Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.1.1. The Synthesis of nZVI
2.1.2. Preparation of Nano Zero-Valent Iron@Zeolite Composite Carrier (nZVI@Z-PU)
2.1.3. Production of Sludge Film
2.2. Methods
2.2.1. Composite Carrier Characterization
2.2.2. Static Adsorption of Bacteriophages by Composite Carriers
2.2.3. Composite Carrier Ammonia Adsorption Experiment
- (1)
- NH4+-N adsorption () and NH4+-N removal in solution () for individual carriers
- (2)
- To determine the adsorption isotherm model for NH4+-N adsorption on the carrier, the modified Langmuir isotherm model and the Freundlich adsorption isotherm model were fitted.Langmuir adsorption isotherm modelFreundlich adsorption isotherm model
- (3)
- In order to quantify the relationship between reaction rate and NH4+-N concentration in the adsorption reaction, an adsorption kinetic model was fitted.Pseudo-first-order modelIt can be morphed into:Pseudo-second-order modelIt can be morphed into:
- (4)
- Thermodynamic modeling of adsorption reactions in order to clarify whether the reaction can proceed spontaneously and how it is driven by the reactionIn case of ideal adsorption:It can be morphed into:
2.2.4. Short-Cut Nitrification Experiments
3. Results and Discussion
3.1. Effect of Modification on the Surface Morphology and Properties of Carriers
3.1.1. Morphological Changes in Composite Carriers
3.1.2. Elemental and Structural Analyses of Composite Carriers and Carrier Surface Properties before and after Modification
3.2. Static Adsorption of Microorganisms before and after Carrier Modification
3.3. Research on the Model and Mechanism of NH4+-N Adsorption on the Composite Carrier
3.4. Effect of the Composite Carriers on the Nitrosation Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, M.-H.; Chen, Y.-H.; Tsai, J.-Y.; Chang, C.-Y. Ammonia Removal from Ammonia-Rich Wastewater by Air Stripping Using a Rotating Packed Bed. Process Saf. Environ. Prot. 2016, 102, 777–785. [Google Scholar] [CrossRef]
- Hasanoğlu, A.; Romero, J.; Pérez, B.; Plaza, A. Ammonia Removal from Wastewater Streams through Membrane Contactors: Experimental and Theoretical Analysis of Operation Parameters and Configuration. Chem. Eng. J 2010, 160, 530–537. [Google Scholar] [CrossRef]
- Karri, R.R.; Sahu, J.N.; Chimmiri, V. Critical Review of Abatement of Ammonia from Wastewater. J. Mol. Liq. 2018, 261, 21–31. [Google Scholar] [CrossRef]
- Weralupitiya, C.; Wanigatunge, R.; Joseph, S.; Athapattu, B.C.L.; Lee, T.-H.; Kumar Biswas, J.; Ginige, M.P.; Shiung Lam, S.; Senthil Kumar, P.; Vithanage, M. Anammox Bacteria in Treating Ammonium Rich Wastewater: Recent Perspective and Appraisal. Bioresour. Technol. 2021, 334, 125240. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, J.; Hu, S.; Yuan, Z. Model-Based Investigation of Membrane Biofilm Reactors Coupling Anammox with Nitrite/Nitrate-Dependent Anaerobic Methane Oxidation. Environ. Int. 2020, 137, 105501. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Yan, Q.; Wang, C.; Luo, C.; Zhou, N.; Jian, C. Treatment of Ammonia Nitrogen Wastewater in Low Concentration by Two-Stage Ozonization. Int. J. Environ. Res. Public. Health 2015, 12, 11975–11987. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Xie, J.; Kabore, A.; Wendinso, J.; Chang, Y.; Xie, J.; Guo, M.; Chen, C. Research Advances in Anammox Granular Sludge: A Review. Crit. Rev. Environ. Sci. Technol. 2020, 1–44. [Google Scholar] [CrossRef]
- Durán, U.; Val del Río, A.; Campos, J.L.; Mosquera-Corral, A.; Méndez, R. Enhanced Ammonia Removal at Room Temperature by pH Controlled Partial Nitrification and Subsequent Anaerobic Ammonium Oxidation. Environ. Technol 2014, 35, 383–390. [Google Scholar]
