Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (180)

Search Parameters:
Keywords = sponge culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2226 KiB  
Article
Melatonin Implantation Improves the Reproductive Performance of Estrus-Synchronized Ewes During Seasonal Anestrus and Enhances the Antioxidant and Steroidogenic Capacities of Granulosa and Luteal Cells
by Zengyi Duan, Menghao Liu, Junjin Li, Kexiong Liu, Qi Qi, Zhixuan Yu, Hadia Akber Samoo, Chunxin Wang and Jian Hou
Antioxidants 2025, 14(7), 895; https://doi.org/10.3390/antiox14070895 - 21 Jul 2025
Viewed by 359
Abstract
Seasonal reproduction in sheep reduces reproductive efficiency. Melatonin (MT) plays a crucial role in reproductive processes. The purpose of this study was to assess the effects of a 5-day MT implant pretreatment on estrus synchronization and reproductive performance in sheep during seasonal anestrus. [...] Read more.
Seasonal reproduction in sheep reduces reproductive efficiency. Melatonin (MT) plays a crucial role in reproductive processes. The purpose of this study was to assess the effects of a 5-day MT implant pretreatment on estrus synchronization and reproductive performance in sheep during seasonal anestrus. A total of 40 multiparous Mongolian sheep were selected and randomly divided into two groups. In the MT group (n = 20), the ewes received an MT implant for 5 days, and then, they were given a progesterone (P4)-containing vaginal sponge for 14 days with equine chorionic gonadotropin (eCG) administered (330 I.U. per ewe; I.M.) at sponge removal. Control (CON) ewes (n = 20) were similarly treated but did not receive MT implants. The results demonstrated that MT implantation significantly improved serum levels of total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px), increased post-ovulatory luteal diameter and serum P4 levels, and reduced ovarian apoptosis. Compared with the CON group, the MT group showed significantly higher pregnancy (68.23% vs. 50.59%) and lambing rates (63.53% vs. 47.06%; number of lambed ewes/number of total ewes) following cervical-timed artificial insemination. Ovarian transcriptome analysis revealed 522 differentially expressed genes (DEGs) in the MT group compared with the CON group, including 355 upregulated and 167 downregulated DEGs. In addition, MT significantly enhanced proliferation and inhibited apoptosis in cultured granulosa cells (GCs) and luteal cells (LCs) in vitro. Moreover, it enhanced the antioxidant capacity of GCs and LCs probably by activating the NRF2 signaling pathway as well as stimulating steroid hormone synthesis. In conclusion, MT implantation 5 days before applying the conventional P4-eCG protocol enhances ovine reproductive outcomes during seasonal anestrus. MT implantation has a beneficial role on the growth and function of ovarian cells. These findings offer novel evidence supporting the functional role of MT in mammalian reproduction, and would be informative for optimizing estrus synchronization in sheep. Full article
(This article belongs to the Special Issue Redox Regulation in Animal Reproduction)
Show Figures

Figure 1

15 pages, 3858 KiB  
Article
Lipotrichaibol A and Trichoderpeptides A–D: Five New Peptaibiotics from a Sponge-Derived Trichoderma sp. GXIMD 01001
by Weichan Yang, Zhenzhou Tang, Xiaowei Luo, Yuman Gan, Meng Bai, Houwen Lin, Chenghai Gao, Ling Chai and Xiao Lin
Mar. Drugs 2025, 23(7), 264; https://doi.org/10.3390/md23070264 - 24 Jun 2025
Viewed by 542
Abstract
Five previously undescribed peptaibiotics, including one 7-mer lipopeptaibol named lipotrichaibol A (1), and four 11-mer peptaibiotics named trichoderpeptides A-D (25) were isolated from the rice culture medium of the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures [...] Read more.
Five previously undescribed peptaibiotics, including one 7-mer lipopeptaibol named lipotrichaibol A (1), and four 11-mer peptaibiotics named trichoderpeptides A-D (25) were isolated from the rice culture medium of the sponge-derived fungus Trichoderma sp. GXIMD 01001. Their structures and absolute configurations were unambiguously established by extensive spectroscopic data analysis and advanced Marfey’s method. All isolated compounds were evaluated via CCK8 bioassays to investigate their antiproliferative activity. Only compound 1 exerted potent cytotoxicity against HT-29 and DLD-1 cells with IC50 values at 10.3 ± 1.9 and 12.31 ± 1.5 μM, respectively. In further in vitro bioassay, compound 1 exhibited significant inhibition in colony formation assay, induced apoptosis and blocked the cell cycle in the G0/G1 phase. The mechanism may be related to the regulation of the Erk1/2 signaling pathway. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi, 3rd Edition)
Show Figures

