Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (260)

Search Parameters:
Keywords = sprouted foods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 300 KiB  
Review
Sprouted Grains as a Source of Bioactive Compounds for Modulating Insulin Resistance
by Yan Sun, Caiyun Li and Aejin Lee
Appl. Sci. 2025, 15(15), 8574; https://doi.org/10.3390/app15158574 - 1 Aug 2025
Viewed by 296
Abstract
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination [...] Read more.
Sprouted grains are gaining attention as a natural and sustainable source of bioactive compounds with potential benefits in managing insulin resistance (IR), a hallmark of obesity-related metabolic disorders. This review aims to synthesize current findings on the biochemical changes induced during grain germination and their relevance to metabolic health. We examined recent in vitro, animal, and human studies focusing on how germination enhances the nutritional and functional properties of grains, particularly through the synthesis of compounds such as γ-aminobutyric acid, polyphenols, flavonoids, and antioxidants, while reducing anti-nutritional factors. These bioactive compounds have been shown to modulate metabolic and inflammatory pathways by inhibiting carbohydrate-digesting enzymes, suppressing pro-inflammatory cytokines, improving redox balance, and influencing gut microbiota composition. Collectively, these effects contribute to improved insulin sensitivity and glycemic control. The findings suggest that sprouted grains serve not only as functional food ingredients but also as accessible dietary tools for preventing or alleviating IR. Their role in delivering multiple bioactive molecules through a simple, environmentally friendly process highlights their promise in developing future nutrition-based strategies for metabolic disease prevention. Full article
(This article belongs to the Special Issue New Insights into Bioactive Compounds)
23 pages, 1268 KiB  
Article
Combining Stable Isotope Labeling and Candidate Substrate–Product Pair Networks Reveals Lignan, Oligolignol, and Chicoric Acid Biosynthesis in Flax Seedlings (Linum usitatissimum L.)
by Benjamin Thiombiano, Ahlam Mentag, Manon Paniez, Romain Roulard, Paulo Marcelo, François Mesnard and Rebecca Dauwe
Plants 2025, 14(15), 2371; https://doi.org/10.3390/plants14152371 - 1 Aug 2025
Viewed by 203
Abstract
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in [...] Read more.
Functional foods like flax (Linum usitatissimum L.) are rich sources of specialized metabolites that contribute to their nutritional and health-promoting properties. Understanding the biosynthesis of these compounds is essential for improving their quality and potential applications. However, dissecting complex metabolic networks in plants remains challenging due to the dynamic nature and interconnectedness of biosynthetic pathways. In this study, we present a synergistic approach combining stable isotopic labeling (SIL), Candidate Substrate–Product Pair (CSPP) networks, and a time-course study with high temporal resolution to reveal the biosynthetic fluxes shaping phenylpropanoid metabolism in young flax seedlings. By feeding the seedlings with 13C3-p-coumaric acid and isolating isotopically labeled metabolization products prior to the construction of CSPP networks, the biochemical validity of the connections in the network was supported by SIL, independent of spectral similarity or abundance correlation. This method, in combination with multistage mass spectrometry (MSn), allowed confident structural proposals of lignans, neolignans, and hydroxycinnamic acid conjugates, including the presence of newly identified chicoric acid and related tartaric acid esters in flax. High-resolution time-course analyses revealed successive waves of metabolite formation, providing insights into distinct biosynthetic fluxes toward lignans and early lignification intermediates. No evidence was found here for the involvement of chlorogenic or caftaric acid intermediates in chicoric acid biosynthesis in flax, as has been described in other species. Instead, our findings suggest that in flax seedlings, chicoric acid is synthesized through successive hydroxylation steps of p-coumaroyl tartaric acid esters. This work demonstrates the power of combining SIL and CSPP strategies to uncover novel metabolic routes and highlights the nutritional potential of flax sprouts rich in chicoric acid. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 991 KiB  
Article
Zinc Sulfate Stress Enhances Flavonoid Content and Antioxidant Capacity from Finger Millet Sprouts for High-Quality Production
by Xin Tian, Jing Zhang, Zhangqin Ye, Weiming Fang, Xiangli Ding and Yongqi Yin
Foods 2025, 14(15), 2563; https://doi.org/10.3390/foods14152563 - 22 Jul 2025
Viewed by 275
Abstract
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and [...] Read more.
The enhancement of flavonoid content and antioxidant capacity in plants remains a significant area of focus in the investigation of plant-derived functional foods. This study systematically investigated the impact of exogenous zinc sulfate (5 mM ZnSO4) stress on flavonoid content and antioxidant capacity in finger millet (Eleusine coracana L.) sprouts, along with its underlying molecular mechanisms. The results demonstrated that treatment with 5 mM ZnSO4 significantly increased the flavonoid content in sprouts, reaching a maximum value of 5.59 μg/sprout on the 6th day of germination. ZnSO4 stress significantly enhanced the activities of PAL, 4CL, and C4H, while also considerably upregulating the expression levels of flavonoid-biosynthesis-related genes. Physiological indicators revealed that ZnSO4 stress increased the contents of malondialdehyde, hydrogen peroxide, and superoxide anion in the sprouts, while inhibiting sprout growth. As a stress response, ZnSO4 stress enhances the antioxidant system by increasing antioxidant capacity (ABTS, DPPH, and FRAP), antioxidant enzyme activity (POD and SOD), and related gene expression (POD, CAT, and APX) in sprouts. This study provides experimental evidence for ZnSO4 stress to improve flavonoid accumulation and antioxidant capacity in finger millet sprouts and provides important theoretical and practical guidance for the development of high-quality functional foods. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