- Bagchi, S.; Biswas, R.; Nandy, T. Alkalinity and Dissolved Oxygen as Controlling Parameters for Ammonia Removal through Partial Nitritation and ANAMMOX in a Single-Stage Bioreactor. J. Ind. Microbiol. Biotechnol. 2010, 37, 871–876. [Google Scholar] [CrossRef]
- Qian, Y.; Guo, Y.; Shen, J.; Qin, Y.; Li, Y.-Y. Biofilm Growth Characterization and Treatment Performance in a Single Stage Partial Nitritation/Anammox Process with a Biofilm Carrier. Water Res. 2022, 217, 118437. [Google Scholar] [CrossRef]
- Chen, J.; Wang, R.; Wang, X.; Chen, Z.; Feng, X.; Qin, M. Response of Nitritation Performance and Microbial Community Structure in Sequencing Biofilm Batch Reactors Filled with Different Zeolite and Alkalinity Ratio. Bioresour. Technol. 2019, 273, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, C.; Yuan, L.; Gao, Q.; Liang, H.; Lu, N. Fast Start-up of PN/A Process in a Single-Stage Packed Bed and Mechanism of Nitrogen Removal. Environ. Sci. Pollut. Res. 2020, 27, 40483–40494. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, Z.; Wang, X.; Zheng, L.; Gu, X. Partial Nitrification Performance and Mechanism of Zeolite Biological Aerated Filter for Ammonium Wastewater Treatment. Bioresour. Technol. 2017, 241, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xie, R.; Chen, Y.; Pu, X.; Jiang, W.; Yao, L. A Novel Mesoporous Zeolite-Activated Carbon Composite as an Effective Adsorbent for Removal of Ammonia-Nitrogen and Methylene Blue from Aqueous Solution. Bioresour. Technol. 2018, 268, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, S.; Guerrero, L.; Robles, M.; Mery, C.; Huiliñir, C.; Borja, R. Start-up and Performance of UASB Reactors Using Zeolite for Improvement of Nitrate Removal Process. Ecol. Eng. 2014, 70, 437–445. [Google Scholar] [CrossRef]
- Li, Q.; Sun, S.; Guo, T.; Yang, C.; Song, C.; Geng, W.; Zhang, W.; Feng, J.; Wang, S. Short-Cut Nitrification in Biological Aerated Filters with Modified Zeolite and Nitrifying Sludge. Bioresour. Technol. 2013, 136, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Hao, S.; Dou, Q.; Lan, S.; Peng, Y. Anammox-Synchronous Zero-Valent Iron Oxidation Promoting Synergistic Nitrogen and Phosphorus Removal from Wastewater. Bioresour. Technol. 2022, 347, 126365. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Ni, S.-Q.; Zhuang, X.; Lee, T. Nano Zero-Valent Iron Improves Anammox Activity by Promoting the Activity of Quorum Sensing System. Water Res. 2021, 202, 117491. [Google Scholar] [CrossRef]
- Erdim, E.; Yücesoy Özkan, Z.; Kurt, H.; Alpaslan Kocamemi, B. Overcoming Challenges in Mainstream Anammox Applications: Utilization of Nanoscale Zero Valent Iron (nZVI). Sci. Total Environ. 2019, 651, 3023–3033. [Google Scholar] [CrossRef]
- Liu, T.; Tian, R.; Li, Q.; Wu, N.; Quan, X. Strengthened Attachment of Anammox Bacteria on Iron-Based Modified Carrier and Its Effects on Anammox Performance in Integrated Floating-Film Activated Sludge (IFFAS) Process. Sci. Total Environ. 2021, 787, 147679. [Google Scholar]
- Zou, J.; Yang, J.; Yu, F.; Cai, L.; Li, J.; Ganigué, R. Understanding the Role of Polyurethane Sponges on Rapid Formation of Aerobic Granular Sludge and Enhanced Nitrogen Removal. Chem. Eng. J. 2023, 460, 141670. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Guo, W.; Lu, Y.; Qi, L.; Wen, H.; Ngo, H.H. Behavior of Nitrogen Removal in an Aerobic Sponge Based Moving Bed Biofilm Reactor. Bioresour. Techno.l 2017, 245, 1282–1285. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, H.; Zhao, W.; Wang, C.; Wang, Q.; Wang, J.; Wu, P.; Shen, Y.; Ji, X.; Yang, D. Rapid Initiation of a Single-Stage Partial Nitritation-Anammox Process Treating Low-Strength Ammonia Wastewater: Novel Insights into Biofilm Development on Porous Polyurethane Hydrogel Carrier. Bioresour. Technol. 2022, 357, 127344. [Google Scholar] [CrossRef]
