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Abstract: Insufficient denitrification and limited phosphorus uptake hinder nitrogen and phosphorus
removal in constructed wetlands (CWs). Sponge iron is a promising material for the removal of
phosphorus and nitrogen because of its strong reducing power, high electronegativity, and inexpen-
sive cost. The influence of factors including initial solution pH, dosage, and the Fe/C ratio was
investigated. A vertical flow CW with sponge iron (CW-I) was established, and a traditional gravel
bed (CW-G) was used as a control group. The kinetic analysis demonstrated that for both nitrogen
and phosphorus, pseudo-second-order kinetics were superior. The theoretical adsorption capacities
of sponge iron for nitrate (NO−

3 -N) and phosphate (PO3−
4 -P) were 1294.5 mg/kg and 583.6 mg/kg,

respectively. Under different hydraulic retention times (HRT), CW-I had better total nitrogen (TN) and
total phosphorus (TP) removal efficiencies (6.08–15.18% and 5.00–20.67%, respectively) than CW-G.
The enhancing effect of sponge iron on nitrogen and phosphorus removal was best when HRT was
48 h. The increase in HRT improved not only the nitrogen and phosphorus removal effects of CWs
but also the reduction capacity of iron and the phosphorus removal effect. The main mechanisms of
synergistic nitrogen and phosphorus removal were chemical reduction, ion exchange, electrostatic
adsorption, and precipitation formation.

Keywords: sponge iron; synergistic removal; constructed wetland; nitrogen; phosphate

1. Introduction

The excessive discharge of industrial, domestic, and agricultural wastes, as well as the
increased utilization of chemical fertilizers in agriculture, can result in the accumulation
of nitrogen (N) and phosphorus (P) in both groundwater and surface water [1]. While
these nutrients are essential for aquatic organisms to thrive, an overabundance of them can
cause eutrophication of the receiving water body, leading to water quality degradation [2,3].
High levels of nitrogen and phosphorus lead to excessive algae blooms, which result in
excessive consumption of dissolved oxygen in water, reducing aquatic biodiversity and
increasing the presence of harmful bacteria and toxins [4]. The presence of high levels
of NH+

4 in water can consume a large amount of disinfectant and form various nitrogen-
containing disinfection byproducts, such as nitrosamines, nitramines, nitriles, nitroalkanes,
and nitroaromatics [5,6]. Furthermore, the presence of residual NH+

4 in the municipal water
distribution networks will facilitate the proliferation of bacteria, thus further deteriorating
water quality [7]. Prolonged exposure to water with high levels of NO−

3 can lead to a
number of health problems, including gastrointestinal cancer, methemoglobinemia, and
physiological abnormalities [8–10]. In addition, elevated concentrations of phosphorus in
potable water can lead to a variety of symptoms, including fatigue, cramps in the hands and
feet, dysuria, and renal impairment. Consequently, it is becoming increasingly evident that
there is an urgent requirement to address the excessive levels of nitrogen and phosphorus
in water.
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The most commonly employed techniques for removing nitrate include reverse osmo-
sis, ion exchange, chemical reduction, and biological denitrification [11–13]. While reverse
osmosis and ion exchange are effective processes, they are expensive and also result in
wastewater that requires additional treatment due to its high salt content [14]. The most
popular treatment technique is biological denitrification, which offers the benefits of low
energy consumption and environmental sustainability [15,16]. However, due to the insuffi-
cient carbon source in the secondary effluent of sewage treatment plants, the denitrification
performance of the biological method cannot be further improved [17,18]. The chemical
reduction method is simple, convenient, and fast, but it requires the continuous addition of
a reducing agent. Zero-valent iron (ZVI) is often used as an electron donor to reduce nitrate
in water, but its reduction product, ammonia nitrogen, needs to be further removed [19]. A
variety of physical, chemical, and biological techniques have been proposed for the removal
of phosphate from effluent. These include anion exchange, adsorption, reverse osmosis,
chemical precipitation, membrane nanofiltration, electrodialysis, activated sludge systems,
microalgae systems, and constructed wetlands [20–22]. In actual wastewater treatment
plants, the most widely used method is chemical dephosphorization and the chemical
agent utilized most frequently is iron. Xue et al. used sponge iron to remove phosphate
in water and found that phosphate could be removed by chemically binding to Fe3+ or
Fe2+ [23]. Thus, iron is an excellent substance for removing phosphorus and nitrogen at
exactly the same time. Iron is an inorganic component that is ubiquitously present in the
environment and plays a critical role in the C, O, N, and S cycles, either through chemical or
microbial processes [24]. In addition, iron is an important redox component with a standard
oxidation-reduction potential (E0 = −0.44 V). ZVI is a typical iron that has been extensively
used in wastewater treatment [25]. It is non-toxic, inexpensive, and, most importantly,
highly reactive. The characteristics of sponge iron as a novel type of inorganic porous metal
composite material include low cost, high porosity, being difficult to cement, large specific
surface area, and high active iron content. Compared with ZVI, sponge iron has stronger
electrochemical enrichment, physical adsorption, and redox properties [26]. Therefore, in
this study, sponge iron and CWs were combined to remove pollutants from wastewater
treatment plant effluent to achieve the dual objectives of simultaneous phosphorus and
nitrogen removal. The effects of dosage, the addition of activated carbon, pH, and other
variables on the ability of the composites to remove nitrate and phosphate simultaneously
were investigated. Combined with CWs operation and characterization of materials by
SEM, XRD, and FTIR, the function of sponge iron in CWs was analyzed.