25 pages, 2613 KiB  
Article
Design and Optimization of a Plant-Based Synbiotic Beverage from Sprouted Buckwheat: A Multi-Response Approach for Enhancing Functional Properties
by Caterina Nela Dumitru, Camelia Vizireanu, Gabriela Elena Bahrim, Rodica Mihaela Dinica, Mariana Lupoae, Alina Oana Dumitru and Tudor Vladimir Gurau
Beverages 2025, 11(4), 104; https://doi.org/10.3390/beverages11040104 - 17 Jul 2025
Viewed by 395
Abstract
Fermented plant-based beverages represent promising functional foods due to their content of bioactive compounds (polyphenols, prebiotics) and viable probiotic microorganisms. Sprouted buckwheat is a rich source of bioactives and nutrients, which makes it a promising ingredient for the development of synbiotic formulations. This [...] Read more.
Fermented plant-based beverages represent promising functional foods due to their content of bioactive compounds (polyphenols, prebiotics) and viable probiotic microorganisms. Sprouted buckwheat is a rich source of bioactives and nutrients, which makes it a promising ingredient for the development of synbiotic formulations. This study aimed to optimize the fermentation process of a plant-based beverage composed of germinated buckwheat, honey, inulin, and Lactiplantibacillus plantarum (Lpb. plantarum), using Box–Behnken experimental design (BBD) and Response Surface Methodology (RSM) tools. The influence of three independent variables (inulin, honey, and inoculum concentration) was evaluated on five key response variables: total polyphenol content, flavonoid content, antioxidant activity (RSA%), pH, and starter culture viability. The optimal formulation—comprising 3% inulin, 10% honey, and 6.97 mg/100 mL inoculum—demonstrated functional stability over 21 days of refrigerated storage (4 °C), maintaining high levels of antioxidants and probiotic viability in the fermented beverage. Kinetic analysis of the fermentation process confirmed the intense metabolic activity of Lpb. plantarum, as evidenced by a decrease in pH, active consumption of reducing sugars, and organic acids accumulation. Full article
Show Figures

