Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = sponge iron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2863 KiB  
Article
Evolution of Microbial Community Structure and Denitrifying Functional Microorganisms in the Biological Sponge Iron System
by Jing Li, Huina Xie, Wei Zhao and Jie Li
Appl. Sci. 2025, 15(13), 7244; https://doi.org/10.3390/app15137244 - 27 Jun 2025
Viewed by 300
Abstract
With the growing problem of global water pollution, nitrogen pollution has become a key factor affecting aquatic ecosystems and human health. The biological sponge iron system (BSIS) has gained attention as a research hotspot due to its efficient denitrification capability. This study focused [...] Read more.
With the growing problem of global water pollution, nitrogen pollution has become a key factor affecting aquatic ecosystems and human health. The biological sponge iron system (BSIS) has gained attention as a research hotspot due to its efficient denitrification capability. This study focused on the changes in microbial community structure and the relative abundance and interrelationships of nitrogen cycle-related functional bacteria at different operational stages of the BSIS with a sponge iron (SFe) dosage of 90 g/L. The results showed that as the operation time of the reactor extended, the relative abundance of denitrifying genera such as Saccharimonadales, Arenimonas, and Acinetobacter significantly increased, while the relative abundance of Proteobacteria showed a trend of initial increase followed by a decrease. The relative abundance of nitrifying bacteria exhibited a more complex variation, whereas the abundance of denitrifying bacteria showed a continuous upward trend. In addition, there were complex interrelationships among different denitrifying bacteria, such as a positive correlation between Saccharimonadales and Acetobacteraceae, and a negative correlation between Rhodothermus and Pseudoxanthomonas. This study not only revealed the changes in the relative abundance and interrelationships of microbial communities and nitrogen cycle-related functional bacteria over time with an SFe dosage of 90 g/L, but also provided a new perspective for understanding the intrinsic mechanism of enhanced biological denitrification by sponge iron. These findings are of great significance for optimizing the operating parameters of the BSIS, improving denitrification efficiency, and promoting the practical application of this technology in the field of environmental engineering. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

26 pages, 4803 KiB  
Article
Development of Magnetic Sponges Using Steel Melting on 3D Carbonized Spongin Scaffolds Under Extreme Biomimetics Conditions
by Bartosz Leśniewski, Martin Kopani, Anna Szczurek, Michał Matczak, Janusz Dubowik, Martyna Kotula, Anita Kubiak, Dmitry Tsurkan, Eliza Romańczuk-Ruszuk, Marek Nowicki, Krzysztof Nowacki, Iaroslav Petrenko and Hermann Ehrlich
Biomimetics 2025, 10(6), 350; https://doi.org/10.3390/biomimetics10060350 - 28 May 2025
Cited by 1 | Viewed by 612
Abstract
This study presents a novel approach to fabricating magnetic sponge-like composites by melting various types of steel onto three-dimensional (3D) carbonized spongin scaffolds under extreme biomimetic conditions. Spongin, a renewable marine biopolymer with high thermal stability, was carbonized at 1200 °C to form [...] Read more.
This study presents a novel approach to fabricating magnetic sponge-like composites by melting various types of steel onto three-dimensional (3D) carbonized spongin scaffolds under extreme biomimetic conditions. Spongin, a renewable marine biopolymer with high thermal stability, was carbonized at 1200 °C to form a turbostratic graphite matrix capable of withstanding the high-temperature steel melting process (1450–1600 °C). The interaction between molten steel vapors and the carbonized scaffolds resulted in the formation of nanostructured iron oxide (primarily hematite) coatings, which impart magnetic properties to the resulting composites. Detailed characterization using SEM-EDX, HRTEM, FT-IR, and XRD confirmed the homogeneous distribution of iron oxides on and within the carbonized fibrous matrix. Electrochemical measurements further demonstrated the electrocatalytic potential of the composite, particularly the sample modified with stainless steel 316L—for the hydrogen evolution reaction (HER), offering promising perspectives for green hydrogen production. This work highlights the potential of extreme biomimetics to create functional, scalable, and sustainable materials for applications in catalysis, environmental remediation, and energy technologies. Full article
Show Figures

