Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = square rebar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1198 KiB  
Article
Modeling the Ningbo Container Freight Index Through Deep Learning: Toward Sustainable Shipping and Regional Economic Resilience
by Haochuan Wu and Chi Gong
Sustainability 2025, 17(10), 4655; https://doi.org/10.3390/su17104655 - 19 May 2025
Cited by 1 | Viewed by 713
Abstract
With the expansion of global trade, China’s commodity futures market has become increasingly intertwined with regional maritime logistics. The Ningbo Containerized Freight Index (NCFI), as a key regional indicator, reflects freight rate fluctuations and logistics efficiency in real time. However, limited research has [...] Read more.
With the expansion of global trade, China’s commodity futures market has become increasingly intertwined with regional maritime logistics. The Ningbo Containerized Freight Index (NCFI), as a key regional indicator, reflects freight rate fluctuations and logistics efficiency in real time. However, limited research has explored how commodity futures data can enhance NCFI forecasting accuracy. This study aims to bridge that gap by proposing a hybrid deep learning model that combines recurrent neural networks (RNNs) and gated recurrent units (GRUs) to predict NCFI trends. A comprehensive dataset comprising 28,830 daily observations from March 2017 to August 2022 is constructed, incorporating the futures prices of key commodities (e.g., rebar, copper, gold, and soybeans) and market indices, alongside Clarksons containership earnings. The data undergo standardized preprocessing, feature selection via Pearson correlation analysis, and temporal partitioning into training (80%) and testing (20%) sets. The model is evaluated using multiple metrics—mean absolute Error (MAE), mean squared error (MSE), root mean square error (RMSE), and R2—on both sets. The results show that the RNN–GRU model outperforms standalone RNN and GRU architectures, achieving an R2 of 0.9518 on the test set with low MAE and RMSE values. These findings confirm that integrating cross-market financial indicators with deep sequential modeling enhances the interpretability and accuracy of regional freight forecasting. This study contributes to sustainable shipping strategies and provides decision-making tools for logistics firms, port operators, and policymakers seeking to improve resilience and data-driven planning in maritime transport. Full article
Show Figures

Figure 1

22 pages, 13575 KiB  
Article
An NDT Method for Measuring the Diameter and Embedment Depth of the Main Rebar in Cement Poles Based on Rotating Permanent Magnet Excitation
by Hejia Wang, Lan Xiong, Zhanlong Zhang, Zhenyou Liu, Hanyu Yang and Hao Wu
Sensors 2025, 25(5), 1477; https://doi.org/10.3390/s25051477 - 27 Feb 2025
Viewed by 647
Abstract
Cement poles serve as supporting components for transmission lines and are widely used in medium- and low-voltage transmission networks. The main rebar is the primary load-bearing structure of the pole, and the accurate measurement of its diameter and embedment depth is crucial for [...] Read more.
Cement poles serve as supporting components for transmission lines and are widely used in medium- and low-voltage transmission networks. The main rebar is the primary load-bearing structure of the pole, and the accurate measurement of its diameter and embedment depth is crucial for quality control and safety assessment. However, existing non-destructive testing methods lack the accuracy of quantifying the internal main rebar of cement poles, and the measurement process is complex, cumbersome, and inefficient. To address this issue, this paper proposes a magnetic rotation-based detection method for measuring the diameter and embedment depth of the main rebar within cement poles. A specially designed H-type magnetic excitation structure is proposed, coupled with a detection technique utilizing rotating permanent magnets. The magnetic induction intensity data were acquired at seven distinct rotation angles using sensors, and the collected data were subsequently combined with a CNN-LSTM model to invert the diameter and embedment depth of the main rebar. The experimental results indicate that the method significantly improved the measurement accuracy compared with the condition of fixed magnetic excitation, with reductions in root mean square error (RMSE) of 46.71% and 35.57% for the diameter and embedment depth measurements, respectively. This method provides a robust, efficient, and accurate solution for quantifying the main rebar within cement poles, addressing the challenge associated with the quality assessment and health monitoring of these structures. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

