Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,186)

Search Parameters:
Keywords = stability and numerical analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 16845 KB  
Article
Hydraulic Instability Characteristics of Pumped-Storage Units During the Transition from Hot Standby to Power Generation
by Longxiang Chen, Jianguang Li, Lei Deng, Enguo Xie, Xiaotong Yan, Guowen Hao, Huixiang Chen, Hengyu Xue, Ziwei Zhong and Kan Kan
Water 2026, 18(1), 61; https://doi.org/10.3390/w18010061 - 24 Dec 2025
Abstract
Against the backdrop of the carbon peaking and neutrality (“dual-carbon”) goals and evolving new-type power system dispatch, the share of pumped-storage hydropower (PSH) in power systems continues to increase, imposing stricter requirements on units for higher cycling frequency, greater operational flexibility, and rapid, [...] Read more.
Against the backdrop of the carbon peaking and neutrality (“dual-carbon”) goals and evolving new-type power system dispatch, the share of pumped-storage hydropower (PSH) in power systems continues to increase, imposing stricter requirements on units for higher cycling frequency, greater operational flexibility, and rapid, stable startup and shutdown. Focusing on the entire hot-standby-to-generation transition of a PSH plant, a full-flow-path three-dimensional transient numerical model encompassing kilometer-scale headrace/tailrace systems, meter-scale runner and casing passages, and millimeter-scale inter-component clearances is developed. Three-dimensional unsteady computational fluid dynamics are determined, while the surge tank free surface and gaseous phase are captured using a volume-of-fluid (VOF) two-phase formula. Grid independence is demonstrated, and time-resolved validation is performed against the experimental model–test operating data. Internal instability structures are diagnosed via pressure fluctuation spectral analysis and characteristic mode identification, complemented by entropy production analysis to quantify dissipative losses. The results indicate that hydraulic instabilities concentrate in the acceleration phase at small guide vane openings, where misalignment between inflow incidence and blade setting induces separation and vortical structures. Concurrently, an intensified adverse pressure gradient in the draft tube generates an axial recirculation core and a vortex rope, driving upstream propagation of low-frequency pressure pulsations. These findings deepen our mechanistic understanding of hydraulic transients during the hot-standby-to-generation transition of PSH units and provide a theoretical basis for improving transitional stability and optimizing control strategies. Full article
19 pages, 5315 KB  
Article
Failure Mechanism of Steep Rock Slope Under the Mining Activities and Rainfall: A Case Study
by Kai Ning and Zhi-Qiang Li
Water 2026, 18(1), 56; https://doi.org/10.3390/w18010056 - 24 Dec 2025
Abstract
In recent years, the increasing frequency of intense rainfall events has led to a surge in landslide occurrences, posing severe threats to human safety and ecological integrity. This study utilizes the Universal Distinct Element Code (UDEC) for discrete element numerical simulations, combined with [...] Read more.
In recent years, the increasing frequency of intense rainfall events has led to a surge in landslide occurrences, posing severe threats to human safety and ecological integrity. This study utilizes the Universal Distinct Element Code (UDEC) for discrete element numerical simulations, combined with field observation-based mechanism analysis, to examine the primary drivers of landslide formation: rainfall and underground mining. Focusing on the Zengziyan landslide in Chongqing as a case study, the research investigates the underlying instability mechanisms. The findings indicate that mining activities primarily compromise slope stability by modifying rock structures, diminishing supporting forces, and creating goaf areas. Notably, these goaf zones generate an overhanging effect on the overlying rock mass, promoting crack initiation and the propagation of structural planes. Under rainfall conditions, groundwater infiltration and elevated pore water pressure exert a more substantial destabilizing influence, markedly accelerating rock mass sliding and collapse. The analysis reveals that rainfall predominantly governs landslide initiation and evolution, particularly during the triggering and rapid acceleration phases of slope instability. The outcomes of this research offer valuable insights for post-mining slope management and monitoring, as well as for developing landslide early warning systems in rainy conditions. Full article
(This article belongs to the Special Issue Hydrogeophysical Methods and Hydrogeological Models)
Show Figures