- Gu, W.; Wang, L.; Liu, Y.; Liang, P.; Zhang, X.; Li, Y.; Huang, X. Anammox Bacteria Enrichment and Denitrification in Moving Bed Biofilm Reactors Packed with Different Buoyant Carriers: Performances and Mechanisms. Sci. Total Environ. 2020, 719, 137277. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Zhang, C.; Wen, H.; Guo, W.; Ngo, H.H. Effect of Filling Fraction on the Performance of Sponge-Based Moving Bed Biofilm Reactor. Bioresour. Technol. 2016, 219, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ngo, H.-H.; Dharmawan, F.; Palmer, C.G. Roles of Polyurethane Foam in Aerobic Moving and Fixed Bed Bioreactors. Bioresour. Technol. 2010, 101, 1435–1439. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Z.; Lin, Z.; Gong, X.; Guo, H.; Wang, H. Modification of Polyurethane Sponge Filler Using Medical Stones and Application in a Moving Bed Biofilm Reactor for Ex Situ Remediation of Polluted Rivers. J. Water Process Eng. 2021, 42, 102189. [Google Scholar] [CrossRef]
- Yang, S.; Peng, Y.; Zhang, S.; Han, X.; Li, J.; Zhang, L. Carrier Type Induces Anammox Biofilm Structure and the Nitrogen Removal Pathway: Demonstration in a Full-Scale Partial Nitritation/Anammox Process. Bioresour. Technol. 2021, 334, 125249. [Google Scholar] [CrossRef]
- Eljamal, O.; Eljamal, R.; Maamoun, I.; Khalil, A.M.E.; Shubair, T.; Falyouna, O.; Sugihara, Y. Efficient Treatment of Ammonia-Nitrogen Contaminated Waters by Nano Zero-Valent Iron/Zeolite Composite. Chemosphere 2022, 287, 131990. [Google Scholar] [CrossRef]
- Xiao, L.; Feng, M.; Chen, C.; Xiao, Q.; Cui, Y.; Zhang, Y. Microenvironment-Regulating Drug Delivery Nanoparticles for Treating and Preventing Typical Biofilm-Induced Oral Diseases. Adv. Mater 2023, 2304982. [Google Scholar] [CrossRef]
- Huang, T.; Zhao, J.; Wang, S.; Lei, L. Fast Start-up and Enhancement of Partial Nitritation and Anammox Process for Treating Synthetic Wastewater in a Sequencing Bath Biofilm Reactor: Strategy and Function of Nitric Oxide. Bioresour. Technol. 2021, 335, 125225. [Google Scholar]
- Ansari, A.; Siddiqui, V.U.; Akram, M.K.; Siddiqi, W.A.; Khan, A.; Al-Romaizan, A.N.; Hussein, M.A.; Puttegowda, M. Synthesis of Atmospherically Stable Zero-Valent Iron Nanoparticles (nZVI) for the Efficient Catalytic Treatment of High-Strength Domestic Wastewater. Catalysts 2021, 12, 26. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Wang, X.; Ma, H.; Bai, Y. Hierarchical Porous Structured Polysulfide Supported nZVI/Biochar and Efficient Immobilization of Selenium in the Soil. Sci. Total Environ. 2020, 708, 134831. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gao, M.; Wei, T.; Nagasaka, T. Synergistic Removal of As(V) from Aqueous Solution by Nanozero Valent Iron Loaded with Zeolite 5A Synthesized from Fly Ash. J. Hazard. Mater. 2022, 424, 127428. [Google Scholar] [CrossRef] [PubMed]