2. Materials and Methods
2.1. Systems Operation and Materials

The experiment established two laboratory-scale vertical upward-flow constructed
wetland systems (CW-I, CW-G), and the device was 55 cm in height and had an interior
diameter of 30 cm, composed of biological glass, as illustrated in Figure 1. The overall
volume of the device was 40.25 L and the effective volume was about 21.5 L. Yellow
calamus was planted in the device, with 4–5 robust plants per unit. The main body of
CW-G was filled from top to bottom with 15 cm gravel, 10 cm sand, and 25 cm gravel
successively, with gravel particle sizes of 8–12 mm and sand particle sizes of 0.5–2 mm.
The installation of CW-I was identical to that of CW-G, with the addition of sponge iron
above the sand layer. The composition of simulated effluent from the wastewater plant is as
follows: 14.7 ± 1.5 mg/L TN, 5.6 ± 1.1 mg/L ammonia (NH+

4 -N), 10.8 ± 1.4 mg/L nitrate
(NO−

3 -N), and 0.5 mg/L TP (KH2PO4). To change the pH of the simulated wastewater,
0.1 M NaOH and HCl were introduced.
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Figure 1. Installation of vertical flow constructed wetlands (CWs): (a) CW-I; (b) CW-G.

Sponge iron granules were bought from Miaoyuan Material Company (Zhengzhou,
China), with particle sizes ranging from 1 to 3 mm. The iron content of the material is
higher than or equal to 88%. The natural zeolite that was utilized as an adsorbent in this
paper was produced in Jinyun (Zhejiang, China) and the particles were between 1 and
2 mm in size. The coconut-shell activated carbon granules were produced by Miaoyuan
Material Company (Zhengzhou, China) and the particles were between 1 and 3 mm in size.
Before use, the materials were repeatedly cleaned with deionized water (DI) after being
rinsed multiple times with tap water, and then dried for 10 h in a 90 ◦C oven.

2.2. Experimental Methods of Influencing Factors

The influences of different initial pH (3–10), dosage (0.5–3 g), and different Fe/C ratios
on the simultaneous elimination of phosphorus and nitrogen were investigated. Taking
the experimental influence of dosage addition as an example: In a series of 250 mL conical
flasks, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 g of sponge iron were, respectively, added to 100 mL
of simulated wastewater, along with an appropriate amount of zeolite to mitigate the
impact of ammonia nitrogen accumulation. The pH was adjusted to 7, and the flasks were
set up in an oscillator with a reciprocating constant temperature and shaken at a speed
of 160 rpm/min for 24 h. The supernatant obtained after adsorption was filtered past a
0.45 µm water-filtering membrane. Then, the removal rate was calculated and analyzed.

2.3. Adsorption Experiments Methods
2.3.1. Adsorption Kinetics

In a thermostatic water-bath shaker, the adsorption kinetics studies were carried out
using appropriate amounts of sponge iron and 100 mL of simulated wastewater (160 rpm).
The adsorption capacity at different times (5 min–24 h) was investigated at 25 ◦C. The
reaction water sample was filtered using a 0.45 µm filter membrane in order to measure
the concentration of TN and PO3−

4 -P in the supernatant. Both the pseudo-second-order
and pseudo-first-order kinetic models were able to fit the adsorption experimental results
of PO3−

4 -P and TN, respectively. The adsorption mechanism was also analyzed using the
intraparticle diffusion model.