Figure 1

50 pages, 3045 KB  
Article
Dual Nonlinear Saturation Control of Electromagnetic Suspension (EMS) System in Maglev Trains
by Hany Samih Bauomy Abdelmonem
Mathematics 2026, 14(1), 62; https://doi.org/10.3390/math14010062 - 24 Dec 2025
Abstract
This paper presents a nonlinear vertical dynamic model of an electromagnetic suspension (EMS) system in maglev trains regulated by a dual nonlinear saturation controller (DNSC) under simultaneous resonance (Ωωs,ωs2ωc). [...] Read more.
This paper presents a nonlinear vertical dynamic model of an electromagnetic suspension (EMS) system in maglev trains regulated by a dual nonlinear saturation controller (DNSC) under simultaneous resonance (Ωωs,ωs2ωc). The governing nonlinear differential equations of the system are addressed analytically utilizing the multiple time-scale technique (MTST), concentrating on resonance situations obtained from first-order approximations. The suggested controller incorporates two nonlinear saturation functions in the feedback and feedforward paths to improve system stability, decrease vibration levels, and enhance passenger comfort amidst external disturbances and parameter changes. The dynamic bifurcations caused by DNSC parameters are examined through phase portraits and time history diagrams. The goal of control is to minimize vibration amplitude through the implementation of a dual nonlinear saturation control law based on displacement and velocity feedback signals. A comparative analysis is performed on different controllers such as integral resonance control (IRC), positive position feedback (PPF), nonlinear integrated PPF (NIPPF), proportional integral derivative (PID), and DNSC to determine the best approach for vibration reduction in maglev trains. DNSC serves as an effective control approach designed to minimize vibrations and enhance the stability of suspension systems in maglev trains. Stability evaluation under concurrent resonance is conducted utilizing the Routh–Hurwitz criterion. MATLAB 18.2 numerical simulations (fourth-order Runge–Kutta) are employed to analyze time-history responses, the effects of system parameters, and the performance of controllers. The evaluation of all the derived solutions was conducted to verify the findings. Additionally, quadratic velocity feedback leads to intricate bifurcation dynamics. In the time domain, higher displacement and quadratic velocity feedback may destabilize the system, leading to shifts between periodic and chaotic movements. These results emphasize the substantial impact of DNSC on the dynamic performance of electromagnetic suspension systems. Frequency response, bifurcation, and time-domain evaluations demonstrate that the DNSC successfully reduces nonlinear oscillations and chaotic dynamics in the EMS system while attaining enhanced transient performance and resilience. Full article
23 pages, 2058 KB  
Article
On the Evolutionary Dynamics and Optimal Control of a Tripartite Game in the Pharmaceutical Procurement Supply Chain with Regulatory Participation
by Zhao Li and Yumu Wang
Mathematics 2026, 14(1), 56; https://doi.org/10.3390/math14010056 - 24 Dec 2025
Abstract
This study involves the construction of a dynamic evolutionary game model involving three key participants, including the Group Purchasing Organization (GPO), medical institutions, and pharmaceutical suppliers, while comprehensively considering critical factors such as benefit compensation, bad debt risk, and fiscal costs. The model [...] Read more.
This study involves the construction of a dynamic evolutionary game model involving three key participants, including the Group Purchasing Organization (GPO), medical institutions, and pharmaceutical suppliers, while comprehensively considering critical factors such as benefit compensation, bad debt risk, and fiscal costs. The model characterizes the strategy evolution of each participant under bounded rationality and imitation learning mechanisms. Based on the replicator dynamics equations, the evolutionary trajectories and equilibrium conditions of the three parties’ strategies are systematically derived. The Jacobian matrix is then used to analyze the local stability of eight boundary equilibria and potential internal mixed equilibria. Furthermore, to capture the optimal adjustment process of the compensation mechanism, the GPO’s compensation level is introduced into an optimal control framework. A controlled evolutionary system is formulated, and the dynamic optimal relationship between compensation intensity and system state is described using the Hamilton–Jacobi–Bellman (HJB) equation. Through analytical linearization and numerical simulations, the optimal feedback compensation law and its closed-loop evolutionary trajectory are obtained, allowing for a comparative analysis between the “fixed compensation” and “optimal compensation” scenarios. The results reveal that an appropriately designed dynamic compensation mechanism can significantly enhance system cooperation stability and overall social welfare. This provides a quantitative theoretical foundation and methodological tool for the refined design and dynamic regulation of pharmaceutical group purchasing policies. Full article
(This article belongs to the Special Issue Dynamic Analysis and Decision-Making in Complex Networks)
Show Figures