- Tasharrofi, S.; Rouzitalab, Z.; Maklavany, D.M.; Esmaeili, A.; Rabieezadeh, M.; Askarieh, M.; Rashidi, A.; Taghdisian, H. Adsorption of Cadmium Using Modified Zeolite-Supported Nanoscale Zero-Valent Iron Composites as a Reactive Material for PRBs. Sci. Total Environ. 2020, 736, 139570. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhang, L.; Liu, J.; Zhong, S.; Gao, P.; Shen, J. Trichloroethylene Remediation Using Zero-Valent Iron with Kaolin Clay, Activated Carbon and Bacteria. Water Res. 2022, 226, 119186. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Pu, S.; He, L.; Ma, H.; Hou, D. Biochar Induced Modification of Graphene Oxide & nZVI and Its Impact on Immobilization of Toxic Copper in Soil. Environ. Pollut. 2020, 259, 113851. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wu, J.; Wang, L.; Liu, X.; Meng, J.; Tang, X.; Tang, C.; Xu, J. Novel Insight into Adsorption and Co-Adsorption of Heavy Metal Ions and an Organic Pollutant by Magnetic Graphene Nanomaterials in Water. Chem. Eng. J. 2019, 358, 1399–1409. [Google Scholar] [CrossRef]
- Zou, F.; Leng, Z.; Cao, R.; Li, G.; Zhang, Y.; Sreeram, A. Performance of Zeolite Synthesized from Sewage Sludge Ash as a Warm Mix Asphalt Additive. Resour. Conserv. Recycl. 2022, 181, 106254. [Google Scholar] [CrossRef]
- Sheng, X.; Ting, Y.P.; Pehkonen, S.O. Force Measurements of Bacterial Adhesion on Metals Using a Cell Probe Atomic Force Microscope. J. Colloid Interface Sci. 2007, 310, 661–669. [Google Scholar] [CrossRef]
- Huang, H.; Xiao, D.; Pang, R.; Han, C.; Ding, L. Simultaneous Removal of Nutrients from Simulated Swine Wastewater by Adsorption of Modified Zeolite Combined with Struvite Crystallization. Chem. Eng. J. 2014, 256, 431–438. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zheng, X.; Chen, Y.; Wang, X.; Zhang, L.; Chen, H. Nitrite Accumulation Stability Evaluation for Low-Strength Ammonium Wastewater by Adsorption and Biological Desorption of Zeolite under Different Operational Temperature. Sci. Total Environ. 2020, 704, 135260. [Google Scholar] [CrossRef] [PubMed]
- Benselfelt, T.; Cranston, E.D.; Ondaral, S.; Johansson, E.; Brumer, H.; Rutland, M.W.; Wågberg, L. Adsorption of Xyloglucan onto Cellulose Surfaces of Different Morphologies: An Entropy-Driven Process. Biomacromolecules 2016, 17, 2801–2811. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yao, H.; Jia, F.; Han, B.; Chen, Y.; Jiang, J.; Liu, T.; Guo, J. Effects of Ammonia Nitrogen and Organic Carbon Availability on Microbial Community Structure and Ecological Interactions in a Full-Scale Partial Nitritation and Anammox (PN/A) System. Water Res. 2023, 244, 120524. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Yu, G.; Lu, Y.; Liu, Z.; Li, Q.; Tang, J.; Liu, J. Effect of Dissolved Oxygen on Nitrogen Removal and the Microbial Community of the Completely Autotrophic Nitrogen Removal over Nitrite Process in a Submerged Aerated Biological Filter. Bioresour. Technol. 2018, 254, 67–74. [Google Scholar] [CrossRef]
- Huff Chester, A.L.; Eum, K.; Tsapatsis, M.; Hillmyer, M.A.; Novak, P.J. Enhanced Nitrogen Removal and Anammox Bacteria Retention with Zeolite-Coated Membrane in Simulated Mainstream Wastewater. Environ. Sci. Technol. Lett. 2021, 8, 468–473. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, Y.; Xu, Z.; Lei, J.; Lian, H.; Zhang, J.; Wang, Z. Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification. Polymers 2024, 16, 1506. https://doi.org/10.3390/polym16111506
Liu Z, Chen Y, Xu Z, Lei J, Lian H, Zhang J, Wang Z. Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification. Polymers. 2024; 16(11):1506. https://doi.org/10.3390/polym16111506
Chicago/Turabian StyleLiu, Zexiang, Yong Chen, Zhihong Xu, Jinxu Lei, Hua Lian, Jian Zhang, and Zhiwei Wang. 2024. "Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification" Polymers 16, no. 11: 1506. https://doi.org/10.3390/polym16111506
APA StyleLiu, Z., Chen, Y., Xu, Z., Lei, J., Lian, H., Zhang, J., & Wang, Z. (2024). Surface Modification of Polyurethane Sponge with Zeolite and Zero-Valent Iron Promotes Short-Cut Nitrification. Polymers, 16(11), 1506. https://doi.org/10.3390/polym16111506