Graphical abstract

23 pages, 2307 KiB  
Systematic Review
Assessing Cultural Ecosystem Services in Sponge City Infrastructure: A Systematic Review and Framework Proposal
by Nuan Han, Roziya Binti Ibrahim and Mohd Sallehuddin Bin Mat Noor
Sustainability 2025, 17(11), 5130; https://doi.org/10.3390/su17115130 - 3 Jun 2025
Viewed by 569
Abstract
Urbanization has significantly transformed ecological landscapes and created challenges in sustaining both environmental functionality and cultural values. In response, China’s Sponge City Infrastructure (SPI) aims to enhance urban water resilience by integrating green and blue infrastructure. While the ecological benefits of SPI have [...] Read more.
Urbanization has significantly transformed ecological landscapes and created challenges in sustaining both environmental functionality and cultural values. In response, China’s Sponge City Infrastructure (SPI) aims to enhance urban water resilience by integrating green and blue infrastructure. While the ecological benefits of SPI have been widely studied, the cultural ecosystem services (CES) it provides remain underexplored. This study systematically reviews 61 empirical articles to evaluate how CES has been addressed in SPI-related research. Bibliometric analysis was conducted to identify CES research trends and to systematically categorize CES types, assessment methods, and evaluation indicators in SPI-related studies. The findings reveal a dominant use of non-monetary assessment methods, led by questionnaire surveys (47.5%), while monetary approaches were rarely applied. However, several limitations were identified, including the geographic concentration of studies in a few major cities, the scarcity of research on abstract CES categories (e.g., inspiration and sense of place), and the lack of measurable indicators in nearly half of the reviewed studies. To address these issues, this study proposes a context-specific CES assessment framework aligned with China’s socio-cultural conditions and planning priorities in sponge city development. The framework, based on the reviewed literature, provides a preliminary tool for evaluating CES in sponge city contexts. This work contributes to the integration of cultural ecosystem services into urban ecological planning and offers insights for sustainable development in rapidly urbanizing regions. Full article
Show Figures

