Synergistic Removal of Nitrogen and Phosphorus in Constructed Wetlands Enhanced by Sponge Iron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systems Operation and Materials
2.2. Experimental Methods of Influencing Factors
2.3. Adsorption Experiments Methods
2.3.1. Adsorption Kinetics
2.3.2. Equilibrium Isotherms
2.4. Analysis and Characterization Methods
3. Results and Discussion
3.1. Influence of Operating Factors
3.1.1. Dosage of Sponge Iron
3.1.2. Fe/C Ratios
3.1.3. Initial Solution pH
3.2. Batch Adsorption Experiments
3.2.1. Adsorption Kinetics
3.2.2. Equilibrium Isotherms
3.2.3. Reaction Mechanism
3.3. Pollutants Removal Performance of CWs
3.3.1. Nitrogen Removal of CWs
3.3.2. Phosphorus Removal of CWs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, T.; Yang, S.-S.; Zhong, L.; Pang, J.-W.; Zhang, L.; Xia, X.-F.; Yang, F.; Xie, G.-J.; Liu, B.-F.; Ren, N.-Q. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future? Sci. Total Environ. 2023, 856, 158977. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Bi, Y.; Su, L.; Lei, Y.; Gong, L.; Dong, X.; Li, X.; Yan, Z. Unveiling the nitrogen and phosphorus removal potential: Comparative analysis of three coastal wetland plant species in lab-scale constructed wetlands. J. Environ. Manag. 2024, 351, 119864. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Fu, D.; Wu, X.; Yuan, X.; Wang, S.; Duan, C. Opposite response of constructed wetland performance in nitrogen and phosphorus removal to short and long terms of operation. J. Environ. Manag. 2024, 351, 120002. [Google Scholar] [CrossRef]
- Abell, J.M.; Özkundakci, D.; Hamilton, D.P.; Reeves, P. Restoring shallow lakes impaired by eutrophication: Approaches, outcomes, and challenges. Crit. Rev. Environ. Sci. Technol. 2020, 52, 1199–1246. [Google Scholar] [CrossRef]
- Pandian, A.M.K.; Rajamehala, M.; Singh, M.V.P.; Sarojini, G.; Rajamohan, N. Potential risks and approaches to reduce the toxicity of disinfection by-product—A review. Sci. Total Environ. 2022, 822, 153323. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, P.; Liu, Y.; Du, Z.; Feng, L.; Zhang, L. Effects of different types of nitrogen sources in water on the formation potentials of nitrogenous disinfection by-products in chloramine disinfection process based on isotope labeling. Sci. Total Environ. 2022, 842, 156692. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Li, W.; Zhang, D.; Qin, W.; Zhao, Y.; Lv, L. Effect of iron and manganese on ammonium removal from micro-polluted source water by immobilized HITLi7(T) at 2 degrees C. Bioresour. Technol. 2019, 285, 121367. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, S. A combined treatment method of novel Mass Bio System and ion exchange for the removal of ammonia nitrogen from micro-polluted water bodies. Chem. Eng. J. 2019, 378, 122217. [Google Scholar] [CrossRef]
- Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Omar, S.; Webb, A.; Lundberg, J.; Weitzberg, E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J. Intern. Med. 2016, 279, 315–336. [Google Scholar] [CrossRef]
- Liu, S.; Han, X.; Li, S.; Xuan, W.; Wei, A. Stimulating Nitrate Removal with Significant Conversion to Nitrogen Gas Using Biochar-Based Nanoscale Zerovalent Iron Composites. Water 2022, 14, 2877. [Google Scholar] [CrossRef]
- Zhang, S.; Ali, A.; Su, J.; Huang, T.; Li, M. Performance and enhancement mechanism of redox mediator for nitrate removal in immobilized bioreactor with preponderant microbes. Water Res. 2021, 209, 117899. [Google Scholar] [CrossRef]
- Florea, A.F.; Lu, C.; Hansen, H.C.B. A zero-valent iron and zeolite filter for nitrate recycling from agricultural drainage water. Chemosphere 2022, 287, 131993. [Google Scholar] [CrossRef] [PubMed]
- Wenten, I.G. Reverse osmosis applications: Prospect and challenges. Desalination 2016, 391, 112–125. [Google Scholar] [CrossRef]
- Winkler, M.K.; Straka, L. New directions in biological nitrogen removal and recovery from wastewater. Curr. Opin. Biotechnol. 2019, 57, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Chen, Y. Recent advances in partial denitrification in biological nitrogen removal: From enrichment to application. Bioresour. Technol. 2020, 298, 122444. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Jia, B.; Zhang, G.; Fu, X.; Wang, Z.; Wang, P.; Lv, L. Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere 2021, 262, 127895. [Google Scholar] [CrossRef] [PubMed]