21 pages, 9337 KiB  
Article
Numerical Analysis on Sliding-Type Transverse Splicing Connection Applied in Widening Continuous Concrete Box-Girder Bridge
by Wenqing Wu, Chong Cao, Yuqin Wu, Jiyang Liu, Dan Liu, Liang Chen and Zheng Liu
Buildings 2025, 15(1), 35; https://doi.org/10.3390/buildings15010035 - 26 Dec 2024
Viewed by 868
Abstract
When traditional joint structures are used to widen multi-span continuous concrete box girder bridges, excessive lateral deformation often occurs at the girder ends, typically leading to the squeezing and cracking of seismic blocks by the girder webs. To address these technical challenges, this [...] Read more.
When traditional joint structures are used to widen multi-span continuous concrete box girder bridges, excessive lateral deformation often occurs at the girder ends, typically leading to the squeezing and cracking of seismic blocks by the girder webs. To address these technical challenges, this paper investigates a new type of slide-rail lateral joint structure that can create a longitudinal sliding effect between two bridge decks of the old and new bridge box girders, thereby effectively reducing the lateral deformation at the girder ends. First, this paper employs the finite element method to conduct a numerical analysis of a real-world bridge widening project, exploring the working mechanism and application feasibility of this novel connection method. The results show that, in the case study, if the traditional joint method is used, the lateral displacement at the girder ends can reach up to 40 mm after three years of widening. However, when the slide-rail joint structure is employed, the lateral displacement at the girder ends is limited to no more than 6 mm. This demonstrates that the new joint method can indeed effectively address the issue of excessive lateral deformation at the ends of the widened structure. Second, given that the slide-rail lateral joint structure is a relatively precise engineering structure, this paper examines the lateral load transfer mechanism under loads such as wheel loads and foundation settlement differences. It discusses the load-bearing characteristics of various components, including square steel pipes, lateral connection rebars, concrete flange plates, and embedded rebars. Finally, through a parameter sensitivity analysis, it is found that the torsional stiffness of the square steel pipes is a critical parameter for ensuring the load-bearing capacity of the structure. Therefore, it is recommended to set the wall thickness of the square steel pipes to 5 mm. Based on these research findings, this paper theoretically demonstrates that the new slide-rail lateral joint structure can effectively solve the technical challenges encountered during the lateral joint widening of multi-span long-span concrete continuous box girder bridges, providing a new solution for this field. Full article
Show Figures

Figure 1

54 pages, 2800 KiB  
Article
A New Avrami-Based Exponential Model for Predicting Fiber-Reinforced Polymer Bar Service Life: A Comparison with Existing Models Using a Large Database
by Tuanjie Wang, Abdul Ghani Razaqpur, Shaoliang Chen and Shiqiang Zhou
Polymers 2024, 16(21), 2956; https://doi.org/10.3390/polym16212956 - 22 Oct 2024
Viewed by 1285
Abstract
The fiber-reinforced polymers (FRP) bar is a promising solution to problems caused by steel rebar corrosion in concrete. To assess the service life of the FRP bar based on accelerated test results, it is crucial to have a reliable model. Here, a modified [...] Read more.
The fiber-reinforced polymers (FRP) bar is a promising solution to problems caused by steel rebar corrosion in concrete. To assess the service life of the FRP bar based on accelerated test results, it is crucial to have a reliable model. Here, a modified exponential (MEP) model is proposed based on the Avrami equation. The Avrami equation provides a theoretical foundation for the empirical exponential (EP) model and does not a priori fix the power of the exposure time to one. A database containing 903 data points from 74 groups of test specimens is assembled to compare the reliability of the MEP model vis-a-vis the EP, single logarithmic, double logarithmic, and power function models. The combination of Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the coefficient of determination (R2) criteria is proposed for assessing model reliability. It is shown that in certain cases the combined criteria, versus R2 alone, significantly increase the number of test groups meeting the acceptable performance limit. Observed test data aberrations are found to have minor influence on the results of the EP model, but they significantly influence the results of the other four models. The EP model generally predicts the lowest activation energy and the smallest strength retention for similar groups of bars, while the predicted values of the other four models exhibit a relatively small difference. The difference between the predicted strength retention values of the EP and MEP models shows an increasing trend with the increase of the absolute value of (1 − n), where n is the power of the exposure time in the MEP model. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