Figure 1

14 pages, 1175 KiB  
Article
Isolation and Identification of Cis-2,5-Diketopiperazine from a Novel Bacillus Strain and Synthesis of Its Four Stereoisomers
by Alan M. C. Obled, Refaat B. Hamed, Edward Spence, Marija K. Zacharova, Sunil V. Sharma, Yunpeng Wang, Rosemary Lynch, Helen Connaris, Adina Tatheer, Marie-Lise Bourguet-Kondracki, Gordon J. Florence and Rebecca J. M. Goss
Mar. Drugs 2025, 23(6), 234; https://doi.org/10.3390/md23060234 - 29 May 2025
Viewed by 816
Abstract
The Bacillus horneckiae-like strain 2011SOCCUF3 was isolated from the marine sponge Spongia officinalis and its metabolome was studied for secondary metabolites with antimicrobial activity. Culturing in the presence of Diaion HP-20 resin and purifying the culture extract identified cyclo-phenylalanine-proline (cyclo-(Phe-Pro)), a 2,5-diketopiperazine [...] Read more.
The Bacillus horneckiae-like strain 2011SOCCUF3 was isolated from the marine sponge Spongia officinalis and its metabolome was studied for secondary metabolites with antimicrobial activity. Culturing in the presence of Diaion HP-20 resin and purifying the culture extract identified cyclo-phenylalanine-proline (cyclo-(Phe-Pro)), a 2,5-diketopiperazine (2,5-DKP), isolated as a major metabolite. Further, LCMS analysis of the extract showed the presence of two isomers of the molecule in the culture broth. To confirm the stereochemistry of the isomers observed in the natural extract, all four stereoisomers of cyclo-(Phe-Pro) were synthesised. NMR and LCMS studies identified the presence of both cis- and trans-cyclo-(Phe-Pro) isomers. Stability and epimerisation studies on synthetic isomers and the effect of culturing conditions suggested that the less stable cis isomer was naturally produced, which epimerised in culture broth. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Opioid-Induced Regulation of Cortical Circular-Grin2b_011731 Is Associated with Regulation of circGrin2b Sponge Target miR-26b-3p
by Aria Gillespie and Stephanie E. Daws
Int. J. Mol. Sci. 2025, 26(11), 5010; https://doi.org/10.3390/ijms26115010 - 22 May 2025
Viewed by 503
Abstract
Opioid use induces neurobiological adaptations throughout mesolimbic brain regions, such as the orbitofrontal cortex (OFC), which mediates decision-making and emotional–cognitive regulation. Previously, we showed that a circular RNA (circRNA) species, rno_circGrin2b_011731 (circGrin2b), is upregulated in the OFC of rats [...] Read more.
Opioid use induces neurobiological adaptations throughout mesolimbic brain regions, such as the orbitofrontal cortex (OFC), which mediates decision-making and emotional–cognitive regulation. Previously, we showed that a circular RNA (circRNA) species, rno_circGrin2b_011731 (circGrin2b), is upregulated in the OFC of rats following chronic self-administration (SA) of the opioid heroin. circGrin2b is derived from Grin2b, which encodes the regulatory subunit of the glutamate ionotropic NMDA receptor, GluN2B. However, the upstream regulatory mechanisms of circGrin2b biogenesis and the downstream consequences of circGrin2b dysregulation remain unknown. We hypothesized that opioid-induced elevation of circGrin2b is accompanied by regulation of circRNA biogenesis enzymes, and that circGrin2b may sponge microRNAs (miRNAs), as miRNA sponging is a well-described characteristic of circRNAs. To test these hypotheses, we established an in vitro primary cortical cell culture model to examine alterations in circGrin2b expression following exposure to the opioid morphine. We measured mRNA expression of known circRNA splicing factors and observed significant downregulation of Fused in Sarcoma (Fus), a negative regulator of circRNA biogenesis, following 90 min or 24 h of morphine exposure. Downregulation of Fus at 24 h post-morphine was accompanied by upregulation of circGrin2b and downregulation of miR-26b-3p, a predicted miRNA target of circGrin2b. Luciferase reporter assays confirmed interaction of miR-26b-3p with circGrin2b. Finally, we report a significant negative relationship between circGrin2b and miR-26b-3p expression in the OFC of rats following heroin SA. We conclude that regulation of circGrin2b is an opioid-induced neuroadaptation that may impact downstream signaling of miRNA pathways in the frontal cortex. Full article
(This article belongs to the Special Issue New Advances in Opioid Research)
Show Figures

Figure 1

21 pages, 6710 KiB  
Article
HNF4α-Mediated LINC02560 Promotes Papillary Thyroid Carcinoma Progression by Targeting the miR-505-5p/PDE4C Axis
by Yongcheng Su, Beibei Xu, Chunyi Gao, Wenbin Pei, Miaomiao Ma, Wenqing Zhang, Tianhui Hu, Fuxing Zhang and Shaoliang Zhang
Biomolecules 2025, 15(5), 630; https://doi.org/10.3390/biom15050630 - 28 Apr 2025
Viewed by 606
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid malignancy, and its progression is closely associated with patient outcomes. This study investigated the role of the long non-coding RNA LINC02560 in the pathogenesis and aggressiveness of PTC through cell culture, transfection, [...] Read more.
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid malignancy, and its progression is closely associated with patient outcomes. This study investigated the role of the long non-coding RNA LINC02560 in the pathogenesis and aggressiveness of PTC through cell culture, transfection, RT-qPCR, Western blot analysis, and various functional assays, such as MTT, EdU, colony formation, wound healing, and Transwell migration assays. Our results revealed a significant upregulation of LINC02560 in PTC tissues, correlating with poor prognosis in affected patients. Functional analyses demonstrated that silencing of LINC02560 markedly inhibited the proliferation, migration, and invasion of the PTC cell lines, KTC-1, and BCPAP, whereas overexpression promoted these aggressive traits. Mechanistically, LINC02560 acted as a competitive endogenous RNA, sponging miR-505-5p and alleviating its suppression on PDE4C degradation, thereby activating the P-AKT and epithelial–mesenchymal transition (EMT) signaling pathways. Additionally, HNF4α was identified as a transcription factor capable of enhancing the expression of LINC02560. In conclusion, our findings elucidate the critical HNF4α/LINC02560/miR-505-5p/PDE4C axis in PTC pathology, presenting this regulatory network as a promising biomarker combination and potential therapeutic target to improve patient outcomes and survival rates, warranting further clinical investigation to validate these insights and support the development of targeted therapies in PTC management. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Graphical abstract