Graphical abstract

12 pages, 17360 KiB  
Article
Study of the Behavior and Mechanism of Sponge Iron Oxidation
by Pingguo Jiang, Chen Zhang, Xionggang Lu and Wangjun Peng
Metals 2025, 15(5), 508; https://doi.org/10.3390/met15050508 - 30 Apr 2025
Viewed by 391
Abstract
This paper investigates the kinetic characteristics of sponge iron powder reoxidation under two different oxidation atmospheres by examining the reoxidation process from thermodynamic, microstructural, and kinetic perspectives. It reveals the changes in the surface microstructure and oxide content of sponge iron under different [...] Read more.
This paper investigates the kinetic characteristics of sponge iron powder reoxidation under two different oxidation atmospheres by examining the reoxidation process from thermodynamic, microstructural, and kinetic perspectives. It reveals the changes in the surface microstructure and oxide content of sponge iron under different oxidation conditions. The results indicate that the thermodynamic conditions for the formation of Fe2O3 were more relaxed than those for Fe3O4. As the oxidation time increased, the surface microstructure of the sponge iron transitioned from a porous granular form (Fe) to a dense blocky structure (Fe3O4), eventually forming a rod-like product (Fe2O3). Under an atmosphere of O2/Ar = 21/79, the oxide content was significantly higher compared to an atmosphere of O2/Ar = 11/89. Under an atmosphere of O2/Ar = 11/89, the oxidation rate index (n) remained at 0.68 throughout all stages, indicating a consistently higher oxidation rate. Conversely, under an atmosphere of O2/Ar = 21/79, the initial oxidation rate index (n1) was 1.17, reflecting a slower initial oxidation rate, while in the final stage, the oxidation rate index (n2) dripped to 0.33, indicating a substantial increase in the oxidation rate. The research results provide basic research ideas and references for an in-depth study of the antioxidant storage of sponge iron. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 3251 KiB  
Article
Optimizing the Nitrogen Removal Efficiency of an Intermittent Biological Sponge Iron Reactor by Immobilizing Aerobic Denitrifying Bacteria in the Biological Sponge Iron System
by Jing Li, Jie Li, Yae Wang, Hao Mu, Huina Xie and Wei Zhao
Water 2025, 17(9), 1308; https://doi.org/10.3390/w17091308 - 27 Apr 2025
Viewed by 531
Abstract
This study investigates the enhancement of nitrogen removal performance in an intermittent biological sponge iron system (BSIS) through the immobilization of aerobic denitrifying bacteria. The aim is to improve the efficiency of simultaneous nitrification and denitrification (SND) in the BSIS by optimizing the [...] Read more.
This study investigates the enhancement of nitrogen removal performance in an intermittent biological sponge iron system (BSIS) through the immobilization of aerobic denitrifying bacteria. The aim is to improve the efficiency of simultaneous nitrification and denitrification (SND) in the BSIS by optimizing the microbial community involved in nitrogen conversion. The immobilization technique not only stabilizes the microbial activity and abundance of aerobic denitrifying bacteria, but also promotes a more efficient denitrification process. The optimal material ratio of polyvinyl alcohol–sodium alginate gel beads was determined as 10 g/100 mL PVA, 4 g/100 mL SA, 2 g/100 mL CaCl2, and 2 g/100 mL of bacterial suspension, achieving a maximum NO3-N removal rate of 91.73%. A response surface model (RSM), established for the operational conditions, (shaker speed, temperature, and pH) showed a high fitting degree (R2 = 0.9960) and predicted the optimal conditions for maximum NO3-N removal as 109.24 rpm, 23.6 °C, and pH 7.9. Compared to R1 (47.82%), R3 achieved a higher average total nitrogen (TN) removal rate of 95.49%, following the addition of immobilized aerobic denitrifying bacteria to the BSIS. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