35 pages, 15835 KiB  
Article
Explainable Boosting Machine Learning for Predicting Bond Strength of FRP Rebars in Ultra High-Performance Concrete
by Alireza Mahmoudian, Maryam Bypour and Mahdi Kioumarsi
Computation 2024, 12(10), 202; https://doi.org/10.3390/computation12100202 - 9 Oct 2024
Cited by 5 | Viewed by 1882
Abstract
Aiming at evaluating the bond strength of fiber-reinforced polymer (FRP) rebars in ultra-high-performance concrete (UHPC), boosting machine learning (ML) models have been developed using datasets collected from previous experiments. The considered variables in this study are rebar type and diameter, elastic modulus and [...] Read more.
Aiming at evaluating the bond strength of fiber-reinforced polymer (FRP) rebars in ultra-high-performance concrete (UHPC), boosting machine learning (ML) models have been developed using datasets collected from previous experiments. The considered variables in this study are rebar type and diameter, elastic modulus and tensile strength of rebars, concrete compressive strength and cover, embedment length, and test method. The dataset contains two test methods: pullout tests and beam tests. Four types of rebar, including carbon fiber-reinforced polymer (CFRP), glass fiber-reinforced polymer (GFRP), basalt, and steel rebars, were considered. The boosting ML models applied in this study include AdaBoost, CatBoost, Gradient Boosting, XGBoost, and Hist Gradient Boosting. After hyperparameter tuning, these models demonstrated significant improvements in predictive accuracy, with XGBoost achieving the highest R2 score of 0.95 and the lowest Root Mean Square Error (RMSE) of 2.21. Shapley values analysis revealed that tensile strength, elastic modulus, and embedment length are the most critical factors influencing bond strength. The findings offer valuable insights for applying ML models in predicting bond strength in FRP-reinforced UHPC, providing a practical tool for structural engineering. Full article
(This article belongs to the Special Issue Computational Methods in Structural Engineering)
Show Figures

