 | strict internal stability |
Leaf TN | Soil TN | −0.563 | 0.126 | 0.195 | strict internal stability | |
Leaf TP | Soil TP | −1.267 | 0.358 | 0.018 | strict internal stability | |
Leaf TC/TN | Soil TC/TN | 0.263 | 0.039 | 0.481 | strict internal stability | |
Leaf TC/TP | Soil TC/TP | −0.183 | 0.038 | 0.485 | strict internal stability | |
Leaf TN/TP | Soil TN/TP | −0.682 | 0.208 | 0.087 | strict internal stability | |
Soil microbial biomass | MBC | Soil TC | −0.031 | 0.001 | 0.893 | strict internal stability |
MBN | Soil TN | 0.129 | 0.062 | 0.37 | strict internal stability | |
MBP | Soil TP | 0.161 | 0.014 | 0.894 | strict internal stability | |
MBC/MBN | Soil TC/TN | 0.066 | 0.008 | 0.749 | strict internal stability | |
MBC/MBP | Soil TC/TP | −0.618 | 0.094 | 0.266 | strict internal stability | |
MBN/MBP | Soil TN/TP | 0.338 | 0.039 | 0.480 | strict internal stability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, Y.; Weng, X.; Zhou, Y.; Zhang, S.; Liu, L.; Pei, J. Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China. Forests 2025, 16, 720. https://doi.org/10.3390/f16050720
Li H, Yang Y, Weng X, Zhou Y, Zhang S, Liu L, Pei J. Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China. Forests. 2025; 16(5):720. https://doi.org/10.3390/f16050720
Chicago/Turabian StyleLi, Hui, Yi Yang, Xiaohang Weng, Yongbin Zhou, Songzhu Zhang, Liying Liu, and Jiubo Pei. 2025. "Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China" Forests 16, no. 5: 720. https://doi.org/10.3390/f16050720
APA StyleLi, H., Yang, Y., Weng, X., Zhou, Y., Zhang, S., Liu, L., & Pei, J. (2025). Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China. Forests, 16(5), 720. https://doi.org/10.3390/f16050720