15 pages, 2840 KiB  
Article
Ring-Opening Homo- and Copolymerization of Cyclic Esters Catalyzed by Iron(III) Triflate
by Yuushou Nakayama, Toshihiko Omori, Ryo Tanaka and Takeshi Shiono
Catalysts 2024, 14(12), 945; https://doi.org/10.3390/catal14120945 - 20 Dec 2024
Viewed by 770
Abstract
Biomass-based and biodegradable poly(l-lactide) (PLLA) is synthesized by ring-opening polymerization of l-lactide (LLA), for which tin(II) 2-ethylhexanoate is a major catalyst. However, the potential toxicity of tin can be a problem, especially in biomedical applications. In this study, we focused [...] Read more.
Biomass-based and biodegradable poly(l-lactide) (PLLA) is synthesized by ring-opening polymerization of l-lactide (LLA), for which tin(II) 2-ethylhexanoate is a major catalyst. However, the potential toxicity of tin can be a problem, especially in biomedical applications. In this study, we focused on iron, which is a non-toxic metal and an abundant resource. We investigated the ring-opening homo- and copolymerization of cyclic esters such as LLA and ε-caprolactone (CL) catalyzed by iron(III) triflate, Fe(OTf)3, which is commercially available and known as a Lewis acid. In the polymerization of LLA in toluene at 110 °C, Fe(OTf)3 showed relatively high activity and yielded PLLA with unimodal molecular weight distribution. The addition of 1,8-bis(dimethylamino)naphthalene (proton sponge: PS) to the Fe(OTf)3 catalyst system increased the yield and molecular weight of the resulting polymer. In contrast, the polymerization of CL by Fe(OTf)3 was decelerated by the presence of PS. The Fe(OTf)3 system was found to have an exceptionally high preference for CL over LLA in the copolymerization of LLA and CL, with the reactivity ratio of rLLA = 0.51 and rCL = 6.9. In contrast, the Fe(OTf)3–2PS system exhibited an LLA preference with rLLA = 15 and rCL = 0.22, indicating that the comonomer selectivity changed depending on the presence or absence of PS. While the LLA polymerization rate by the Fe(OTf)3 system showed a second-order dependence on the Fe(OTf)3 concentration, that of the Fe(OTf)3–PS system showed a first-order dependence on the Fe(OTf)3–PS concentration. Full article
(This article belongs to the Special Issue State-of-the-Art Polymerization Catalysis)
Show Figures

Graphical abstract

13 pages, 2434 KiB  
Article
A Long-Term Assessment of Nitrogen Removal Performance and Microecosystem Evolution in Bioretention Columns Modified with Sponge Iron
by Zizeng Lin, Qinghuan Shi and Qiumei He
Toxics 2024, 12(10), 727; https://doi.org/10.3390/toxics12100727 - 9 Oct 2024
Cited by 2 | Viewed by 1303
Abstract
The nitrogen removal performance of bioretention urgently needs to be improved, and sponge iron has great potential to address this challenge. This study reported the results of a long-term investigation on bioretention columns improved by sponge iron, examining the durability of sponge iron [...] Read more.
The nitrogen removal performance of bioretention urgently needs to be improved, and sponge iron has great potential to address this challenge. This study reported the results of a long-term investigation on bioretention columns improved by sponge iron, examining the durability of sponge iron from nitrogen removal performance, sponge iron properties, and the evolution of biological elements. The results showed that after 9 months of continuous operation, the removal rates of ammonia nitrogen (NH4+-N), nitrate nitrogen (NO3-N), and total nitrogen (TN) in the bioretention columns with an appropriate proportion of sponge iron could reach 80% (some even over 90%). However, the long-term stress of sponge iron exposure, combined with the cumulative effect of pollutants, might lead to the excessive accumulation of reactive oxygen species (ROS) in plants, thereby posing risks of diminished chlorophyll content and enzyme activity. Simultaneously, the extended exposure could also have detrimental effects on microbial diversity and the abundance of dominant bacteria such as Proteobacteria and Sphingorhabdus. Therefore, it is necessary to select plant species and functional genes that demonstrate high adaptability to iron-induced stress. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

13 pages, 3555 KiB  
Article
Comparative Analysis of the Recovery of Cu2+ and Au from Washing Solution of Pyrite Concentrate Slag by Two Processes
by Kun Zhu, Lei Qi and Libo Zhang
Minerals 2024, 14(9), 921; https://doi.org/10.3390/min14090921 - 7 Sep 2024
Viewed by 1281
Abstract
A large amount of pyrite concentrate slag washing solution is produced in China every year, and this contains valuable components such as Cu2+ and Au. The traditional treatment method not only pollutes the environment but also wastes metal resources. For the washing [...] Read more.
A large amount of pyrite concentrate slag washing solution is produced in China every year, and this contains valuable components such as Cu2+ and Au. The traditional treatment method not only pollutes the environment but also wastes metal resources. For the washing solution containing Cu2+ 437 mg/L and Au 0.13 mg/L, two new processes comprehensive recovery schemes were developed and compared in this paper, namely iron powder replacement pore filtration and neutralization precipitation pore filtration. When the iron powder replacement pore filtration process was adopted, Cu2+ and Au were mainly comprehensively recovered in the form of a mixture of sponge copper and particulate gold. The test results showed that the replacement optimal conditions involved a pH of 3.0, iron powder dosage of 6 g/L, and replacement time of 3.0 h. After replacement, the filter cloth with below 1 μm pore size was used for filtration. The recovery rate of Cu2+ in the washing solution was 98.13 and the total recovery rate of Au was 95.83%. Otherwise, when the neutralization precipitation pore filtration process was adopted, Cu2+ and Au were mainly comprehensively recovered in the form of a mixture of copper hydroxide and particulate gold. The test results showed that sodium hydroxide was used as the precipitant and the optimum neutralization pH value was 6.5. After precipitation, the filter cloth with a below 1 μm pore size was used for filtration. The recovery rate of Cu2+ in the washing solution was 97.35% and the total recovery rate of Au was 93.54%. The economic benefit estimation of the two processes showed that the neutralization precipitation pore filtration process had the advantages of low material consumption, low cost and high economic benefit. Full article
(This article belongs to the Special Issue Comprehensive Utilization of Mineral Processing Wastewater)
Show Figures