Figure 1

36 pages, 17089 KiB  
Article
Structural Behavior of Full-Scale Novel Hybrid Layered Concrete Slabs Reinforced with CFRP and Steel Grids under Impact Load
by Ahmed Abbas Ghali Abu Altemen, Mu’taz Kadhim Medhlom and Mustafa Özakça
Buildings 2024, 14(9), 2625; https://doi.org/10.3390/buildings14092625 - 24 Aug 2024
Cited by 2 | Viewed by 1357
Abstract
Reinforced concrete two-way slabs are important elements in the construction field, and their impact response under drop-weight impact is a complex mechanical issue that can cause the collapse of heavy structures. Previous research has documented the analysis of conventional steel-reinforced concrete slabs under [...] Read more.
Reinforced concrete two-way slabs are important elements in the construction field, and their impact response under drop-weight impact is a complex mechanical issue that can cause the collapse of heavy structures. Previous research has documented the analysis of conventional steel-reinforced concrete slabs under impact loads. However, the investigation of layered hybrid concrete composite flat solid slabs reinforced with carbon-fiber-reinforced polymer (CFRP) rebars is an innovative subject. This paper examines the structural behavior of layered novel hybrid concrete composite flat solid slabs with a combination of reactive powder concrete (RPC) in the top layer and normal concrete (NC) in the bottom layer, reinforced with internal CFRP or traditional steel bars in the tension zone, under an impact load test. For this purpose, ten full-scale square flat solid slab samples with a 1550 mm length and a 150 mm depth were fabricated and divided into eight layered hybrid concrete samples with 50% RPC and 50% NC and two samples cast with NC only. The impact tests were carried out using a hardened steel cylindroconical impactor (projectile) with a height of 650 mm and a diameter of 200 mm, a flat nose diameter of 90 mm, and a total mass of 150 kg released from two different heights of 5 and 7 m. The variables considered were the types and ratios of reinforcement, as well as the free-drop weight and height. The experimental results obtained showed that layered RPC flat solid slabs are superior in resisting and sustaining impact forces and also have fewer scattered parts when compared to NC flat solid slabs. Additionally, the flat solid slab samples reinforced with CFRP bar grids were overall more resistant to impact loads, by an average of 19%, compared to flat solid slabs with steel bars and showed lower deflection, by an average of 10%, compared to the other flat solid slabs. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 867 KiB  
Article
On Least Squares Support Vector Regression for Predicting Mechanical Properties of Steel Rebars
by Renan Bessa, Guilherme Alencar Barreto, David Nascimento Coelho, Elineudo Pinho de Moura and Raphaella Hermont Fonseca Murta
Metals 2024, 14(6), 695; https://doi.org/10.3390/met14060695 - 12 Jun 2024
Cited by 4 | Viewed by 1768
Abstract
Aiming at ensuring the quality of the product and reducing the cost of steel manufacturing, an increasing number of studies have been developing nonlinear regression models for the prediction of the mechanical properties of steel rebars using machine learning techniques. Bearing this in [...] Read more.
Aiming at ensuring the quality of the product and reducing the cost of steel manufacturing, an increasing number of studies have been developing nonlinear regression models for the prediction of the mechanical properties of steel rebars using machine learning techniques. Bearing this in mind, we revisit this problem by developing a design methodology that amalgamates two powerful concepts in parsimonious model building: (i) sparsity, in the sense that few support vectors are required for building the predictive model, and (ii) locality, in the sense that simpler models can be fitted to smaller data partitions. In this regard, two regression models based on the Least Squares Support Vector Regression (LSSVR) model are developed. The first one is an improved sparse version of the one introduced in a previous work. The second one is a novel local LSSVR-based regression model. The task of interest is the prediction of four output variables (the mechanical properties YS, UTS, UTS/YS, and PE) based on information about its chemical composition (12 variables) and the parameters of the heat treatment rolling (6 variables). The proposed LSSVR-based regression models are evaluated using real-world data collected from steel rebar manufacturing and compared with the global LSSVR model. The local sparse LSSVR approach was able to consistently outperform the standard single regression model approach in the task of interest, achieving improvements in the average R2 from previous studies: 5.04% for UTS, 5.19% for YS, 1.96% for UTS/YS, and 3.41% for PE. Furthermore, the sparsification of the dataset and the local modeling approach significantly reduce the number of SV operations on average, utilizing 34.0% of the total SVs available for UTS estimation, 44.0% for YS, 31.3% for UTS/YS, and 32.8% for PE. Full article
(This article belongs to the Special Issue Machine Learning Models in Metals)
Show Figures