7 pages, 1119 KiB  
Communication
Preparing Sponge Dough for Making Bread Using Wheat Flour Cultured in 5% Saline
by Naganori Ohisa, Kazuto Endo and Toshikazu Komoda
Fermentation 2025, 11(4), 206; https://doi.org/10.3390/fermentation11040206 - 10 Apr 2025
Viewed by 669
Abstract
A 5% salt solution was used to make sponge dough from wheat flour. We devised a new starter (wheat flour saline culture) by adding 5% saline to wheat flour and incubating it for 24 h. The dough’s rise was enhanced by adding wheat [...] Read more.
A 5% salt solution was used to make sponge dough from wheat flour. We devised a new starter (wheat flour saline culture) by adding 5% saline to wheat flour and incubating it for 24 h. The dough’s rise was enhanced by adding wheat flour saline culture to the dough: after two hours, the dough volume increased by 20–30% compared to the control. Furthermore, the specific volume of the bread increased from 2.25 cm3/g in the control to 2.73–3.47 cm3/g when sugar or other auxiliary ingredients were not added to it. Wheat flour saline culture contained a large number of halotolerant bacteria. The addition of wheat flour saline culture increased the air bubble size and specific volume of the bread. Full article
(This article belongs to the Special Issue Development and Application of Starter Cultures, 2nd Edition)
Show Figures

Figure 1

14 pages, 2587 KiB  
Article
New Polyketides from a Marine Sponge-Derived Fungus, Neopestalotiopsis sp., with Anti-Renal Fibrosis Activity
by Xinlong Li, Jianglian She, Meiqun Cai, Xinqi Chen, Rongxiang Qiu, Xiaowei Luo, Yonghong Liu, Xuefeng Zhou and Lan Tang
Mar. Drugs 2025, 23(4), 148; https://doi.org/10.3390/md23040148 - 29 Mar 2025
Viewed by 712
Abstract
Sixteen polyketides, including six new compounds (12, and 58), were isolated from the culture of the marine sponge-associated fungus Neopestalotiopsis sp. SCSIO 41422. Their structures were elucidated through NMR, MS spectroscopic analyses, calculated electronic circular dichroism, [...] Read more.
Sixteen polyketides, including six new compounds (12, and 58), were isolated from the culture of the marine sponge-associated fungus Neopestalotiopsis sp. SCSIO 41422. Their structures were elucidated through NMR, MS spectroscopic analyses, calculated electronic circular dichroism, quantum chemical NMR calculations, and X-ray single-crystal diffraction. To screen and evaluate the inhibitory activity of these polyketides in renal fibrosis, a TGF-β1-stimulated HK-2 cell model was used. All tested compounds (1, 58, and 1112) at 10 µM showed obvious anti-fibrotic activity by inhibiting TGF-β1-induced α-SMA expression and extracellular matrix production (collagen I and fibronectin). Among them, gamahorin A (1) was shown to be the most potent and the most promising inhibitor against renal fibrosis. Full article
Show Figures

Figure 1

16 pages, 2870 KiB  
Article
Modified Fine Polyurethane Sponges with Polyvinyl Alcohol–Sodium Alginate Gel Coating as Bio-Carriers for Anammox Process
by Patcharaporn Phocharoen, Jarawee Kaewyai, Sineenat Thaiboonrod, Sanya Sirivitayaprakorn, Pongsak (Lek) Noophan and Chi-Wang Li
Water 2025, 17(5), 737; https://doi.org/10.3390/w17050737 - 3 Mar 2025
Cited by 1 | Viewed by 937
Abstract
This research investigates suitable bio-carriers for the anaerobic ammonium oxidation (anammox) process. This study evaluates the efficiency of the anammox process by assessing nitrogen removal efficiency using five different bio-carriers: fine and coarse polyurethane (PU) sponges, a melamine sponge, Scotch Brite, and a [...] Read more.
This research investigates suitable bio-carriers for the anaerobic ammonium oxidation (anammox) process. This study evaluates the efficiency of the anammox process by assessing nitrogen removal efficiency using five different bio-carriers: fine and coarse polyurethane (PU) sponges, a melamine sponge, Scotch Brite, and a loofah. Among the tested carriers, the reactor of the fine PU sponge media exhibited the highest nitrogen removal efficiency, achieving an 87% removal rate. This high efficiency was attributed to the substantial biomass containment, evidenced by a measured mixed liquor volatile suspended solids (MLVSS) amount of 1414 mg/L. Subsequently, the fine PU sponge, exhibiting the highest efficiency, was selected for further modification with a polyvinyl alcohol–sodium alginate (PVA-SA) gel coating to study the impact of methanol inhibition on nitrogen removal efficiency. An optimal modification condition was determined, utilizing concentrations of 8% PVA and 1.8% SA for the fine PU sponge media. The modified PU reactor exhibited the highest resistance to methanol inhibition, followed by the attached growth fine PU sponge reactor and suspended growth reactor. These findings suggest that there are benefits to using modified PU media for the anammox process in the field. Full article
(This article belongs to the Special Issue ANAMMOX Based Technology for Nitrogen Removal from Wastewater)
Show Figures