Figure 1

12 pages, 2710 KiB  
Article
Enhancing Rural Surface Water Remediation with Iron–Carbon Microelectrolysis-Strengthened Ecological Floating Beds
by Han Wang, Tianbei Wang, Weigang Wang and Yue Yuan
Sustainability 2024, 16(17), 7417; https://doi.org/10.3390/su16177417 - 28 Aug 2024
Viewed by 1181
Abstract
Ecological floating beds, with their compact footprint and mobility, offer a promising solution for sustainable surface water remediation in rural areas. However, low removal efficiency and instability still limit its application. In this study, iron–carbon-based fillers were integrated into ecological floating beds to [...] Read more.
Ecological floating beds, with their compact footprint and mobility, offer a promising solution for sustainable surface water remediation in rural areas. However, low removal efficiency and instability still limit its application. In this study, iron–carbon-based fillers were integrated into ecological floating beds to investigate their impact and mechanisms in removing pollutants, including carbon, nitrogen, phosphorus, and heavy metals. Results indicate that all five fillers (activated carbon, iron–carbon fillers, sponge iron, activated carbon + iron–carbon fillers, and activated carbon + sponge iron) can completely remove orthophosphate, and the sponge iron filler system can completely remove nitrate. Then, fillers were applied to ecological floating beds, and the iron–carbon microelectrolysis (activated carbon + sponge iron filler)-enhanced ecological floating bed showed superior removal efficiency for pollutants. It achieved 95% removal of NH4+-N, 85% removal of NO3-N, 75% removal of total phosphorus, 90% removal of chemical oxygen demand, and 90% removal of heavy metals. Typical nitrifying bacteria Nitrospira, denitrifying bacteria Denitratisoma, and a variety of bacterial genera with denitrification functions (e.g., Rhodobacter, Dechloromonas, Sediminibacterium, and Novosphingobium) coexisted in the system, ensuring efficient and robust nitrogen removal performance. These findings will provide support for the sustainable treatment of surface water in rural areas. Full article
Show Figures

Figure 1

19 pages, 3295 KiB  
Review
SNHG1: Redefining the Landscape of Hepatocellular Carcinoma through Long Noncoding RNAs
by Tiago S. Fonseca, Rui Miguel Martins, Anabela P. Rolo and Carlos M. Palmeira
Biomedicines 2024, 12(8), 1696; https://doi.org/10.3390/biomedicines12081696 - 30 Jul 2024
Cited by 1 | Viewed by 1867
Abstract
Hepatocellular carcinoma (HCC) represents a global health concern, ranking as the sixth most common malignancy worldwide and the third leading cause of cancer-related mortality. Despite advances in research, the diagnosis and prognosis of such malignancy remain challenging. Alpha-fetoprotein, the current serum biomarker used [...] Read more.
Hepatocellular carcinoma (HCC) represents a global health concern, ranking as the sixth most common malignancy worldwide and the third leading cause of cancer-related mortality. Despite advances in research, the diagnosis and prognosis of such malignancy remain challenging. Alpha-fetoprotein, the current serum biomarker used in the management of HCC, has limited sensitivity and specificity, making early detection and effective management more difficult. Thus, new management approaches in diagnosis and prognosis are needed to improve the outcome and survival of HCC patients. SNHG1 is a long noncoding RNA mainly expressed in the cell and cytoplasm of cells and is consistently upregulated in tissues and cell lines of HCC, where it acts as an important regulator of various processes: modulation of p53 activity, sponging of microRNAs with consequent upregulation of their target mRNAs, regulation of fatty acid, iron and glucose metabolism, and interaction with immune cells. The deregulation of these processes results in abnormal cell division, angiogenesis, and apoptosis, thus promoting various aspects of tumorigenesis, including proliferation, invasion, and migration of cells. Clinically, a higher expression of SNHG1 predicts poorer clinical outcomes by significantly correlating with bigger, less differentiated, and more aggressive tumors, more advanced disease stages, and lower overall survival in HCC patients. This article comprehensively summarizes the current understanding of the multifaceted roles of SNHG1 in the pathogenesis of HCC, while also highlighting its clinicopathological correlations, therefore concluding that it has potential as a biomarker in HCC diagnosis and prognosis. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