Figure 1

25 pages, 1344 KiB  
Review
Breeding Wheat (Triticum aestivum L.) for Pre-Harvest Sprouting Tolerance in South Africa: Current Status and Future Prospects
by Thobeka Philile Khumalo-Mthembu, Palesa Mmereki, Nokulunga Prudence Mzimela, Annelie Barnard and Toi John Tsilo
Plants 2025, 14(14), 2134; https://doi.org/10.3390/plants14142134 - 10 Jul 2025
Viewed by 355
Abstract
Pre-harvest sprouting of wheat is the premature germination of ripened wheat (Triticum aestivum L.) kernels in the spike before harvest and is influenced by a combination of environmental and genetic factors, and their interaction. This greatly affects grain yield and quality, thus [...] Read more.
Pre-harvest sprouting of wheat is the premature germination of ripened wheat (Triticum aestivum L.) kernels in the spike before harvest and is influenced by a combination of environmental and genetic factors, and their interaction. This greatly affects grain yield and quality, thus posing a threat to food security and sustainable agriculture. Pre-harvest sprouting has been studied for over 30 years in South Africa and remains a trait of interest in our wheat breeding programs amid climatic change. This paper therefore provides a comprehensive review of the progress made, as well as the challenges and limitations encountered, in breeding wheat for pre-harvest sprouting tolerance in South Africa. Future prospects and research directions are also discussed. Conventional breeding has been the main breeding strategy used in the country, with the success of breeding commercial wheat cultivars with durable pre-harvest sprouting tolerance for deployment in the three main wheat production regions of South Africa. Therefore, augmenting conventional breeding with molecular markers and modern genomic breeding technologies is anticipated to speed up breeding locally adapted, climate-resilient wheat varieties that balance tolerance to pre-harvest sprouting with high yield potential. This is key to realizing sustainable development goals of food security and sustainable agriculture. Full article
(This article belongs to the Special Issue Improvement of Agronomic Traits and Nutritional Quality of Wheat)
Show Figures

Figure 1

18 pages, 1416 KiB  
Review
Impacts of Phenolic Compounds and Their Benefits on Human Health: Germination
by Jonathan Hernández-Miranda, Karen Argelia Reyes-Portillo, Abigail García-Castro, Esther Ramírez-Moreno and Alma Delia Román-Gutiérrez
Metabolites 2025, 15(7), 425; https://doi.org/10.3390/metabo15070425 - 22 Jun 2025
Viewed by 1110
Abstract
Due to their outstanding nutritional profile, the consumption of seeds has been an essential source of nutrients. These foods have a unique composition, containing carbohydrates, proteins, lipids, fiber, vitamins, minerals, and bioactive compounds in the same food matrix. Furthermore, the nutritional profile can [...] Read more.
Due to their outstanding nutritional profile, the consumption of seeds has been an essential source of nutrients. These foods have a unique composition, containing carbohydrates, proteins, lipids, fiber, vitamins, minerals, and bioactive compounds in the same food matrix. Furthermore, the nutritional profile can naturally be maximized and optimized through the germination process through two key methods: degradation of macromolecules and biosynthesis of metabolites, which favors an increase in the concentration of bioactive compounds, such as phenolic compounds. The extraction of these compounds has been studied in various plant fractions, including roots, stems, leaves, fruits, and seeds, using different extraction techniques. Among these, ultrasound-assisted extraction has gained popularity due to its efficiency and yield, considering specific parameters to maximize the bioactive yield. These advances have allowed us to evaluate the potential of the extracted compounds as preventive agents in cardiovascular and degenerative diseases, showing promising results in preventive medicine. Recent studies have shown that cereals possess anti-lipid, anti-hypercholesterolemic, anti-diabetic, anti-inflammatory, and antibiotic properties, mainly due to their antioxidant capacity. This work describes the effects of germination on the nutritional profile, presents benefits to human health through seed consumption, and refers to a collection of strategies to improve the extraction process. Full article
(This article belongs to the Special Issue Plants and Plant-Based Foods for Metabolic Disease Prevention)
Show Figures