- Huo, H.; Lin, H.; Dong, Y.; Cheng, H.; Wang, H.; Cao, L. Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite. J. Hazard. Mater. 2012, 229–230, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Douglas, G.B.; Kaksonen, A.H.; Cui, L.; Ye, Z. Microbial reduction of nitrate in the presence of zero-valent iron. Sci. Total Environ. 2019, 646, 1195–1203. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Wang, Q.; Lei, Z.; Yuan, T.; Shimizu, K.; Zhang, Z.; Adachi, Y.; Lee, D.J.; Chen, R. Achieving stably enhanced biological phosphorus removal from aerobic granular sludge system via phosphorus rich liquid extraction during anaerobic period. Bioresour. Technol. 2022, 346, 126439. [Google Scholar] [CrossRef]
- Chen, L.; Chen, H.; Hu, Z.; Tian, Y.; Wang, C.; Xie, P.; Deng, X.; Zhang, Y.; Tang, X.; Lin, X.; et al. Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems. Water Res. 2022, 216, 118258. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z. Constructed wetlands for pollution control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Xue, R.; Xu, J.; Gu, L.; Pan, L.; He, Q. Study of Phosphorus Removal by Using Sponge Iron Adsorption. Water Air Soil. Pollut. 2018, 229, 161. [Google Scholar] [CrossRef]
- Mejia, J.; Roden, E.E.; Ginder-Vogel, M. Influence of Oxygen and Nitrate on Fe (Hydr)oxide Mineral Transformation and Soil Microbial Communities during Redox Cycling. Environ. Sci. Technol. 2016, 50, 3580–3588. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zeng, W.; Liu, H.; Wu, Y.; Miao, H. Performances and mechanisms of simultaneous nitrate and phosphate removal in sponge iron biofilter. Bioresour. Technol. 2021, 337, 125390. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Walker, H.; Zhu, Q. Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles. J. Hazard. Mater. 2017, 324, 605–616. [Google Scholar] [CrossRef]
- Diao, Z.H.; Qian, W.; Lei, Z.X.; Kong, L.J.; Du, J.J.; Liu, H.; Yang, J.W.; Pu, S.Y. Insights on the nitrate reduction and norfloxacin oxidation over a novel nanoscale zero valent iron particle: Reactivity, products, and mechanism. Sci. Total Environ. 2019, 660, 541–549. [Google Scholar] [CrossRef]
- Tian, H.; Huang, C.; Wang, P.; Wei, J.; Li, X.; Zhang, R.; Ling, D.; Feng, C.; Liu, H.; Wang, M. Enhanced elimination of Cr (VI) from aqueous media by polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero valent iron: Performance and mechanism. Bioresour. Technol. 2023, 369, 128452. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Xu, Z.; Zhou, Y.; Zhang, D.; Chen, W. Effects of different scrap iron as anode in Fe-C micro-electrolysis system for textile wastewater degradation. Environ. Sci. Pollut. Res. Int. 2019, 26, 26869–26882. [Google Scholar] [CrossRef]
- Stroka, J.R.; Kandemir, B.; Matson, E.M.; Bren, K.L. Electrocatalytic Multielectron Nitrite Reduction in Water by an Iron Complex. ACS Catal. 2020, 10, 13968–13972. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhang, T.C. Effects of low pH on nitrate reduction by iron powder. Water Res. 2004, 38, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, Z.; Liu, H.; Lv, X.; Tu, Q.; Ren, Q.; Xia, X.; Jing, C. Common oxidants activate the reactivity of zero-valent iron (ZVI) and hence remarkably enhance nitrate reduction from water. Sep. Purif. Technol. 2015, 146, 227–234. [Google Scholar] [CrossRef]
- Xu, J.; Hao, Z.; Xie, C.; Lv, X.; Yang, Y.; Xu, X. Promotion effect of Fe2+ and Fe3O4 on nitrate reduction using zero-valent iron. Desalination 2012, 284, 9–13. [Google Scholar] [CrossRef]
- Ju, Y.; Liu, X.; Liu, R.; Li, G.; Wang, X.; Yang, Y.; Wei, D.; Fang, J.; Dionysiou, D.D. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): The effect of surface copper. J. Hazard. Mater. 2015, 287, 325–334. [Google Scholar] [CrossRef]
- Hou, L.; Liang, Q.; Wang, F. Mechanisms that control the adsorption–desorption behavior of phosphate on magnetite nanoparticles: The role of particle size and surface chemistry characteristics. RSC Adv. 2020, 10, 2378–2388. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Wang, R.; Zhao, Z. Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. J. Clean. Prod. 2018, 176, 230–240. [Google Scholar] [CrossRef]