Figure 1

14 pages, 939 KB  
Article
Effective Height of Mountaintop Towers Revisited: Simulation-Based Assessment for Self-Initiated Upward Lightning
by André Tiso Lobato, Liliana Arevalo and Vernon Cooray
Atmosphere 2026, 17(1), 16; https://doi.org/10.3390/atmos17010016 - 23 Dec 2025
Abstract
Mountaintop towers are highly exposed to self-initiated upward lightning flashes. Accurate estimation of their effective height—the equivalent flat-ground height yielding the same lightning exposure—is essential for reliable exposure assessment, for interpreting and calibrating measurement data at instrumented mountaintop towers, and for comparison with [...] Read more.
Mountaintop towers are highly exposed to self-initiated upward lightning flashes. Accurate estimation of their effective height—the equivalent flat-ground height yielding the same lightning exposure—is essential for reliable exposure assessment, for interpreting and calibrating measurement data at instrumented mountaintop towers, and for comparison with established protection guidelines. This study applies a two-step numerical framework that couples finite-element electrostatic simulations with a leader-inception and propagation model for representative tower–terrain configurations reflecting reference instrumented mountaintop sites in lightning research. For each configuration, the stabilization field, the minimum background electric field enabling continuous upward leader propagation to the cloud base, is determined, from which effective heights are obtained. The simulated results agree with the analytical formulation of Zhou et al. (within ~10%), while simplified or empirical approaches by Shindo, Eriksson, and Pierce exhibit larger deviations, especially for broader mountains. A normalized analysis demonstrates that the tower-to-mountain slenderness ratio (h/a) governs the scaling of effective height, following a power-law dependence with exponent −0.17 (R2 = 0.94). This compact relation enables direct estimation of effective height from geometric parameters alone, complementing detailed leader-inception modeling. The findings validate the proposed physics-based framework, quantify the geometric dependence of effective height for mountaintop towers, and provide a foundation for improving lightning-exposure assessments, measurement calibration and design standards for elevated structures. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 2093 KB  
Article
Investigation of the Effect of Three Commercial Water Disinfectants on the Performance and the Physicochemical Characteristics of the Gastrointestinal Content in Broiler Chicks
by Tilemachos Mantzios, Konstantinos Kiskinis, Theoni Renieri, Georgios A. Papadopoulos, Ilias Giannenas, Dimitrios Galamatis, Panagiotis Sakkas, Paschalis Fortomaris and Vasilios Tsiouris
Poultry 2026, 5(1), 3; https://doi.org/10.3390/poultry5010003 - 23 Dec 2025
Abstract
Numerous commercial products are used in poultry farms to maintain water quality and prevent pathogen dispersion, but their actual impact on broiler chicks’ performance and gut health remains underreported. This study aimed to investigate the effects of three commercial poultry water disinfectants on [...] Read more.
Numerous commercial products are used in poultry farms to maintain water quality and prevent pathogen dispersion, but their actual impact on broiler chicks’ performance and gut health remains underreported. This study aimed to investigate the effects of three commercial poultry water disinfectants on broiler chicks’ performance and the physicochemical characteristics of gastrointestinal content when continuously added to drinking water. A total of 144 one-day-old Ross® 308 broiler chicks were randomly allocated into four treatment groups: Group A (negative control), Group B (0.01–0.025% v/v Product A [H2O2 + silver complex]), Group C (0.01–0.04% v/v Product B [H2O2 + peracetic acid]), and Group D (0.05–0.1% w/v Product C [peroxides]). Body weight (BW) was measured weekly, while average daily weight gain (ADWG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were calculated for different time periods. Additionally, on days 15 and 40, the pH of the crop, gizzard, duodenum, jejunum, and cecum contents was assessed, while the viscosity of jejunal and ileal contents were also measured. Statistical analysis revealed that all water disinfectants significantly (p0.05) reduced BW, ADWG, and ADFI during the early growth phase, followed by either recovery or stabilization in the later stages. Drinking water disinfectants induced significant changes in intestinal physicochemical parameters, including reductions in pH of the content in the jejunum (p0.05) during early growth and increased gizzard pH (p0.05) and digesta viscosity (p0.05) at later ages. These findings suggest that continuous water disinfection can suppress broiler chicks’ performance during the early stages of growth while significantly altering the physicochemical characteristics of gastrointestinal content. Further research is needed to investigate the mechanism that underlaying these results and optimize dosage schemes that balance pathogen control with the health, welfare, and performance of broilers. Full article
Show Figures