Water 2024, 16, 1414 4 of 16

2.3.2. Equilibrium Isotherms

In order to carry out the equilibrium isothermal adsorption experiments, 100 mL of
solution and the required quantities of sponge iron were placed in a 250 mL Erlenmeyer
flask and shaken in a thermostatic water-bath shaker (160 rpm) at 25 ◦C. Aqueous solutions
of NO−

3 -N were controlled at concentrations of 5, 10, 20, 50, 72, 100, 120, 160, and 200 mg/L.
Aqueous solutions of PO3−

4 -P were controlled at concentrations of 0.25, 0.5, 1.0, 2.5, 3.6,
5.0, 6.0, 8.0, and 10 mg/L. All of the suspensions were brought to an initial pH of 7 by
adding a small amount of 0.1 M HCl solution. Following the reaction, the experimental
water samples were filtered by membrane filters with a pore size of 0.45 µm in order to
measure the residual concentrations of NO−

3 -N and PO3−
4 -P from the supernatant. Three

distinct isothermal equations, Freundlich, Langmuir, and Temkin, were used for the fitting
and analysis of the test data.

2.4. Analysis and Characterization Methods

The surface morphology of sponge iron was analyzed at different pH levels both
before and after the reaction by field-emission scanning electron microscopy (SEM; Quanta
200, FEI, Hillsboro, OR, USA). Firstly, dry the samples, then use conductive adhesive to
stick them onto the sample board for gold spraying treatment, and observe the surface
characteristics of samples under a certain magnification. X-ray diffractometry (XRD; Ultima
IV, Rigaku, Tokyo, Japan) analysis was used to infer the crystal structure, including the
lattice constant, interatomic distance, and atomic arrangement in the crystal, by measuring
the position and intensity of characteristic diffraction peaks. The surface functional groups
of SI before and after the reaction were analyzed using an infrared spectrometer (FTIR;
VERTEX 80 V, Bruker, Ettlingen, Germany) to analyze the mechanism and the frequency
range in which the spectra were captured (500–4000 cm−1).

3. Results and Discussion
3.1. Influence of Operating Factors
3.1.1. Dosage of Sponge Iron

The influence of sponge iron dosage on the removal efficiency of nitrate and phosphate
at room temperature is shown in Figure 2a,b. As the dosage of sponge iron was increased,
the corresponding removal rate of nitrate and phosphate showed an upward trend, while
the removal capacity per unit mass steadily dropped. More active sites were made available
by increasing the quantity of sponge iron per unit volume of solution, which effectively
increased the overall surface area of sponge iron and also successfully improved the
removal effectiveness of nitrate and phosphate [27]. When the dosage was 1.5 g, the
removal percentages for nitrate and phosphate were 39.9% and 47.8%, respectively. Under
these conditions, the residual phosphate concentration dropped below 0.3 mg/L. Then, as
the amount of sponge iron continued to increase, the improvement in the removal rate was
no longer obvious. When some pollutants were removed, the concentration of pollutants
in the solution decreased, and the concentration difference between inside and outside the
material surface decreased. At this time, continuing to increase the amount of sponge iron
had little effect and would only cause material waste [28]. Therefore, the material dosage
should be established based on the actual pollutant concentration in practical applications
in order to achieve economic and practical purposes.
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3 -N; (b) PO3−

4 -P. The effect of Fe/C ratios
on pollutant removal: (c) NO−

3 -N; (d) NH+
4 -N.

3.1.2. Fe/C Ratios

Figure 2c,d shows the concentration change of ammonia and nitrate with time under
the condition of different Fe/C ratios of composite materials. Compared with the 1:0 group,
the speed of nitrate removal was significantly accelerated by the addition of activated
carbon. Because the redox reaction between nitrate and zero-valent iron is a heterogeneous
reaction, and the reaction rate is slow, the larger the proportion of activated carbon added,
the faster the elimination rate of nitrate and the more effective the result. The sponge iron
was mixed with active carbon to form a galvanic cell system through potential difference,
which caused micro-electrolysis, increasing the reaction active sites and electron transfer
so as to improve the rate of chemical reaction [29]. Iron carbon micro-electrolysis can
promote the electrochemical corrosion of sponge iron, which is a process that moves from
thermodynamic instability to thermodynamic stability. Therefore, the oxidation–reduction
reaction between iron and nitrate occurred, producing various iron complexes at the same
time which can wrap nitrate, ammonia, or nitrite to achieve a certain removal effect [30].
When the Fe/C ratios exceeded 3:1, the rate advantage of nitrate removal was no longer
obvious, yet the amount of nitrate in the solution kept decreasing, perhaps because the
activated carbon itself had a certain adsorption effect on nitrate. As the amount of activated
carbon grew, so did the number of adsorption active points and the removal rate. In a
neutral electrolyte, sponge iron, with low potential, lost electrons and acted as an anode,
while activated carbon, with high potential, acted as a cathode. The hydrogen atoms
with strong reducing properties were created from the H+ and H2O adsorbed on the
activated carbon surface after receiving electrons. The electric field effect caused NO−