Figure 1

19 pages, 13191 KiB  
Article
Automated Counting of Steel Construction Materials: Model, Methodology, and Online Deployment
by Jun Chen, Qian Huang, Wenhao Chen, Yang Li and Yutao Chen
Buildings 2024, 14(6), 1661; https://doi.org/10.3390/buildings14061661 - 4 Jun 2024
Cited by 2 | Viewed by 1660
Abstract
Construction material management is crucial for promoting intelligent construction methods. At present, the manual inventory of materials is inefficient and expensive. Therefore, an intelligent counting method for steel materials was developed in this study using the object detection algorithm. First, a large-scale image [...] Read more.
Construction material management is crucial for promoting intelligent construction methods. At present, the manual inventory of materials is inefficient and expensive. Therefore, an intelligent counting method for steel materials was developed in this study using the object detection algorithm. First, a large-scale image dataset consisting of rebars, circular steel pipes, square steel tubes, and I-beams on construction sites was collected and constructed to promote the development of intelligent counting methods. A vision-based and accurate counting model for steel materials was subsequently established by improving the YOLOv4 detector in terms of its network structure, loss function, and training strategy. The proposed model provides a maximum average precision of 91.41% and a mean absolute error of 4.07 in counting square steel tubes. Finally, a mobile application and a WeChat mini-program were developed using the proposed model to allow users to accurately count materials in real time by taking photos and uploading them. Since being released, this application has attracted more than 28,000 registered users. Full article
Show Figures

Figure 1

26 pages, 9865 KiB  
Article
Numerical Simulation Analysis of the Bending Performance of T-Beams Strengthened with Ultra-High-Performance Concrete Based on the CDP Model
by Yu Long, Zhimei Jiang, Kongru Zou, Jiang Du and Jun Yang
Buildings 2024, 14(5), 1284; https://doi.org/10.3390/buildings14051284 - 1 May 2024
Cited by 3 | Viewed by 2318
Abstract
In bridge reinforcement projects, damaged T-beams are the most common objects for reinforcement, yet the interface bonding and bending performance of UHPC reinforcement on T-beams have hardly been studied. To ensure the reliability and stability of UHPC-strengthened T-beams in practical applications, this study [...] Read more.
In bridge reinforcement projects, damaged T-beams are the most common objects for reinforcement, yet the interface bonding and bending performance of UHPC reinforcement on T-beams have hardly been studied. To ensure the reliability and stability of UHPC-strengthened T-beams in practical applications, this study introduced a post-installed rebar bonding technique to efficiently connect T-beams with UHPC layers. Initially, using ABAQUS software [2020 version] for finite element simulation, this study investigated the effects of various post-installed rebar parameters (horizontal spacing, yield strength, diameter, and matrix concrete strength) on the shear performance of the UHPC and RC interface, obtaining the optimal connection parameters. Subsequently, by comparing shear formulas in domestic and international standards, a new UHPC-RC steel bar interface shear strength theoretical formula with 93.6% accuracy was derived. Finally, finite element simulations analyzed the impact of different post-installed reinforcing bar layout forms and longitudinal spacing, as well as UHPC-strengthened location and layer thickness, on the bending performance of damaged T-beams. The results showed a good match between simulation outcomes and experimental results, applicable for further reinforcement analysis of T-beams. When the horizontal spacing of post-installed rebars is 12d, with diameters ranging from 10 mm to 14 mm, their anchoring capability is efficiently utilized. A square form of a post-installed rebar with a longitudinal spacing of 300 mm effectively improves the ultimate bending load capacity of the strengthened beam. The simulation analysis and theoretical results help in the design and application of post-installed steel connections and UHPC-strengthened structures in UHPC-strengthened reinforced concrete T-beam structures. Full article
Show Figures