Figure 1

39 pages, 1621 KB  
Article
Research on the Stability Model in Discrete Dynamical Systems with the Lorenz Attractor and the Kropotov–Pakhomov Neural Network
by Ekaterina Antonova Gospodinova
Entropy 2026, 28(1), 12; https://doi.org/10.3390/e28010012 - 22 Dec 2025
Abstract
This paper explores the dynamic analogy between the discrete Lorenzian attractor and a modified Kropotov–Pakhomov neural network (MRNN). A one-dimensional peak map is used to extract the successive maxima of the Lorenzian system and preserve the basic properties of the chaotic flow. The [...] Read more.
This paper explores the dynamic analogy between the discrete Lorenzian attractor and a modified Kropotov–Pakhomov neural network (MRNN). A one-dimensional peak map is used to extract the successive maxima of the Lorenzian system and preserve the basic properties of the chaotic flow. The MRNN, governed by the Bogdanov–Hebb learning rule with dissipative feedback, is formulated as a discrete nonlinear operator whose parameters can reproduce the same hierarchy of modes as the peak map. It is theoretically shown that the map multiplier and the spectral radius of the monodromy matrix of the MRNN provide equivalent stability conditions. Numerical diagrams confirm the correspondence between the control parameters of the Lorenz model and the network parameters. The results establish the MRNN as a neural emulator of the Lorenz attractor and offer an analysis of self-organization and stability in adaptive neural systems. Full article
(This article belongs to the Special Issue Dynamics in Complex Neural Networks, 2nd Edition)
22 pages, 1074 KB  
Review
A Review of the Soil–Geosynthetic Interface Direct Shear Test and Numerical Modelling
by Shuxiong Xiao, Ivan P. Damians and Wei Hu
Buildings 2026, 16(1), 43; https://doi.org/10.3390/buildings16010043 - 22 Dec 2025
Viewed by 4
Abstract
The use of geosynthetics in reinforced soil structures (RSSs) requires the experimental and numerical modelling of the soil–geosynthetic interaction to support the design and analysis and deepen the knowledge of RSS systems. Direct shear testing has served as a fundamental laboratory choice for [...] Read more.
The use of geosynthetics in reinforced soil structures (RSSs) requires the experimental and numerical modelling of the soil–geosynthetic interaction to support the design and analysis and deepen the knowledge of RSS systems. Direct shear testing has served as a fundamental laboratory choice for soil–geosynthetic interface testing, with the benefits being its availability, simplicity, and straightforward shear strength acquisition. This review paper pays attention to the direct shear testing and modelling of soil–geosynthetic interfaces. A brief laboratory interface experiment overview is presented, summarising the adopted soil–geosynthetic types, as well as the influences of various factors regarding soil–geosynthetic properties and loading/environmental conditions. Development of the finite element method to model interfaces is introduced, concentrating on the commonly adopted zero-thickness element, the thin-layer element, and continuum elements. As a result, emphasis is given to the comparison of the three element methodologies for the analysis of their advantages and limitations in accuracy, stability, and applicability for interface modelling. Based on the retrospective analysis, a summary and visions for the research progress of soil–geosynthetic interface testing and modelling are proposed to provide suggestions for future research topics. Full article
(This article belongs to the Special Issue Advances in Soil–Geosynthetic Composite Materials)
Show Figures