- Zhang, X.; Song, Z.; Dou, Y.; Xue, Y.; Ji, Y.; Tang, Y.; Hu, M. Removal difference of Cr(VI) by modified zeolites coated with MgAl and ZnAl-layered double hydroxides: Efficiency, factors and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2021, 621, 126583. [Google Scholar] [CrossRef]
- Seftel, E.M.; Ciocarlan, R.G.; Michielsen, B.; Meynen, V.; Mullens, S.; Cool, P. Insights into phosphate adsorption behavior on structurally modified ZnAl layered double hydroxides. Appl. Clay Sci. 2018, 165, 234–246. [Google Scholar] [CrossRef]
- Tseng, R.L.; Wu, F.C. Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. J. Hazard. Mater. 2008, 155, 277–287. [Google Scholar] [CrossRef]
- Wang, Y.; Song, X.; Xu, Z.; Cao, X.; Song, J.; Huang, W.; Ge, X.; Wang, H. Adsorption of Nitrate and Ammonium from Water Simultaneously Using Composite Adsorbents Constructed with Functionalized Biochar and Modified Zeolite. Water Air Soil. Pollut. 2021, 232, 198. [Google Scholar] [CrossRef]
- Jellali, S.; Wahab, M.A.; Hassine, R.B.; Hamzaoui, A.H.; Bousselmi, L. Adsorption characteristics of phosphorus from aqueous solutions onto phosphate mine wastes. Chem. Eng. J. 2011, 169, 157–165. [Google Scholar] [CrossRef]
- Si, Z.; Song, X.; Wang, Y.; Cao, X.; Wang, Y.; Zhao, Y.; Ge, X.; Sand, W. Untangling the nitrate removal pathways for a constructed wetland- sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem. J. Hazard. Mater. 2020, 393, 122407. [Google Scholar] [CrossRef] [PubMed]
- Wahab, M.A.; Boubakri, H.; Jellali, S.; Jedidi, N. Characterization of ammonium retention processes onto cactus leaves fibers using FTIR, EDX and SEM analysis. J. Hazard. Mater. 2012, 241–242, 101–109. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L. Simultaneous removal of ammonium and phosphate by alkaline-activated and lanthanum-impregnated zeolite. Chemosphere 2016, 164, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Boeykens, S.P.; Piol, M.N.; Samudio Legal, L.; Saralegui, A.B.; Vazquez, C. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates. J. Environ. Manag. 2017, 203, 888–895. [Google Scholar] [CrossRef]
- Narayanasamydamodaran, S.; Zuo, J.E.; Ren, H.; Kumar, N. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture. Front. Environ. Sci. Eng. 2021, 15, 66. [Google Scholar] [CrossRef]
C0 (mg/L) | qexp (mg/kg) | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|---|
K1 (h−1) | qcal (mg/kg) | R2 | K2 (kg·mg−1·h−1) | qcal (mg/kg) | R2 | |||
TN | 15 | 860.676 | 0.172 | 603.050 | 0.980 | 0.001 | 909.091 | 0.999 |
-P | 0.5 | 24.467 | 0.121 | 22.03 | 0.979 | 0.010 | 27.933 | 0.998 |
Intra-Particle Diffusion | ||||||||
C0 (mg/L) | Kd1 (mg·kg−1·h−0.5) | R2 | Kd2 (mg·kg−1·h−0.5) | R2 | Kd3 (mg·kg−1·h−0.5) | R2 | ||
TN | 15 | 382.817 | 0.999 | 230.630 | 0.946 | 49.243 | 0.984 | |
-P | 0.5 | 5.638 | 0.990 | 6.511 | 0.985 | 1.663 | 0.975 |
Langmuir | Freundlich | Temkin | |||||||
---|---|---|---|---|---|---|---|---|---|
KL (L/mg) | Qm (mg/kg) | R2 | KF (mg1−1/n·L1/n·kg−1) | 1/n | R2 | KT | AT (mg/kg) | R2 | |
-N | 0.007 | 1294.496 | 0.964 | 30.698 | 0.605 | 0.986 | 156.090 | 0.274 | 0.869 |
-P | 0.102 | 583.562 | 0.990 | 56.664 | 0.770 | 0.989 | 64.150 | 3.516 | 0.942 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Hu, M.; Xu, Y.; Tao, M.; Guan, L.; Kong, Y.; Cao, S.; Jing, Z. Synergistic Removal of Nitrogen and Phosphorus in Constructed Wetlands Enhanced by Sponge Iron. Water 2024, 16, 1414. https://doi.org/10.3390/w16101414
Shen Y, Hu M, Xu Y, Tao M, Guan L, Kong Y, Cao S, Jing Z. Synergistic Removal of Nitrogen and Phosphorus in Constructed Wetlands Enhanced by Sponge Iron. Water. 2024; 16(10):1414. https://doi.org/10.3390/w16101414
Chicago/Turabian StyleShen, Yiwei, Meijia Hu, Yishen Xu, Mengni Tao, Lin Guan, Yu Kong, Shiwei Cao, and Zhaoqian Jing. 2024. "Synergistic Removal of Nitrogen and Phosphorus in Constructed Wetlands Enhanced by Sponge Iron" Water 16, no. 10: 1414. https://doi.org/10.3390/w16101414
APA StyleShen, Y., Hu, M., Xu, Y., Tao, M., Guan, L., Kong, Y., Cao, S., & Jing, Z. (2024). Synergistic Removal of Nitrogen and Phosphorus in Constructed Wetlands Enhanced by Sponge Iron. Water, 16(10), 1414. https://doi.org/10.3390/w16101414