3 -N
in the solution to move to sponge iron, then reduced it to NH+

4 -N. As seen in Figure 2d,
the concentration of ammonia nitrogen decreased very rapidly during the experiment,
which was attributed to the excellent ability of zeolite to adsorb cations. After 5 h, the
remaining NH+

4 -N concentration was less than 1 mg/L. When the proportion of activated
carbon was too high and the reaction time exceeded 9 h, the ammonia concentration rose
slightly. The ammonia generated by nitrate reduction cannot be absorbed in time since the
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zeolite’s adsorption capacity was getting close to saturation and the adsorption rate had
dropped. Therefore, considering the removal effect and economy of nitrate and ammonia
comprehensively, the subsequent experiments would be conducted according to the Fe/C
ratio of 3:1.

3.1.3. Initial Solution pH

The effect of initial solution pH on simultaneous removal is illustrated in Figure 3.
Simultaneous removal efficiency declined progressively as the initial pH increased. Am-
monia nitrogen in solution was mainly removed by zeolite adsorption. Under alkaline
conditions, a large amount of ammonia in the solution was converted into NH3·H2O,
but the affinity of zeolite to NH3·H2O in the solution was low, so ammonia elimination
was significantly reduced. Under neutral and weak acids, ammonia nitrogen existed in
the form of NH+

4 , which was conducive to the ion exchange of zeolite. Sponge iron was
more effective in removing nitrate under acidic conditions. With a rise in pH value, the
removal rate dropped, and the whole reaction was an acid-flooding reaction [31]. Nitrate
reduction would be prevented by the sponge iron’s surface developing iron oxides in
conditions of high pH value. Under alkaline conditions, the competition between OH-

and nitrate intensifies, resulting in electrostatic repulsion, which decreases the adsorption
capacity. When pH changed from 6 to 8, there was hardly any change in the rate of nitrate
elimination, which was congruent with the findings obtained by Guo et al. [32]. From
Figure 3c,d, it can be seen that there was minimal difference in the removal rate of TN
and NO−

3 -N at pH 5 and 6. In the process of reducing nitrate, iron would consume a
considerable amount of hydrogen ions. Lower pH values and higher H+ concentrations
were beneficial for hydrogen evolution corrosion on sponge iron surfaces. The hydrogen
atom with strong reducibility produced by hydrogen evolution corrosion can inhibit the
generation of a passivation film on the surface of iron, thus speeding up the elimination of
nitrate. Moreover, acidic conditions can also promote the conversion of iron into ferrous
ions and facilitate the existence of ferrous ions. The presence of Fe2+ can promote the
reduction effect of unacidified Fe0 on NO−

3 [33].
The phosphate removal dropped dramatically as the pH rose, as illustrated in Figure 3a,b.

The removal of phosphate in the sponge iron system mainly depended on its reaction with
ferrous ions and iron ions generated by zero-valent iron oxidation to generate precipitation.
The pH value affected the dissociation status and solubility of solutes, thus affecting
the adsorption capacity. Low-pH conditions were conducive to the acceleration of Fe-C
micro-electrolysis reactions and iron corrosion. Iron was corroded as an anode to generate
Fe2+, and H+ generated H2 or H2O at the cathode. With the increase in solution pH,
H2O was reduced to OH− as a cathode reactant. OH− competed with phosphate ions
to precipitate with iron ions or ferrous ions, thus affecting the phosphate removal rate.
Furthermore, the oxide produced on the sponge iron surface and the hydroxyl iron oxide
(FeOOH) generated by the reaction of Fe3+ with water have a certain adsorption capacity
for phosphorus [34]. The mechanism of phosphorus removal from water by ferric oxide
is mainly possible because ferric oxide has a positively charged surface, and electrostatic
attraction is generated between the positively charged ferric oxide and the negatively
charged phosphate ion surface in solution. The charge properties of the adsorbent surface
were altered by the pH level. As the pH of the solution rose, the negative charge on the iron
oxide surface steadily grew while the positive charge gradually decreased, which led to a
gradual increase in electrostatic repulsive force between the negatively charged iron oxide
surface and the negatively charged phosphate ion, reducing the unit adsorption amount of
Fe3O4 to phosphorus [35].
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3.2. Batch Adsorption Experiments
3.2.1. Adsorption Kinetics