Figure 1

22 pages, 13337 KB  
Article
A Comprehensive Framework for Modelling and Control of Morphing Quadrotor Drones
by Jonghyun Woo, Inyoung Jung, Yeongho Kim and Seokwon Lee
Aerospace 2026, 13(1), 5; https://doi.org/10.3390/aerospace13010005 - 22 Dec 2025
Viewed by 9
Abstract
This paper proposes a comprehensive framework for control of an extended Morphing Aerial System (MAS) designed to achieve both mission flexibility and fault tolerance. The proposed quadrotor features a morphing configuration that integrates a two-dimensional planar folding structure with a tilt mechanism. This [...] Read more.
This paper proposes a comprehensive framework for control of an extended Morphing Aerial System (MAS) designed to achieve both mission flexibility and fault tolerance. The proposed quadrotor features a morphing configuration that integrates a two-dimensional planar folding structure with a tilt mechanism. This morphing capability offers structural simplicity and operational versatility, which enables stable flight in various established modes. The control strategy utilizes feedback linearization and a Linear Quadratic Regulator (LQR), adapted to the system’s nonlinear dynamics and capable of controlling the MAS across various configurations (X, H, and O modes). An Extended Kalman Filter (EKF) is also incorporated for state estimation. To ensure fault resilience, we introduce the Y-mode configuration and a corresponding Fault-Tolerant Control (FTC) architecture. Numerical simulations demonstrate that while a nominal controller fails immediately upon motor failure, the proposed FTC method successfully recovers flight stability, converging to the reference trajectory within 6.9 s. Furthermore, robustness analysis confirms that the system maintains operational integrity for fault detection latencies up to 0.40 s, demonstrating its feasibility under realistic sensing constraints. Full article
Show Figures