Graphical abstract

12 pages, 1052 KiB  
Article
Study on Effect of Germination on Flavonoid Content and Nutritional Value of Different Varieties of Chickpeas
by Jiyuan Xue, Jia Yang and Yongqi Yin
Foods 2025, 14(13), 2157; https://doi.org/10.3390/foods14132157 - 20 Jun 2025
Viewed by 377
Abstract
Chickpeas (Cicer arietinum L.) were popular for their high nutritional profile and abundance of bioactive constituents, making them highly sought after in the consumer market. This investigation evaluated the impact of germination on the levels of total phenolics, total flavonoids, and other [...] Read more.
Chickpeas (Cicer arietinum L.) were popular for their high nutritional profile and abundance of bioactive constituents, making them highly sought after in the consumer market. This investigation evaluated the impact of germination on the levels of total phenolics, total flavonoids, and other bioactive compounds, as well as free amino acids, soluble proteins, dietary fiber, and starch, in two chickpea sprout cultivars. The results demonstrated that germination significantly enhanced the concentrations of total flavonoids and phenolics in chickpeas. Compared to ungerminated seeds, the total flavonoid content in Xinying No. 1 and Xinying No. 2 sprouts increased by 3.95-fold and 3.25-fold, respectively, while total phenolic content increased by 2.47-fold and 2.38-fold. Germination also significantly augmented free amino acid, soluble protein, and total dietary fiber content while reducing resistant starch and insoluble dietary fiber. Concurrently, the bioaccessibility of essential nutrients was substantially improved, as indicated by enhanced solubility. This research provided valuable insights for optimizing the nutritional quality and bioactive compound content of chickpeas through sprouting technology. These results provided critical insights for optimizing the nutritional and functional properties of chickpeas via sprouting and established a scientific basis for the development of functional foods from germinated chickpeas, underscoring their potential to support dietary health and wellness. Full article
Show Figures

Figure 1

13 pages, 869 KiB  
Article
New Insights into Sprout Production from Melon (Cucumis melo L. var. reticulatus) Seeds as By-Product of Fruit Processing
by Angelica Galieni, Beatrice Falcinelli, Fabio Stagnari, Eleonora Oliva, Federico Fanti, Maria Chiara Lorenzetti and Paolo Benincasa
Plants 2025, 14(13), 1896; https://doi.org/10.3390/plants14131896 - 20 Jun 2025
Viewed by 357
Abstract
Melon is a valuable crop that generates significant by-products during consumption and processing. Among these, seeds are rich in phenolic compounds and might be used to produce sprouts with increased content of these bioactive substances. This study evaluated phenolic compounds (PhCs) in sprouts [...] Read more.
Melon is a valuable crop that generates significant by-products during consumption and processing. Among these, seeds are rich in phenolic compounds and might be used to produce sprouts with increased content of these bioactive substances. This study evaluated phenolic compounds (PhCs) in sprouts of two melon cultivars, Thales and SV9424ML, obtained from seeds having different germination speeds, thus harvested at 6 and 14 days after sowing (DAS). A factorial combination of cultivar and harvest time was tested in a completely randomized design with four replicates. Thales produced more ready-to-eat sprouts at 6 DAS than SV9424ML (64.0% vs. 46.7%). Sprouting significantly increased total PhCs content, particularly flavonoids, with Thales showing higher values than SV9424ML (50.2 vs. 32.6 mg kg−1 DW). Phenolic profiles significantly varied among cultivars and harvests. Sprouts at 6 DAS had more total hydroxybenzoic acids and flavonoids, while 14 DAS sprouts were richer in hydroxycinnamic acids. Significant differences between harvest dates were observed in the concentrations of protocatechuic, vanillic (VanA), p-coumaric (p-CouA), ferulic (FerA) acids, and orientin (Ori) for Thales, and of VanA, p-CouA, FerA, and Ori for SV9424ML. Results are encouraging, but future investigations are essential to understand whether these sprouts can be suitable for fresh consumption, food supplements, or phytochemical extraction. Full article
(This article belongs to the Special Issue Microgreens—a New Trend in Plant Production)
Show Figures