Figure 1

17 pages, 7842 KiB  
Article
NLFEA of the Behavior of Polypropylene-Fiber-Reinforced Concrete Slabs with Square Opening
by Rajai Al-Rousan and Bara’a R. Alnemrawi
Buildings 2024, 14(2), 480; https://doi.org/10.3390/buildings14020480 - 8 Feb 2024
Cited by 14 | Viewed by 1138
Abstract
The bending behavior of one-war reinforced concrete (RC) slabs with polypropylene fibers (PF) was examined in this study under the effect of different opening ratios using the nonlinear finite element analysis (NLFEA) method. The investigated parameters include the effect of different square opening [...] Read more.
The bending behavior of one-war reinforced concrete (RC) slabs with polypropylene fibers (PF) was examined in this study under the effect of different opening ratios using the nonlinear finite element analysis (NLFEA) method. The investigated parameters include the effect of different square opening ratios between 0 and 24% and PF volume percentages between 0 and 1% with 0.1% increments. The objectives of this study were fulfilled using 88 NLFEA models with different combinations of the studied parameters, including 11 control slabs without openings. The slab’s behavior was studied focusing on different structural performance characteristics, such as ductility, using energy-based and deflection-based approaches, stiffness (initial and yielding), cracking, and ultimate load strength. In addition, other structural performance parameters were considered, such as the crack opening, failure modes, and strain values, which were recorded for all specimens during the loading history. Moreover, the load-carrying capacity of the slabs was compared, looking at the NLFEA method’s results and the theoretical prediction results based on the sectional analysis method. However, it was observed that the inclusion of PFs of different percentages has a superior effect on the behavior of RC slabs with small openings (less than 2% opening ratio) compared to the acceptable improvements obtained for sabs with larger opening sizes. Consequently, PF could be utilized as a replacement for conventional steel rebars for RC slabs with small openings. In addition, increasing the PF percentage increases the resulting crack-opening value at failure due to the provided stabilization effect, in addition to increasing the system’s ability to sustain loads. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 6565 KiB  
Article
Seismic Behavior of Concrete Columns Reinforced with Weakly Bonded Ultra-High Strength Rebars and Confined by Steel Tubes
by Jing Luo, Shiyu Yuan, Jun Zhao and Yuping Sun
Materials 2023, 16(21), 6868; https://doi.org/10.3390/ma16216868 - 26 Oct 2023
Cited by 4 | Viewed by 2503
Abstract
The usage of weakly bonded ultra-high strength (WBUHS) rebars has emerged as a promising approach to enhance the resilience of concrete components due to their remarkable mechanical properties. To promote the application of WBUHS rebars, this paper presented an investigation on the seismic [...] Read more.
The usage of weakly bonded ultra-high strength (WBUHS) rebars has emerged as a promising approach to enhance the resilience of concrete components due to their remarkable mechanical properties. To promote the application of WBUHS rebars, this paper presented an investigation on the seismic behavior of circular concrete columns reinforced with squarely arranged WBUHS rebars and externally confined by bolted steel tubes. Eight columns, including two reinforced with normal strength (NS) rebars and six reinforced with WBUHS rebars, were fabricated and tested under reversed cyclic lateral loading. Experimental results showed that the columns reinforced with WBUHS rebars exhibited remarkable drift-hardening capacity up to the drift of at least 5% as well as significantly reduced residual deformation even when subjected to relatively high axial compression with an axial load ratio of 0.33 in comparison to the traditional ductile columns reinforced with NS rebars. Notably, the precast columns reinforced with WBUHS rebars, with an embedment length of 20 times their diameter, behaved nearly identically in terms of resilience as cast-in-place columns. Additionally, a numerical analysis was performed to assess the hysteretic performance, and the analytical results, with consideration for the slippage of WBUHS rebars, were capable of capturing the hysteretic performance of test columns. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