Figure 1

30 pages, 1128 KB  
Article
Global Dynamics of a Multi-Population Water Pollutant Model with Distributed Delays
by Nada A. Almuallem and Miled El Hajji
Mathematics 2026, 14(1), 20; https://doi.org/10.3390/math14010020 - 21 Dec 2025
Viewed by 52
Abstract
This paper presents a comprehensive mathematical analysis of a novel compartmental model describing the dynamics of dispersed water pollutants and their interaction with two distinct host populations. The model is formulated as a system of integro-differential equations that incorporates multiple distributed delays to [...] Read more.
This paper presents a comprehensive mathematical analysis of a novel compartmental model describing the dynamics of dispersed water pollutants and their interaction with two distinct host populations. The model is formulated as a system of integro-differential equations that incorporates multiple distributed delays to realistically account for time lags in the infection process and pollutant transport. We rigorously establish the biological well-posedness of the model by proving the non-negativity and ultimate boundedness of solutions, confirming the existence of a positively invariant feasible region. The analysis characterizes the long-term behavior of the system through the derivation of the basic reproduction number R0d, which serves as a sharp threshold determining the system’s fate. For the model without delays, we prove the global asymptotic stability of the infection-free equilibrium (IFE) when R01 and of the endemic equilibrium (EE) when R0>1. These stability results are extended to the distributed-delay model by using sophisticated Lyapunov functionals, demonstrating that R0d universally governs the global dynamics: the IFE (E0d) is globally asymptotically stable (GAS) if R0d1, while the EE (Ed*) is GAS if R0d>1. Numerical simulations validate the theoretical findings and provide further insights. Sensitivity analysis identifies the most influential parameters on R0d, highlighting the recruitment rate of susceptible individuals, exposure rate, and pollutant shedding rate as key intervention targets. Furthermore, we investigate the impact of control measures, showing that treatment efficacy exceeding a critical value is sufficient for disease eradication. The analysis also reveals the inherent mitigating effect of the maturation delay, demonstrating that a delay longer than a critical duration can naturally suppress the outbreak. This work provides a robust mathematical framework for understanding and managing dispersed water pollution, emphasizing the critical roles of multi-source contributions, time delays, and targeted interventions for environmental sustainability. Full article
37 pages, 2370 KB  
Review
Fire Resistance of Steel-Reinforced Concrete Columns: A Review of Ordinary Concrete to Ultra-High Performance Concrete
by Chang Liu, Xiaochen Wu and Jinsheng Du
Buildings 2026, 16(1), 24; https://doi.org/10.3390/buildings16010024 - 20 Dec 2025
Viewed by 75
Abstract
This review surveys the recent literature on the fire resistance of reinforced concrete (RC) columns based on a bibliometric analysis of publications to reveal research trends and focus areas. The collected studies are synthesized from the perspectives of materials, structural behaviors, parameter influences, [...] Read more.
This review surveys the recent literature on the fire resistance of reinforced concrete (RC) columns based on a bibliometric analysis of publications to reveal research trends and focus areas. The collected studies are synthesized from the perspectives of materials, structural behaviors, parameter influences, and predictive modeling. From the material aspect, the review summarizes the degradation mechanisms of conventional concrete at elevated temperatures and highlights the improved performance of ultra-high-performance concrete (UHPC) and reactive powder concrete (RPC), where dense microstructures and fiber bridging effectively suppress spalling and help maintain residual capacity. In terms of structural behavior, experimental and numerical studies on RC columns under fire are reviewed to clarify the deformation, failure modes, and effects of axial load ratio, slenderness, cover thickness, reinforcement ratio, boundary restraint, and load eccentricity on fire endurance. Parametric analyses addressing the influence of these factors, as well as the heating–cooling history, on overall stability and post-fire performance is discussed. Recent advances in thermomechanical finite element analysis and the integration of data-driven approaches such as machine learning have been summarized for evaluating and predicting fire performance. Future directions are outlined, emphasizing the need for standardized parameters for fiber-reinforced systems, a combination of multi-scale numerical and machine-learning models, and further exploration of multi-hazard coupling, durability, and digital-twin-based monitoring to support next-generation performance-based fire design. Full article
20 pages, 1746 KB  
Article
Mathematical Analysis of Malware Spread in Digital Systems Using Atangana–Baleanu–Caputo Fractional Dynamics
by Tharmalingam Gunasekar, Rajendran Swetha, Shanmugam Manikandan, Sally Almanasra and Suad AlRamouni
Algorithms 2026, 19(1), 4; https://doi.org/10.3390/a19010004 - 20 Dec 2025
Viewed by 99
Abstract
This study explores the spread of malware within a digital framework by introducing a unique fractional-order model that employs the Atangana–Baleanu–Caputo (ABC) derivative. As cyber threats grow increasingly sophisticated and widespread, traditional models using classical differential equations often prove inadequate, particularly in capturing [...] Read more.
This study explores the spread of malware within a digital framework by introducing a unique fractional-order model that employs the Atangana–Baleanu–Caputo (ABC) derivative. As cyber threats grow increasingly sophisticated and widespread, traditional models using classical differential equations often prove inadequate, particularly in capturing long-term memory effects and historical dependencies inherent in real-world systems. To address these challenges, the proposed approach utilizes the non-local characteristics of fractional calculus, offering a more comprehensive framework for understanding malware behavior. The model includes the derivation of the basic reproduction number, 0, to evaluate conditions for malware persistence or elimination, sensitivity analysis and examines equilibrium states to assess overall system stability. Theoretical analysis ensures the existence and uniqueness of solutions through fixed-point techniques. Through numerical simulations, the theoretical results are validated, emphasizing the significant impact of antidotal and recovery measures in controlling malware spread. These findings provide essential guidance for enhancing the protection and robustness of sophisticated cyber-physical and humanoid infrastructures. Full article
22 pages, 1880 KB  
Review
Comprehensive Review and Prospect for Combustion and Ignition Characteristics of Gas Co-Firing with Pulverized Coal
by Hongzhen Cao, Bin Zhang, Guanmin Zhang, Chang Yu and Lili Zhang
Processes 2026, 14(1), 17; https://doi.org/10.3390/pr14010017 - 19 Dec 2025
Viewed by 162
Abstract
In response to the challenges of deep peak shaving of coal-fired power plants and co-firing with combustible gases for achieving carbon neutrality and peaking emissions, this paper synthesizes combustion and ignition models for pulverized coal, with particular emphasis on volatilization analysis, gas-phase combustion, [...] Read more.
In response to the challenges of deep peak shaving of coal-fired power plants and co-firing with combustible gases for achieving carbon neutrality and peaking emissions, this paper synthesizes combustion and ignition models for pulverized coal, with particular emphasis on volatilization analysis, gas-phase combustion, solid-phase combustion, and NOx formation mechanisms. It reviews studies on the combustion behaviors of pulverized coal when co-firing with gases such as CH4, H2, and NH3, as well as the application of typical co-firing gases in pulverized coal furnaces. The ignition process hinges on whether the concentration of released combustible gases reaches the combustion range and ignition temperature, necessitating detailed volatilization analysis models and simplified gas-phase reaction models. Co-firing enhances combustion stability by facilitating gas ignition and sustained combustion, while pulverized coal achieves extended burning duration. Fuel-type NOx serves as a critical factor in ensuring the reliability of NOx numerical simulations and should be integrated with carbon combustion models. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