15 pages, 3210 KiB  
Article
3D Spongin Scaffolds as Templates for Electro-Assisted Deposition of Selected Iron Oxides
by Krzysztof Nowacki, Anita Kubiak, Marek Nowicki, Dmitry Tsurkan, Hermann Ehrlich and Teofil Jesionowski
Biomimetics 2024, 9(7), 387; https://doi.org/10.3390/biomimetics9070387 - 25 Jun 2024
Cited by 1 | Viewed by 1445
Abstract
The skeletons of marine sponges are ancient biocomposite structures in which mineral phases are formed on 3D organic matrices. In addition to calcium- and silicate-containing biominerals, iron ions play an active role in skeleton formation in some species of bath sponges in the [...] Read more.
The skeletons of marine sponges are ancient biocomposite structures in which mineral phases are formed on 3D organic matrices. In addition to calcium- and silicate-containing biominerals, iron ions play an active role in skeleton formation in some species of bath sponges in the marine environment, which is a result of the biocorrosion of the metal structures on which these sponges settle. The interaction between iron ions and biopolymer spongin has motivated the development of selected extreme biomimetics approaches with the aim of creating new functional composites to use in environmental remediation and as adsorbents for heavy metals. In this study, for the first time, microporous 3D spongin scaffolds isolated from the cultivated marine bath sponge Hippospongia communis were used for electro-assisted deposition of iron oxides such as goethite [α-FeO(OH)] and lepidocrocite [γ-FeO(OH)]. The obtained iron oxide phases were characterized with the use of scanning electron microscopy, FTIR, and X-ray diffraction. In addition, mechanisms of electro-assisted deposition of iron oxides on the surface of spongin, as a sustainable biomaterial, are proposed and discussed. Full article
Show Figures

Graphical abstract

16 pages, 3244 KiB  
Article
Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification
by Zexiang Liu, Yong Chen, Zhihong Xu, Jinxu Lei, Hua Lian, Jian Zhang and Zhiwei Wang
Polymers 2024, 16(11), 1506; https://doi.org/10.3390/polym16111506 - 26 May 2024
Cited by 4 | Viewed by 1759
Abstract
Partial nitrification-Anammox (PN-A) is a cost-effective, environmentally friendly, and efficient method for removing ammonia (NH4+-N) pollutants from water. However, the limited accumulation of nitrite (NO2-N) represents a bottleneck in the development of PN-A processes. To address this [...] Read more.
Partial nitrification-Anammox (PN-A) is a cost-effective, environmentally friendly, and efficient method for removing ammonia (NH4+-N) pollutants from water. However, the limited accumulation of nitrite (NO2-N) represents a bottleneck in the development of PN-A processes. To address this issue, this study developed a composite carrier loaded with nano zero-valent iron (nZVI) and zeolite to enhance NO2-N accumulation during short-cut nitrification. The modified composite carrier revealed electropositive, hydrophilicity, and surface roughness. These surface characteristics correlate positively with the carrier’s total biomass adsorption capacity; the initial adsorption of microorganisms by the composite carrier was increased by 8.7 times. Zeolite endows the carrier with an NH4+-N adsorption capacity of 4.50 mg/g carrier. The entropy-driven ammonia adsorption process creates an ammonia-rich microenvironment on the surface of the carrier, providing effective inhibition of nitrite-oxidizing bacteria (NOB). In tests conducted with a moving bed biofilm reactor and a sequencing batch reactor, the composite carrier achieved a 95% NH4+-N removal efficiency, a NO2-N accumulation efficiency of 78%, and a doubling in total nitrogen removal efficiency. This composite carrier enhances NO2-N accumulation by preventing biomass washout, inhibiting NOB, and enriching PN-A functional bacteria, suggesting its potential for large-scale, stable PN-A applications. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