21 pages, 3299 KiB  
Article
Life-Cycle Cost Assessment Using the Power Spectral Density Function in a Coastal Concrete Bridge
by Mehrdad Hadizadeh-Bazaz, Ignacio J. Navarro and Víctor Yepes
J. Mar. Sci. Eng. 2023, 11(2), 433; https://doi.org/10.3390/jmse11020433 - 16 Feb 2023
Cited by 6 | Viewed by 2471
Abstract
Recently, the repair and maintenance of structures has been necessary to prevent these structures’ sudden collapse and to prevent human and financial damage. A natural factor in marine environments that destroys structures and reduces their life is the presence of chloride ions. So [...] Read more.
Recently, the repair and maintenance of structures has been necessary to prevent these structures’ sudden collapse and to prevent human and financial damage. A natural factor in marine environments that destroys structures and reduces their life is the presence of chloride ions. So regular health monitoring of concrete coastal buildings for on-time repair is essential. This study investigates the performance of the power spectral density (PSD) method as a non-destructive damage-detection method to monitor the location and amount of damage caused by chloride ions during a structure’s life using different approaches according to life-cycle assessment (LCA) and life-cycle cost assessment (LCCA). In this regard, chloride corrosion damage dependent on zone distance from seawater was first calculated to obtain the service life of each part of a coastal concrete bridge according to the conventional method. Based on rebar corrosion each year, the next stage forecasted the bridge’s concrete deterioration. The PSD method monitored the annual loss of reinforcement cross-sectional area, changes in dynamic characteristics such as stiffness and mass, and the bridge structure’s life using sensitivity equations and the linear-least-squares algorithm. Finally, according to the location and quality of damage in each year of bridge life until the end of life, LCC and maintenance and repair costs of the PSD method were compared with the conventional method. The results showed that this strategy was very effective at lowering and optimizing the costs of maintenance and repair caused by chloride corrosion. Full article
Show Figures

Figure 1

22 pages, 7013 KiB  
Article
Behavior of Concrete-Filled U-Shaped Steel Beam to CFSST Column Connections
by Yan Lin, Zhijie Zhao, Xuhui Gao, Zhen Wang and Shuang Qu
Buildings 2023, 13(2), 517; https://doi.org/10.3390/buildings13020517 - 14 Feb 2023
Cited by 3 | Viewed by 3403
Abstract
Two new types of connection between concrete-filled U-shaped steel (CFUS) beams and concrete-filled square steel tube (CFSST) columns were presented in this study, including rebar-sleeve with internal diaphragm connection and rebar-through with internal diaphragm connection. Based on the experiments of the rebar-plate with [...] Read more.
Two new types of connection between concrete-filled U-shaped steel (CFUS) beams and concrete-filled square steel tube (CFSST) columns were presented in this study, including rebar-sleeve with internal diaphragm connection and rebar-through with internal diaphragm connection. Based on the experiments of the rebar-plate with internal diaphragm connections between CFUS beams and CFSST columns under cyclic loading, the nonlinear finite element models of the tested specimens were developed and validated by comparing them with the experimental results. The numerical results were in agreement with the experimental results in terms of failure modes, stress distribution, and load-displacement skeleton curves. Based on the FEA results, the mechanical behavior of the two new types of connection were comprehensively discussed and compared. Furthermore, this parametric study was conducted for the rebar-sleeve with internal diaphragm connection to investigate the effect of specific parameters on the capacity of the connection. The parameters included: The thickness of U-shaped steel, the ratio of longitudinal reinforcement in the concrete slab, the strength of concrete in the beam, the strength of the U-shaped steel, and the thickness of the internal diaphragm. The results indicate that the thickness of the U-shaped steel (tb), the ratio of the longitudinal reinforcement in concrete slab (ρ), and the strength of the U-shaped steel have significant effects on the loading capacity of the connection—the loading capacity increases by about 20% when tb increases from 6 mm to 8 mm, increases by about 45% when ρ increases from 1.5% to 4.8% under negative P, and increases by about 20% when the steel yield strength (fy) increases from 235 Mpa to 420 Mpa. Full article
(This article belongs to the Special Issue Prefabricated and Modular Steel Structures)
Show Figures