23 pages, 69855 KB  
Article
The Fractional SI Reaction–Diffusion Model with Incommensurate Orders: Stability Analysis and Numerical Simulations
by Ali Aloui, Amel Hioual, Omar Kahouli, Adel Ouannas, Lilia El Amraoui and Mohamed Ayari
Fractal Fract. 2026, 10(1), 3; https://doi.org/10.3390/fractalfract10010003 - 19 Dec 2025
Viewed by 90
Abstract
In this work, we present a fractional-order reaction–diffusion model for the spread of infectious diseases, incorporating incommensurate Caputo derivatives to capture memory effects and heterogeneous temporal behavior across compartments. Focusing on a generalized SI model with nonlinear incidence, we explore the local asymptotic [...] Read more.
In this work, we present a fractional-order reaction–diffusion model for the spread of infectious diseases, incorporating incommensurate Caputo derivatives to capture memory effects and heterogeneous temporal behavior across compartments. Focusing on a generalized SI model with nonlinear incidence, we explore the local asymptotic stability of both disease-free and endemic equilibria. The model accommodates spatial diffusion, saturation effects, and varying fractional orders, yielding a more realistic depiction of epidemic propagation. Analytical techniques—ranging from linearization to spectral analysis—are employed to rigorously establish stability conditions. Numerical simulations support the theoretical findings, highlighting the impact of memory and spatial structure on long-term dynamics. This study offers a refined mathematical lens to understand the persistence or eradication of infectious diseases under memory-dependent and spatially heterogeneous environments. Full article
29 pages, 1473 KB  
Article
Global Dynamics of a Dual-Target HIV Model with Time Delays and Treatment Implications
by Hanan H. Almuashi and Miled El Hajji
Mathematics 2026, 14(1), 6; https://doi.org/10.3390/math14010006 - 19 Dec 2025
Viewed by 106
Abstract
We present a comprehensive mathematical analysis of a within-host dual-target HIV dynamics model, which explicitly incorporates the virus’s interactions with its two primary cellular targets: CD4+ T cells and macrophages. The model is formulated as a system of five nonlinear delay differential [...] Read more.
We present a comprehensive mathematical analysis of a within-host dual-target HIV dynamics model, which explicitly incorporates the virus’s interactions with its two primary cellular targets: CD4+ T cells and macrophages. The model is formulated as a system of five nonlinear delay differential equations, integrating three distinct discrete time delays to account for critical intracellular processes such as the development of productively infected cells and the maturation of new virions. We first establish the model’s biological well-posedness by proving the non-negativity and boundedness of solutions, ensuring all trajectories remain within a feasible region. The basic reproduction number, R0d, is derived using the next-generation matrix method and serves as a sharp threshold for disease dynamics. Analytical results demonstrate that the infection-free equilibrium is globally asymptotically stable (GAS) when R0d1, guaranteeing viral eradication from any initial state. Conversely, when R0d>1, a unique endemic equilibrium emerges and is proven to be GAS, representing a state of chronic infection. These global stability properties are rigorously established for both the non-delayed and delayed systems using carefully constructed Lyapunov functions and functionals, coupled with LaSalle’s invariance principle. A sensitivity analysis identifies viral production rates (p1,p2) and infection rates (β1,β2) as the most influential parameters on R0d, while the viral clearance rate (m) and maturation delay (τ3) have a suppressive effect. The model is extended to evaluate antiretroviral therapy (ART), revealing a critical treatment efficacy threshold ϵcr required to suppress the virus. Numerical simulations validate all theoretical findings and further investigate the dynamics under varying treatment efficacies and maturation delays, highlighting how these factors can shift the system from persistence to clearance. This study provides a rigorous mathematical framework for understanding HIV dynamics, with actionable insights for designing targeted treatment protocols aimed at achieving viral suppression. Full article
(This article belongs to the Special Issue Complex System Dynamics and Mathematical Biology)
Show Figures

Figure 1

Back to TopTop