16 pages, 10655 KiB  
Article
Synergistic Removal of Nitrogen and Phosphorus in Constructed Wetlands Enhanced by Sponge Iron
by Yiwei Shen, Meijia Hu, Yishen Xu, Mengni Tao, Lin Guan, Yu Kong, Shiwei Cao and Zhaoqian Jing
Water 2024, 16(10), 1414; https://doi.org/10.3390/w16101414 - 16 May 2024
Cited by 4 | Viewed by 1946
Abstract
Insufficient denitrification and limited phosphorus uptake hinder nitrogen and phosphorus removal in constructed wetlands (CWs). Sponge iron is a promising material for the removal of phosphorus and nitrogen because of its strong reducing power, high electronegativity, and inexpensive cost. The influence of factors [...] Read more.
Insufficient denitrification and limited phosphorus uptake hinder nitrogen and phosphorus removal in constructed wetlands (CWs). Sponge iron is a promising material for the removal of phosphorus and nitrogen because of its strong reducing power, high electronegativity, and inexpensive cost. The influence of factors including initial solution pH, dosage, and the Fe/C ratio was investigated. A vertical flow CW with sponge iron (CW-I) was established, and a traditional gravel bed (CW-G) was used as a control group. The kinetic analysis demonstrated that for both nitrogen and phosphorus, pseudo-second-order kinetics were superior. The theoretical adsorption capacities of sponge iron for nitrate (NO3-N) and phosphate (PO43-P) were 1294.5 mg/kg and 583.6 mg/kg, respectively. Under different hydraulic retention times (HRT), CW-I had better total nitrogen (TN) and total phosphorus (TP) removal efficiencies (6.08–15.18% and 5.00–20.67%, respectively) than CW-G. The enhancing effect of sponge iron on nitrogen and phosphorus removal was best when HRT was 48 h. The increase in HRT improved not only the nitrogen and phosphorus removal effects of CWs but also the reduction capacity of iron and the phosphorus removal effect. The main mechanisms of synergistic nitrogen and phosphorus removal were chemical reduction, ion exchange, electrostatic adsorption, and precipitation formation. Full article
(This article belongs to the Special Issue Constructed Wetlands for Water Treatment and Reuse)
Show Figures

Figure 1

18 pages, 30031 KiB  
Article
circAMN1-Mediated Ferroptosis Regulates the Expulsion of Placenta in Trophoblast Cells
by Chen Lv, Lusha Guo, Yue Wang, Zongshuai Li, Xingxu Zhao and Yong Zhang
Antioxidants 2024, 13(4), 451; https://doi.org/10.3390/antiox13040451 - 11 Apr 2024
Viewed by 1648
Abstract
After delivery, the death of trophoblast cells can promote the expulsion of the placenta. Ferroptosis, an iron-dependent programmed cell death, is involved in mammalian development. Circular RNAs are associated with placental development; however, it is unclear whether circular RNAs regulate the expulsion of [...] Read more.
After delivery, the death of trophoblast cells can promote the expulsion of the placenta. Ferroptosis, an iron-dependent programmed cell death, is involved in mammalian development. Circular RNAs are associated with placental development; however, it is unclear whether circular RNAs regulate the expulsion of fetal membranes through ferroptosis. The gene expression profiles in the tail vein blood of Holstein cows with normal and retained placentas were investigated using RNA sequencing and a GSE214588 dataset. circAMN1 and SLC39A8 expression was significantly downregulated in the blood of cows with a retained placenta, whereas miR-205_R-1 expression was significantly upregulated. We validated erastin-induced ferroptosis in trophoblast cells. Transfection with si-circAMN1 and miR-205_R-1 mimic reduced intracellular total iron, Fe2+, and glutathione disulfide levels; increased intracellular glutathione levels and glutathione/glutathione disulfide; and enhanced cell viability in these cells. In contrast, transfection with pcDNA3.1 circAMN1 and an miR-205_R-1 inhibitor promoted ferroptosis. As an miR-205_R-1 sponge, circAMN1 regulated the expression of SLC39A8 to control erastin-induced ferroptosis and regulated the proliferation, invasion, and migration of trophoblast cells. Our findings provide a theoretical basis for studying the mechanism by which programmed cell death regulates fetal membrane expulsion and indicate its potential as a therapeutic target for placenta retention. Full article
Show Figures