Figure 1

25 pages, 4879 KiB  
Article
Combined Phytochemical Sulforaphane and Dietary Fiber Inulin Contribute to the Prevention of ER-Negative Breast Cancer via PI3K/AKT/MTOR Pathway and Modulating Gut Microbial Composition
by Huixin Wu, Brittany L. Witt, William J. van der Pol, Casey D. Morrow, Lennard W. Duck and Trygve O. Tollefsbol
Nutrients 2025, 17(12), 2023; https://doi.org/10.3390/nu17122023 - 17 Jun 2025
Viewed by 736
Abstract
Background: Breast cancer (BC) is the second most common cancer among women in the United States. It has been estimated that one in eight women will be diagnosed with breast cancer in her lifetime. Various BC risk factors, such as age, physical inactivity, [...] Read more.
Background: Breast cancer (BC) is the second most common cancer among women in the United States. It has been estimated that one in eight women will be diagnosed with breast cancer in her lifetime. Various BC risk factors, such as age, physical inactivity, and smoking, play a substantial role in BC occurrence and development. Early life dietary intervention with plant-based bioactive compounds has been studied for its potential role in BC prevention. Sulforaphane (SFN), an isothiocyanate, is an antioxidant and anti-inflammatory agent extracted from broccoli sprouts (BSp) and other plants. Dietary supplementation of SFN suppresses tumor growth by inducing protective epigenetic changes and inhibiting cancer cell proliferation. Inulin, as a dietary fiber, has been studied for alleviating GI discomfort and weight loss by promoting the growth of beneficial bacteria in the gut. Objective: Early-life combinatorial treatment with both phytochemical SFN and potential prebiotic agent inulin at lower and safer dosages may confer more efficacious and beneficial effects in BC prevention. Methods: Transgenic mice representing estrogen receptor-negative BC were fed 26% (w/w) BSp and 2% (w/v) inulin supplemented in food and water, respectively. Results: The combinatorial treatment inhibited tumor growth, increased tumor onset latency, and synergistically reduced tumor weight. Gut microbial composition was analyzed between groups, where Ruminococcus, Muribaculaceae, and Faecalibaculum significantly increased, while Blautia, Turicibacter, and Clostridium sensu stricto 1 significantly decreased in the combinatorial group compared with the control group. Furthermore, combinatorial treatment induced a protective epigenetic effect by inhibiting histone deacetylases (HDACs) and DNA methyltransferases (DNMTs). Intermediates in the AKT/PI3K/MTOR pathway were significantly suppressed by the combinatorial treatment, including PI3K p85, p-AKT, p-PI3K p55, MTOR, and NF-κB. Cell cycle arrest and programmed cell death were induced by the combinatorial treatment via elevating the expression of cleaved-caspase 3 and 7 and inhibiting the expressions of CDK2 and CDK4, respectively. Orally administering F. rodentium attenuated tumor growth and induced apoptosis in a syngeneic triple-negative breast cancer (TNBC) mouse model. Conclusions: Overall, the findings suggest that early-life dietary combinatorial treatment contributed to BC prevention and may be a potential epigenetic therapy that serves as an adjunct to other traditional neoadjuvant therapies. Full article
(This article belongs to the Special Issue Advances in Gene–Diet Interactions and Human Health)
Show Figures

Figure 1

19 pages, 2524 KiB  
Article
Efficient Preparation and Bioactivity Evaluation of Aglycone Soy Isoflavones via a Multi-Enzyme Synergistic Catalysis Strategy
by Yating Zhao, Yanhong Fu, Peng Du, Nan Li, Yaru Lv, Lizhen Hao, Wenlong Liu and Jing Xiao
Processes 2025, 13(6), 1831; https://doi.org/10.3390/pr13061831 - 10 Jun 2025
Viewed by 506
Abstract
Aglycone-type soy isoflavones, recognized for their bioactive phytoestrogen properties, face industrial limitations due to their low natural abundance and inefficient conversion. This study optimized a multi-enzyme synergistic catalysis system using soybean sprout powder, achieving high conversion rates and purity through response surface methodology. [...] Read more.
Aglycone-type soy isoflavones, recognized for their bioactive phytoestrogen properties, face industrial limitations due to their low natural abundance and inefficient conversion. This study optimized a multi-enzyme synergistic catalysis system using soybean sprout powder, achieving high conversion rates and purity through response surface methodology. The optimal enzyme system comprised β-glucosidase (25 U/mL), cellulase (200 U/mL), hemicellulase (400 U/mL), and β-galactosidase (900 U/mL) at pH 5.0, 50 °C, and 3.2 h. This system yielded an aglycone conversion rate of 92% and glycoside hydrolysis rate of 97%, outperforming single-enzyme approaches. Upon post-purification with AB-8 macroporous resin, the product reached a purity of 58.1 ± 0.54% and exhibited strong antioxidant activity, with DPPH and ABTS radical scavenging rates of 81.01 ± 0.78% and 71.37 ± 1.01%, respectively. In a zebrafish central nervous system injury model induced by mycophenolate mofetil, the 500 μg/mL sample group significantly reduced neural apoptosis fluorescence intensity compared to controls (p < 0.05), achieving a neuroprotective rate of 76.58%, which was similar to the effect of L-reducing glutathione. This study offers an efficient, cost-effective enzymatic strategy for producing aglycone soy isoflavones, highlighting their potential in functional foods and neuroprotective applications. Full article
Show Figures