Figure 1

22 pages, 5401 KiB  
Article
Adipose-Derived Stromal Cells Exposed to RGD Motifs Enter an Angiogenic Stage Regulating Endothelial Cells
by Nicolo-Constantino Brembilla, Sanae El-Harane, Stéphane Durual, Karl-Heinz Krause and Olivier Preynat-Seauve
Int. J. Mol. Sci. 2025, 26(3), 867; https://doi.org/10.3390/ijms26030867 - 21 Jan 2025
Cited by 1 | Viewed by 1107
Abstract
Adipose-derived stromal cells (ASCs) possess significant regenerative potential, playing a key role in tissue repair and angiogenesis. During wound healing, ASC interacts with the extracellular matrix by recognizing arginylglycylaspartic acid (RGD) motifs, which are crucial for mediating these functions. This study investigates how [...] Read more.
Adipose-derived stromal cells (ASCs) possess significant regenerative potential, playing a key role in tissue repair and angiogenesis. During wound healing, ASC interacts with the extracellular matrix by recognizing arginylglycylaspartic acid (RGD) motifs, which are crucial for mediating these functions. This study investigates how RGD exposure influences ASC behavior, with a focus on angiogenesis. To mimic the wound-healing environment, ASC were cultured in a porcine gelatin sponge, an RGD-exposing matrix. Transcriptomics revealed that ASC cultured in gelatin exhibited an upregulated expression of genes associated with inflammation, angiogenesis, and tissue repair compared to ASC in suspension. Pro-inflammatory and pro-angiogenic factors, including IL-1, IL-6, IL-8, and VEGF, were significantly elevated. Functional assays further demonstrated that ASC-conditioned media enhanced endothelial cell migration, tubulogenesis, and reduced endothelial permeability, all critical processes in angiogenesis. Notably, ASC-conditioned media also promoted vasculogenesis in human vascular organoids. The inhibition of ASC-RGD interactions using the cyclic peptide cilengitide reversed these effects, underscoring the essential role of RGD-integrin interactions in ASC-mediated angiogenesis. These findings suggest that gelatin sponges enhance ASC’s regenerative and angiogenic properties via RGD-dependent mechanisms, offering promising therapeutic potential for tissue repair and vascular regeneration. Understanding how RGD modulates ASC behavior provides valuable insights into advancing cell-based regenerative therapies. Full article
Show Figures