Figure 1

21 pages, 11818 KiB  
Article
Flexural Behaviour of Lightweight Reinforced Concrete Beams Internally Reinforced with Welded Wire Mesh
by Pavithra Chandramouli, Dinesh Muthukrishnan, Venkatesh Sridhar, Veerappan Sathish Kumar, Gunasekaran Murali and Nikolai Ivanovich Vatin
Buildings 2022, 12(9), 1374; https://doi.org/10.3390/buildings12091374 - 3 Sep 2022
Cited by 9 | Viewed by 3507
Abstract
Lightweight clay aggregate (LECA) is manufactured by heating clay with no lime content in the kiln; as a result, the water evaporates and angular clay balls with pore structures are obtained. LECA possess internal curing properties as any other lightweight aggregate due to [...] Read more.
Lightweight clay aggregate (LECA) is manufactured by heating clay with no lime content in the kiln; as a result, the water evaporates and angular clay balls with pore structures are obtained. LECA possess internal curing properties as any other lightweight aggregate due to their pore structure and higher water absorption capacity. In this work, experimental and analytical behaviour using LECA as a 100% replacement for coarse aggregate to make lightweight concrete (LWC) beams was studied. The LWC beams were compared to the conventional concrete beams in load-deflection, energy absorption capacity, and ductility index. Internal mesh reinforcement using welded wire mesh (WWM) of (4 layers of 15 mm square spacing, 4 layers of 10 mm square spacing, and 4 layers of 15 mm and 10 mm mesh placed alternatively) was provided to enhance the load-carrying capacity of the LWC beam without increasing the dimensions and self-weight of the beams. The beam internally reinforced with WWM exhibited higher load carrying capacity and withstood more significant deflection without sudden failure. The internal reinforcement of WWM is provided to make steel rebars, and WWM works monolithically while loading; this will reduce the stress on tension bars and increase load-carrying capacity. Finally, the generated analytical findings agreed well with the experimental data, demonstrating that the analytical model could mimic the behaviour of LWC beams with WWM. Full article
Show Figures

Figure 1

27 pages, 19967 KiB  
Article
Experimental Study on Seismic Performance of Precast Pretensioned Prestressed Concrete Beam-Column Interior Joints Using UHPC for Connection
by Xueyu Xiong, Yifan Xie, Gangfeng Yao, Ju Liu, Laizhang Yan and Liang He
Materials 2022, 15(16), 5791; https://doi.org/10.3390/ma15165791 - 22 Aug 2022
Cited by 15 | Viewed by 3226
Abstract
The traditional connections and reinforcement details of precast RC frames are complex and cause difficulty in construction. Ultra-high-performance concrete (UHPC) exhibits outstanding compressive strength and bond strength with rebars and strands; thus, the usage of UHPC in the joint core area will reduce [...] Read more.
The traditional connections and reinforcement details of precast RC frames are complex and cause difficulty in construction. Ultra-high-performance concrete (UHPC) exhibits outstanding compressive strength and bond strength with rebars and strands; thus, the usage of UHPC in the joint core area will reduce the amount of transverse reinforcement and shorten the anchoring length of beam rebars as well as strands significantly. Moreover, the lap splice connections of precast columns can be placed in the UHPC joint zone and the construction process will be simplified. This paper presented a novel joint consisting of a precast pretensioned prestressed concrete beam, an ordinary precast reinforced concrete (RC) column, and a UHPC joint zone. To study the seismic performance of the proposed joints, six novel interior joints and one monolithic RC joint were tested under low-cyclic loads. Variables such as the axial force, the compressive strength of UHPC, the stirrup ratio were considered in the tests. The test results indicate that the proposed joints exhibit comparable seismic performance of the monolithic RC joint. An anchorage length of 40 times the strands-diameter and a lap splice length of 16 times the rebar-diameter are adequate for prestressed strands and precast column rebars, respectively. A minimum column depth is suggested as 13 times the diameter of the beam-top continuous rebars passing through the joint. In addition, a nine-time rebar diameter is sufficient for the anchorage of beam bottom rebars. The shear strength of UHPC in the joint core area is suggested as 0.8 times the square root of the UHPC compressive strength. Full article
(This article belongs to the Special Issue Advanced Steel Composites in Construction Engineering)
Show Figures

Figure 1

Back to TopTop