Figure 1

14 pages, 2070 KiB  
Article
Development of an Efficient Micropropagation Protocol for Curcuma longa L. cv. Trang 1
by Atcha Boonprasert, Pundanai Chitphet, Nuttha Sanevas, Ekaphan Kraichak, Supachai Vuttipongchaikij and Narong Wongkantrakorn
Int. J. Plant Biol. 2025, 16(2), 64; https://doi.org/10.3390/ijpb16020064 - 6 Jun 2025
Viewed by 580
Abstract
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional [...] Read more.
Turmeric (Curcuma longa L. cv. Trang 1), a high-value cultivar known for its elevated curcuminoid and volatile oil content, holds significant potential in pharmaceutical and food applications. However, its commercial propagation is constrained by low rhizome productivity and the limitations of conventional vegetative propagation. This study aimed to improve the propagation efficiency of turmeric cv. Trang 1 by developing optimized protocols for explant sterilization, shoot proliferation, root induction, and acclimatization. Sprouted rhizome buds were sterilized and cultured on a Murashige and Skoog (MS) medium supplemented with various plant growth regulators, including cytokinins (benzyladenine [BA], thidiazuron [TDZ], and meta-topolin [mT]) and auxins (indole-3-butyric acid [IBA] and 1-naphthaleneacetic acid [NAA]). The shoot induction (4.60 ± 1.47 shoots per explant) and shoot height (2.34 ± 0.61 cm) were observed on the MS medium with 3.0 mg/L BA, while the TDZ, at 0.5 mg/L, also induced a high number of shoots (5.22 ± 0.64). When using single shoots derived from bud explants, mT at 1.5 mg/L significantly enhanced the shoot formation. For the root induction, 2.0 mg/L IBA yielded the highest number of roots (7.33 ± 1.49), while NAA was less effective. The plantlets acclimatized in a 1:1 soil and peat moss mixture showed the highest survival rate (86.67%). This improved protocol enables the efficient production of turmeric plantlets, supporting commercial deployment. Full article
(This article belongs to the Section Plant Physiology)
Show Figures