Graphical abstract

13 pages, 2688 KiB  
Article
The Role of Iron Minerals in the Preservation of Organic Carbon in Mangrove Sediments
by Kang Li, Huamei Huang, Di Dong, Shengpeng Zhang and Ran Yan
Water 2024, 16(7), 1011; https://doi.org/10.3390/w16071011 - 31 Mar 2024
Cited by 4 | Viewed by 2295
Abstract
Although mangrove forests occupy only 0.5% of the global coastal area, they account for 10–15% of coastal organic carbon (OC) storage, and 49–98% of OC is stored in sediments. The biogeochemistry of iron minerals and OC in marine sediments is closely related. To [...] Read more.
Although mangrove forests occupy only 0.5% of the global coastal area, they account for 10–15% of coastal organic carbon (OC) storage, and 49–98% of OC is stored in sediments. The biogeochemistry of iron minerals and OC in marine sediments is closely related. To better reveal the role of iron minerals in OC preservation in mangrove sediments, an established dithionite–citrate–bicarbonate (DCB) extraction method was used to extract iron-bound OC (Fe-OC), and then the parameters of OC, Fe-OC, iron content, carbon isotopes, infrared spectroscopy, and XRD diffractions of sediments at a 1 m depth in four typical mangrove communities in the Gaoqiao Mangrove Reserve, Guangdong, China, were systematically measured. XRD diffractograms showed that the iron minerals in mangrove sediments may mainly exist in the form of goethite, which is consistent with the predominant types of iron minerals in marine sediments. About 10% of OC is directly bound to iron, and it is further estimated that about 2.4 × 1012–3.8 × 1012 g OC is preserved in global mangrove forests each year based on the high burial rate of OC in mangrove sediments. Lower Fe-OC/OC molar ratios indicated that iron mainly binds to OC via adsorption mechanisms. More depleted δ13CFe-OC relative to δ13Cbulk indicated that iron minerals are mainly associated with terrigenous OM, and the infrared spectra also revealed that iron minerals preferentially bind to terrigenous aromatic carbon. This work supports the “giant rusty sponge” view, elucidating that iron plays an important role in the preservation of OC in mangrove sediments. Full article
(This article belongs to the Special Issue Advances in Marine Sedimentation and Geological Processes)
Show Figures

Figure 1

47 pages, 23957 KiB  
Review
Organotransition Metal Chemistry of Terpenes: Syntheses, Structures, Reactivity and Molecular Rearrangements
by Michael J. McGlinchey
Molecules 2024, 29(6), 1409; https://doi.org/10.3390/molecules29061409 - 21 Mar 2024
Cited by 2 | Viewed by 2743
Abstract
The impact of organometallic chemistry on the terpene field only really blossomed in the 1960s and 1970s with the realisation that carbon–carbon bond formation under mild conditions could be achieved by using nickel or iron carbonyls as synthetic reagents. Concomitantly, the development of [...] Read more.
The impact of organometallic chemistry on the terpene field only really blossomed in the 1960s and 1970s with the realisation that carbon–carbon bond formation under mild conditions could be achieved by using nickel or iron carbonyls as synthetic reagents. Concomitantly, the development of palladium derivatives capable of the controlled coupling of isoprene units attracted the attention of numerous highly talented researchers, including future Nobel laureates. We discuss briefly how early work on the syntheses of simple monoterpenes soon progressed to sesquiterpenes and diterpenes of increasing complexity, such as humulene, flexibilene, vitamin A, or pheromones of commercial value, in particular those used in perfumery (muscone, lavandulol), or grandisol and red scale pheromone as replacements for harmful pesticides. As the field progressed, there has been more emphasis on developing organometallic routes to enantiopure rather than racemic products, as well as gaining precise mechanistic data on the transformations, notably the course of metal-promoted molecular rearrangements that have long been a feature of terpene chemistry. We note the impact of the enormously enhanced analytical techniques, high-field NMR spectroscopy and X-ray crystallography, and their use to re-examine the originally proposed structures of terpenes and their organometallic derivatives. Finally, we highlight the very recent ground-breaking use of the crystalline sponge method to acquire structural data on low-melting or volatile terpenes. The literature cited herein covers the period 1959 to 2023. Full article
Show Figures

Figure 1

Back to TopTop