To match the statistics of total nitrogen and phosphate elimination by the sponge
iron, the pseudo-first-order adsorption kinetic, pseudo-second-order adsorption kinetic,
and intra-particle diffusion models were analyzed. The results are shown in Figure 4,
and Table 1 shows the parameters of the fitting models. The fitting results revealed that
the pseudo-second-order kinetic model was better than the pseudo-first-order kinetic
model for the simultaneous removal of total nitrogen and phosphate, demonstrating that
complex chemical adsorption of phosphate and total nitrogen may occur in the sponge
iron [36]. In addition, the correlation coefficients (R2) of the pseudo-second-order model
for total nitrogen and phosphate were 0.998 and 0.996, respectively. The actual values
of total nitrogen and phosphate equilibrium adsorption, which were 185.185 mg/kg and
14.451 mg/kg, respectively, were close to the theoretical values. The fitting curves of
intra-particle diffusion in the adsorption process are shown in Figure 4c,d to comprise three
distinct stages: quick diffusion at the outside surface (membrane diffusion), diffusion at
the inside surface, and dynamic adsorption equilibrium [37]. The intercept of the fitted
lines was minimal in the initial phase, indicating that the border layer was thin in thickness
and the likelihood of the surface mass transfer was higher. At this time, there was a large
number of unoccupied adsorption sites, so a considerable proportion of nitrogen and
phosphorus was rapidly removed. The key rate-regulating step of the pollutant adsorption
process was the internal diffusion process, as evidenced by the fact that the Kd2 value of
the second phase was much lower than that of the first phase. The adsorption entered the
final phase when susceptibility to diffusion inside the inner porosity continued to rise to
a certain amount. In the third stage, between contaminants and adsorbents, an apparent
dynamic equilibrium mechanism of adsorption–desorption predominated. In addition,
the intra-particle diffusion fitting lines were unable to cross the zero point, indicating that
the rate control process of the adsorption of nitrogen and phosphorus was not the only



Water 2024, 16, 1414 8 of 16

intraparticle diffusion process but was also influenced by boundary layer diffusion and
external surface adsorption [38].
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Table 1. The adsorption kinetics and intraparticle diffusion model parameters of sponge iron for
co-adsorption of TN and PO3−

4 -P.

C0
(mg/L)

qexp
(mg/kg)

Pseudo-First-Order Pseudo-Second-Order

K1
(h−1)

qcal
(mg/kg) R2 K2

(kg·mg−1·h−1)
qcal

(mg/kg) R2

TN 15 860.676 0.172 603.050 0.980 0.001 909.091 0.999
PO3−

4 -P 0.5 24.467 0.121 22.03 0.979 0.010 27.933 0.998

Intra-Particle Diffusion

C0
(mg/L)