Figure 1

27 pages, 2941 KiB  
Article
Multivariate Evaluation of Biofunctional Metabolites in Korean Soybean Cultivars by Use Categories: Assessment of Antioxidant and Enzyme Inhibition Activities
by Kye Man Cho, Se Hyeon Jeon, Eun Jeong Ko, Dong Hyun Park, Ye Ri Jeong, Du Yong Cho, Jeong Ho Kim and Jin Hwan Lee
Antioxidants 2025, 14(6), 683; https://doi.org/10.3390/antiox14060683 - 4 Jun 2025
Cited by 1 | Viewed by 497
Abstract
This research investigates the metabolite composition and biofunctional activiteies of 41 Korean soybeans, categorized by application: bean sprout, bean paste, vegetable, and cooked-with-rice. Isoflavones were identified via UPLC-Q-TOF-MS/MS and quantified using HPLC, revealing malonylgenistin as the predominant composition (average 743.4 μg/g, 42.3% of [...] Read more.
This research investigates the metabolite composition and biofunctional activiteies of 41 Korean soybeans, categorized by application: bean sprout, bean paste, vegetable, and cooked-with-rice. Isoflavones were identified via UPLC-Q-TOF-MS/MS and quantified using HPLC, revealing malonylgenistin as the predominant composition (average 743.4 μg/g, 42.3% of total isoflavones). Bean sprout showed the highest average isoflavone (2780.6 μg/g), followed by bean paste (1837.8 μg/g), cooked-with-rice (1448.2 μg/g), and vegetable (883.2 μg/g), with significant differences in individual cultivars. Protein ranged from 36.8 to 46.6% and oil from 17.0 to 22.3%, with vegetable soybeans exhibiting the highest average protein (44.9%) and lowest average oil (18.6%). Moreover, PLS-DA and hierarchical clustering revealed distinct metabolic patterns in usage groups. Antioxidant activities (radical scavenging; DNA protection) and enzyme inhibition (tyrosinase; α-glucosidase) also varied significantly, correlating with isoflavone distributions. Particularly, Sorog exhibited the highest isoflavone (3722.7 μg/g) and strong antioxidant activity (DPPH: 72.2%; ABTS: 93.8%, 500 μg/mL), DNA protection (92.8%, 200 μg/mL), and inhibition of tyrosinase and α-glucosidase by 78.4% and 84.2% (500 μg/mL). These findings suggest that isoflavone-rich bean sprout soybeans, especially Sorog, are promising candidates for health-promoting foods and functional cultivar development. This is the first systematic study comparing the metabolites and health-related properties of soybeans based on Korean usage categories. Full article
(This article belongs to the Special Issue Antioxidant Capacity of Natural Products—2nd Edition)
Show Figures

Graphical abstract

24 pages, 1057 KiB  
Article
Antioxidant/Anti-Inflammatory Potential and Sensory Acceptance of Granola Bars Developed with Sorghum Sprout Flour Irradiated with UV-A LED Light
by Alan A. Ruiz-Hernández, Ofelia Rouzaud-Sández, Maribel Valenzuela-González, J. Abraham Domínguez-Avila, Gustavo A. González-Aguilar and Maribel Robles-Sánchez
Foods 2025, 14(10), 1787; https://doi.org/10.3390/foods14101787 - 17 May 2025
Cited by 1 | Viewed by 796
Abstract
Overweight and obesity are worldwide problems; several strategies have been applied to counteract them, including the development of functional foods with specific bioactivities. Sorghum has been shown in in vitro and in vivo studies to improve various biomarkers related to overweight, obesity, and [...] Read more.
Overweight and obesity are worldwide problems; several strategies have been applied to counteract them, including the development of functional foods with specific bioactivities. Sorghum has been shown in in vitro and in vivo studies to improve various biomarkers related to overweight, obesity, and inflammation, particularly when sprouted and irradiated with UV light. In the present study, irradiated sorghum sprouts were used to prepare granola bars; their phenolic profile, antioxidant activity, in vitro bioaccessibility, anti-inflammatory potential, and sensory acceptability were measured. Gallic acid increased in response to irradiation, while catechin increased in response to sprouting. In vitro digestion showed higher intestinal recovery of phenolics and antioxidant capacity, as well as a significant decrease in nitric oxide content, an inflammation biomarker. A sensory analysis showed scores of approximately 5.5–6.5 (on a 9-point hedonic scale) for most variables analyzed, suggesting adequate acceptability. Sorghum bars made with irradiated sorghum sprouts present high potential as health foods that could help counteract the problems of overweight, obesity, and related diseases. Further in vitro and in vivo studies are needed to demonstrate the benefits of consuming this food. Full article
(This article belongs to the Special Issue Dietary Polyphenols in Foods)
Show Figures

Figure 1

22 pages, 1641 KiB  
Article
The Effect of Germination Duration on the Biochemical Indicators and Functional-Technological Properties of Triticale Grain
by Gulnazym Ospankulova, Indira Temirova, Dana Toimbayeva, Saule Saduakhasova, Sayagul Tazhina, Dina Khamitova, Marat Muratkhan, Akmaral Aldiyeva and Aibek Zhumalin
Appl. Sci. 2025, 15(10), 5596; https://doi.org/10.3390/app15105596 - 16 May 2025
Viewed by 490
Abstract
Germination is a biotechnological process that activates enzymatic reactions and alters the chemical content of grain, improving its nutritional and functional value. However, the duration of the germination process significantly affects grain composition and properties. Prolonged and uncontrolled germination can lead to undesirable [...] Read more.
Germination is a biotechnological process that activates enzymatic reactions and alters the chemical content of grain, improving its nutritional and functional value. However, the duration of the germination process significantly affects grain composition and properties. Prolonged and uncontrolled germination can lead to undesirable changes, such as excessive enzymatic activity, microbial contamination of sprouted grains, and loss of dry matter. While short-term germination is preferable for producing various food products, including whole-grain porridge, this article analyzed the impact of short-term germination of triticale grain (for 18, 20, 22, and 24 h) on its biochemical indicators and functional-technological properties. This research established that changes in biochemical values accompany the germination of triticale grain. The most significant increase in protein content was observed after 20 h of germination (GT 20), which increased by 4.43%. In contrast, after 24 h (GT 24), a decrease of 3.27% was noted compared to the original content in the whole grain (WGT). The contents of fats, carbohydrates, and ash tended to decrease. Germination promoted an increase in the amount of essential amino acids and improved the amino acid profile, particularly during the 20 and 22 h germination intervals. At 24 h of germination, the highest increase in total phenolic compounds (28.6%) and antioxidant activity (20.8%) was recorded. B-group vitamins, thiamine, and riboflavin, were detected in the sprouts only after 22 and 24 h of germination. The highest thiamine content (0.17 mg/kg) was observed at the 22nd hour, and the highest riboflavin content (2.51 mg/kg) was observed at the 24th hour. Niacin content showed a steady increase throughout the germination period. The maximum magnesium (0.200%) and molybdenum (0.589%) contents were recorded after 24 h of germination, while the calcium content increased at all germination intervals. The functional and technological properties of sprouted triticale grain improved, while the pasting (gelatinization) properties tended to decrease. Thus, it has been established that short-term germination enhances the biochemical indicators and functional-technological properties of triticale grains, indicating their potential for use in the production of whole-grain porridge. Full article
Show Figures

Graphical abstract

19 pages, 1621 KiB  
Article
Validation of QTLs for Resistance to Pre-Harvest Sprouting in a Panel of European Wheat Cultivars
by Bruno Rajković, Ana Lovrić, Marko Maričević, Dario Novoselović and Hrvoje Šarčević
Plants 2025, 14(9), 1342; https://doi.org/10.3390/plants14091342 - 29 Apr 2025
Viewed by 608
Abstract
Pre-harvest sprouting (PHS) of wheat poses a major challenge to global food security due to its negative impact on grain yield and quality. In the present study, we conducted the validation of previously published markers or functional markers associated with PHS resistance in [...] Read more.
Pre-harvest sprouting (PHS) of wheat poses a major challenge to global food security due to its negative impact on grain yield and quality. In the present study, we conducted the validation of previously published markers or functional markers associated with PHS resistance in a panel of 200 wheat cultivars adapted to Southeastern European conditions. In field experiments conducted in four environments in Croatia, the germination index (GI) was assessed, and significant genetic, environmental, and genotype–environment interactions were detected. The broad-sense heritability for GI was high (0.86), confirming the predominant role of genetic factors in determining PHS resistance. Twenty-two polymorphic SNP markers were analyzed for their effects on GI, of which nine markers from chromosomes 3A, 3B, 4A, 5A, and 7B showed significant genotypic effects across environments, especially TaMKK3-A and wsnp_Ex_rep_c66324_64493429. In addition, nine marker combinations were identified, which showed significant differences in GI between allele combinations. Overall, this study elucidates the genetic basis of PHS resistance in wheat cultivars adapted to the agro-climatic conditions of Southeast Europe and provides insights for marker-assisted breeding strategies to improve PHS resistance. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

Back to TopTop