Kd1
(mg·kg−1·h−0.5) R2 Kd2

(mg·kg−1·h−0.5) R2 Kd3
(mg·kg−1·h−0.5) R2

TN 15 382.817 0.999 230.630 0.946 49.243 0.984
PO3−

4 -P 0.5 5.638 0.990 6.511 0.985 1.663 0.975

3.2.2. Equilibrium Isotherms

In this paper, three distinct kinds of isothermal adsorption models were employed to
match the data of nitrogen and phosphorus co-adsorption by sponge iron. The outcomes
are displayed in Figure 5 and Table 2. Because of the significant difference in nitrate
and phosphate concentrations between the sponge iron and its surrounding solution, it
was possible to overcome the external mass transfer resistance, which led to an increase in
adsorption capacity and caused a progressive stabilization as the starting concentration rose.
A higher initial concentration can improve the contact rate between ions and adsorption
sites on the adsorbent surface so that more nitrogen and phosphorus were adsorbed.
According to the coefficients of correlation (R2) and the fitting curve, it can be inferred
that the adsorption mechanism of phosphate was more compatible with the Langmuir
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adsorption isotherm than the Freundlich model, which extrapolated that the surface of
the sponge iron included a relatively uniform distribution of energetic adsorption sites.
The Qm in the Langmuir isotherm model represented the maximal theoretical adsorption
capacity, and the maximal theoretical adsorption capabilities of the sample for phosphate
and nitrate were 0.584 mg/g and 1.294 mg/g, respectively. The Freundlich model for
nitrate adsorption had a higher degree of fitting accuracy than the Langmuir model,
indicating that the adsorbing process was relatively complicated. There might be surface
corrosion flaws on the sample and the formation of a heterogeneous iron oxide surface
during the adsorption process. Monolayer adsorption and multilayer adsorption existed
simultaneously. The n in the Freundlich equation can reflect the degree of adsorption
difficulty of materials. When 0.3 < 1/n < 1, it means that the material is easily able to absorb
nitrate and phosphate [39]. To characterize the adsorption of pollutants with significant ion
exchange, the Temkin model was fitted. As a consequence, the correlation coefficient (R2)
of phosphate exceeded 0.9, manifesting that the removal process of PO3−

4 -P might involve
strong ion exchange or electrostatic force [40,41]. The fitting degree of the Temkin model
for phosphate adsorption was significantly higher than nitrate, indicating that phosphate
adsorption was mainly achieved through chemical adsorption, while for nitrate, it was
mainly through physical adsorption.
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Figure 5. Adsorption isotherms of sponge iron fit by Langmuir, Freundlich, and Temkin for co-
adsorption of (a) NO−

3 -N and (b) PO3−
4 -P.

Table 2. Isotherm calculation parameters of NO−
3 -N and PO3−

4 -P adsorbed on the sponge iron.

Langmuir Freundlich Temkin

KL
(L/mg)

Qm
(mg/kg) R2 KF

(mg1−1/n·L1/n·kg−1) 1/n R2 KT
AT

(mg/kg) R2

NO−
3 -N 0.007 1294.496 0.964 30.698 0.605 0.986 156.090 0.274 0.869

PO3−
4 -P 0.102 583.562 0.990 56.664 0.770 0.989 64.150 3.516 0.942

3.2.3. Reaction Mechanism

X-ray diffraction was utilized to ascertain the crystal structure of sponge iron particles
(Figure 6a). Jade6.0 software and standard PDF card were used to find that the characteristic
peaks at 2θ of 44.67◦ and 65.02◦ correspond to the (110) and (200) crystal planes of Fe0

(PDF#06-0696), respectively, confirming the existence of Fe0. The characteristic peaks
observed at 2θ of 30.24◦, 35.63◦, 43.28◦, 57.27◦, and 62.92◦ coincide with the (220), (311),
(400), (511), and (440) crystallographic planes of Fe2O3 (PDF#39-1346), respectively. The
composite’s diffraction peaks were recorded at 2θ values of 31.25◦, 36.82◦, 44.76◦, 55.62◦,
65.18◦, and 59.30◦, and these values match to the (220), (311), (400), (422), (440), and (511)
crystal planes of Fe3O4 (PDF#26-1136) [42]. Peaks of diffraction were seen at 2θ values
of 18.90◦, 31.10◦, 13.02◦, 36.65◦, 44.56◦, 59.02◦, and 64.86◦, which were consistent with
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those of Spinel (PDF#89-5701), and the 2θ values of 17.35◦, 22.87◦, 23.86◦, 25.43◦, 32.30◦,
35.70◦, 36.50◦, and 39.67◦ confirmed the presence of forsterite (PDF#83-0978), indicating
that sponge iron contains a small amount of minerals. The XRD spectra revealed that the
materials were mostly composed of some minerals, carbon, iron, and their oxides.
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and after co-removal.

The FTIR spectra of the materials before and after the co-removal of phosphate and
nitrogen were acquired in the range of 400–4000 cm−1 (Figure 6b). The stretching vibration
of O-H bonds and the blending vibration of adsorbed water were linked to the broad band in
the vicinities of 3430 cm−1 and 1632 cm−1, respectively. After the reaction, the characteristic
spike at 3430 cm−1 was weakened and shifted to 3435 cm−1, which might be caused by the
complexation between an ammonium ion and a free O-H group, demonstrating that the
hydroxyl group took part in the adsorption reaction of ammonia [43]. The chemisorption
of NH+

4 on the composite was demonstrated by the emergence of a new vibration band
at 1546 cm−1 in the spectra following the reaction, which was the result of the stretching
vibration of N-H bonds [44]. After the reaction, it was observed that the strength of the
stretching vibration band of CO3

2− was reduced near 1371 cm−1 and 1425 cm−1. The
decrease in the strength of CO3

2− bands may signify that certain carbonate groups in the
materials have been replaced by phosphate [45].

The surface appearance and pore structure of sponge iron particles before and after the
reaction were examined by SEM (Figure 7). Before the experiment, there were micron-scale
holes and fissures on the sponge iron surface (Figure 7A), and the inner surface of the
pores was relatively flat, dense, and smooth (Figure 7a). After the experiment, it was
clear that there had been a change in sponge iron surface morphology. Because the pores
in the sponge iron at the micron scale were densely covered by crystalline precipitates,
the sponge iron surface had numerous irregular holes (Figure 7(B,b)). These precipitates
clogged the pores of the sponge iron, thereby reducing the number of catalytic sites. This
might be what caused the reaction rate to decrease over time. After the reaction under
acidic circumstances, the sponge iron surface had a significant amount of corrosion and
its by-products (Figure 7c). Corrosion caused the sponge iron surface to become bumpy,
indicating that more active sites were exposed to the surface. After the reaction under
alkaline conditions, a considerable number of cluster crystals were observed on the sponge
iron surface (Figure 7d). This indicated that a high pH value would promote the formation
of crystallization on the sponge iron surface, which would block the pores and reduce the
active sites, thus preventing the reaction of sponge iron with nitrogen and phosphorus.
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Figure 7. SEM images of the sponge iron samples (A,a) before the reaction and after the reaction at
(B,b) pH = 7, (C,c) pH = 3, and (D,d) pH = 10.

The main mechanism of nitrogen and phosphorus co-removal in adsorption experi-
ments was deduced based on experimental results and material characterization, as illus-
trated in Figure 8. Firstly, protons and NO−

3 were adsorbed on the sponge iron surface
when it is introduced to solutions, and sponge iron also released electrons for NO−

3 -N
reduction. NO−

3 -N was reduced to NH+
4 -N and Fe0 was oxidized to Fe3+ and Fe2+. Then,

according to the free diffusion theory, phosphate ions in the solution easily diffused to
the area with a low concentration. The iron ions constantly dissolving on the sponge iron
surface and the phosphate radicals were polar molecules, attracting each other to produce
Fe3(PO4)2 and FePO4. The solubility products of Fe3(PO4)2 and FePO4 are very small.
Therefore, it was easy for them to precipitate and separate from the solution, so as to
achieve phosphorus removal. In addition, zeolite removed ammonia nitrogen by cation
exchange and physical adsorption.
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3.3. Pollutants Removal Performance of CWs
3.3.1. Nitrogen Removal of CWs

The nitrogen removal performance of CW-G and CW-I are shown in Figure 9. During
the operational period, the actual influent NH+

4 -N concentration was about 5.61 ± 0.55 mg/L.
Sponge iron was added according to the optimal value obtained in the dosage experiment.
The NH+

4 -N effluent concentration of both CW-G and CW-I consistently remained com-
paratively low. When the HRT was 24 h, 36 h, and 48 h, the average effluent NH+

4 -N
concentrations of CW-G were 0.07 mg/L, 0.09 mg/L, and 0.19 mg/L, while those of CW-I
were 0.07 mg/L, 0.30 mg/L, and 0.88 mg/L. As can be seen from Figure 9b, when HRT was
24 h, the NH+

4 -N removal efficiencies of CW-G and CW-I were similar and both were higher
than 98%. As HRT increased, the NH+

4 -N effluent concentration of CW-I was significantly
higher than that of CW-G. The greater the HRT, the greater the gap between CW-G and CW-
I. This phenomenon was attributed to the extended contact time facilitating the complete
manifestation of sponge iron’s reduction capabilities towards NO−

2 -N and NO−
3 -N.

During the operational period, the actual influent NO−
3 -N concentration was about

10.72 ± 0.66 mg/L. The minimum average effluent NO−
3 -N concentration for both CW-G

and CW-I systems occurred at an HRT of 48 h, with values of 5.37 mg/L and 3.53 mg/L
(Figure 9c). As HRT increased, the NO−

3 -N removal efficiency of CWs increased signifi-
cantly, and the NO−

3 -N removal efficiency of CW-I was always higher than that of CW-G. It
was evident that an excessively short HRT was not conducive to nitrogen removal in con-
structed wetlands. This was attributed to the brief residence time of wastewater within the
wetland, leading to rapid reoxygenation and inadequate progression of the denitrification
reaction. The addition of sponge iron in CW-G facilitates the chemical reduction process,
converting NO−

3 -N into NH+
4 -N effectively. Previous studies have reported that the in-

crease in NO−
3 -N removal efficiency resulting from extending the HRT from 24 h to 48 h

was primarily attributed to enhanced chemical effects rather than microbial effects, such as
nitrate-dependent ferrous oxidation (NDFO) [25]. The effluent NH+

4 -N concentration of
wetland remained relatively low, with NO−

3 -N constituting the primary component of total
nitrogen. Consequently, the effluent TN concentration exhibited a similar trend to that of
NO−

3 -N. During the operational period, the actual influent TN concentration was about
15.23 ± 1.05 mg/L. As shown in Figure 9e, the average effluent TN concentrations of both
CW-G and CW-I reached the minimum values when HRT was 48 h, which was 5.84 mg/L
and 1.01 mg/L, respectively. As HRT increased, the disparity of TN removal efficiency
between CW-G and CW-I became larger. Due to the reduction of NO−

3 -N to NH+
4 -N by

sponge iron, the NO−
3 -N effluent concentration was decreased, and the removal efficiency
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of NO−
3 -N was raised. Meanwhile, the excellent NH+

4 -N removal capability of constructed
wetlands maintained the effluent NH+

4 -N concentration at an extremely low level. The TN
removal efficiency of CW-I was improved by the combined influence of these factors.
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3 -N

removal efficiency; (e) TN effluent concentration; (f) TN removal efficiency.

3.3.2. Phosphorus Removal of CWs

The TP removal performance of CW-G and CW-I are shown in Figure 10. During the
operational period, the actual influent TP concentration was about 0.54 ± 0.06 mg/L. When
the HRT was 24 h, 36 h, and 48 h, the average effluent TP concentrations of CW-G were
0.50 mg/L, 0.52 mg/L, and 0.49 mg/L, while those of CW-I were 0.46 mg/L, 0.46 mg/L,
and 0.42 mg/L, respectively. The minimum average effluent TP concentrations for both
CW-G and CW-I were observed at an HRT of 48 h. The variation in TP removal efficiency
of CWs was primarily associated with anaerobic phosphorus release by polyphosphate-
accumulating organisms and chemical adsorption. From the experimental results, it can
be observed that the actual residence time had some impact on TP removal, but the
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impact was small. During the whole operation, the TP removal efficiency of CW-I was
consistently higher than that of CW-G (Figure 10b), indicating the addition of sponge
iron to the system can significantly improve TP removal performance. In the presence of
higher dissolved oxygen concentrations, sponge iron can generate more iron hydroxides to
bind with phosphate [46]. As the HRT was extended, the improvement in the TP removal
efficiency of CW-I was notably greater than that of CW-G. This is attributed to the increased
HRT, which also prolongs the reaction time between PO3−

4 -P and iron. Although CW-I had
better TP removal efficiency than CW-G, there was still significant room for improvement.
To improve the TP removal efficiency, the dosage of sponge iron can be increased and it can
be treated with acid before use.
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Figure 10. The performances of TP removal in CW-G and CW-I at different HRTs: (a) TP effluent
concentration; (b) TP removal efficiency.

4. Conclusions

The impacts of various factors on the synergistic reaction were studied, and it was
discovered that removal efficiency improved as solution pH values decreased. The addition
of a small quantity of activated carbon to the solution promoted the development of
microcells, which produced an iron–carbon micro-electrolysis effect and accelerated the
reaction rate. The vertical-flow constructed wetland with sponge iron was established.
Under different HRT conditions, the TN removal efficiency of CW-I was 6.08–15.18% higher
than that of CW-G, while the TP removal efficiency was 5.00–20.67% higher. The enhancing
effect of sponge iron on nitrogen and phosphorus removal was best when the HRT was
48 h. The increase of the HRT not only improved the nitrogen and phosphorus removal
effect of constructed wetlands but also enhanced the reduction capacity of iron and the
phosphorus removal effect. Chemical reduction is the primary method for removing NO−

3 -
N, ion exchange and electrostatic adsorption are the mechanisms for removing NH+

4 -N,
and precipitation formation and partial adsorption are the strategies for removing PO3−

4 -P.
This work provides a reference for the simultaneous and deep treatment of phosphate and
different forms of nitrogen.
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