Figure 1

12 pages, 2111 KiB  
Article
The Functional Role of the Long Non-Coding RNA LINCMD1 in Leiomyoma Pathogenesis
by Tsai-Der Chuang, Nhu Ton, Shawn Rysling and Omid Khorram
Int. J. Mol. Sci. 2024, 25(21), 11539; https://doi.org/10.3390/ijms252111539 - 27 Oct 2024
Cited by 2 | Viewed by 1422
Abstract
Existing evidence indicates that LINCMD1 regulates muscle differentiation-related gene expression in skeletal muscle by acting as a miRNA sponge, though its role in leiomyoma development is still unknown. This study investigated LINCMD1′s involvement in leiomyoma by analyzing paired myometrium and leiomyoma tissue samples [...] Read more.
Existing evidence indicates that LINCMD1 regulates muscle differentiation-related gene expression in skeletal muscle by acting as a miRNA sponge, though its role in leiomyoma development is still unknown. This study investigated LINCMD1′s involvement in leiomyoma by analyzing paired myometrium and leiomyoma tissue samples (n = 34) from patients who had not received hormonal treatments for at least three months prior to surgery. Myometrium smooth muscle cells (MSMCs) were isolated, and gene expression of LINCMD1 and miR-135b was assessed via qRT-PCR, while luciferase assays determined the interaction between LINCMD1 and miR-135b. To examine the effects of LINCMD1 knockdown, siRNA transfection was applied to a 3D MSMC spheroid culture, followed by qRT-PCR and Western blot analyses of miR-135b, APC, β-Catenin and COL1A1 expression. The results showed that leiomyoma tissues had significantly reduced LINCMD1 mRNA levels, regardless of patient race or MED12 mutation status, while miR-135b levels were elevated compared to matched myometrium samples. Luciferase assays confirmed LINCMD1′s role as a sponge for miR-135b. LINCMD1 knockdown in MSMC spheroids increased miR-135b levels, reduced APC expression, and led to β-Catenin accumulation and higher COL1A1 expression. These findings highlight LINCMD1 as a potential therapeutic target to modulate aberrant Wnt/β-Catenin signaling in leiomyoma. Full article
(This article belongs to the Special Issue The Role of Non‐coding RNAs in Human Health and Diseases)
Show Figures

Figure 1

24 pages, 7867 KiB  
Article
A Novel Hydrogel Sponge for Three-Dimensional Cell Culture
by Sara Baldassari, Mengying Yan, Giorgia Ailuno, Guendalina Zuccari, Anna Maria Bassi, Stefania Vernazza, Sara Tirendi, Sara Ferrando, Antonio Comite, Giuliana Drava and Gabriele Caviglioli
Pharmaceutics 2024, 16(10), 1341; https://doi.org/10.3390/pharmaceutics16101341 - 19 Oct 2024
Viewed by 1731
Abstract
Background/Objectives: Three-dimensional (3D) cell culture technologies allow us to overcome the constraints of two-dimensional methods in different fields like biochemistry and cell biology and in pharmaceutical in vitro tests. In this study, a novel 3D hydrogel sponge scaffold, composed of a crosslinked polyacrylic [...] Read more.
Background/Objectives: Three-dimensional (3D) cell culture technologies allow us to overcome the constraints of two-dimensional methods in different fields like biochemistry and cell biology and in pharmaceutical in vitro tests. In this study, a novel 3D hydrogel sponge scaffold, composed of a crosslinked polyacrylic acid forming a porous matrix, has been developed and characterized. Methods: The scaffold was obtained via an innovative procedure involving thermal treatment followed by a salt-leaching step on a matrix-containing polymer along with a gas-forming agent. Based on experimental design for mixtures, a series of formulations were prepared to study the effect of the three components (polyacrylic acid, NaHCO3 and NaCl) on the scaffold mechanical properties, density, swelling behavior and morphological changes. Physical appearance, surface morphology, porosity, molecular diffusion, transparency, biocompatibility and cytocompatibility were also evaluated. Results: The hydrogel scaffolds obtained show high porosity and good optical transparency and mechanical resistance. The scaffolds were successfully employed to culture several cell lines for more than 20 days. Conclusions: The developed scaffolds could be an important tool, as such or with a specific coating, to obtain a more predictive cellular response to evaluate drugs in preclinical studies or for testing chemical compounds, biocides and cosmetics, thus reducing animal testing. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

19 pages, 2327 KiB  
Article
Diversity and Activity of Bacteria Cultured from a Cup—The Sponge Calyx nicaeensis
by Lynne Itelson, Mayan Merav, Shai Haymi, Shmuel Carmeli and Micha Ilan
Mar. Drugs 2024, 22(10), 440; https://doi.org/10.3390/md22100440 - 26 Sep 2024
Viewed by 1276
Abstract
Marine sponges are well-known for hosting rich microbial communities. Sponges are the most prolific source of marine bioactive compounds, which are frequently synthesized by their associated microbiota. Calyx nicaeensis is an endemic Mediterranean sponge with scarce information regarding its (bioactive) secondary metabolites. East [...] Read more.
Marine sponges are well-known for hosting rich microbial communities. Sponges are the most prolific source of marine bioactive compounds, which are frequently synthesized by their associated microbiota. Calyx nicaeensis is an endemic Mediterranean sponge with scarce information regarding its (bioactive) secondary metabolites. East Mediterranean specimens of mesophotic C. nicaeensis have never been studied. Moreover, no research has inspected its associated bacteria. Thus, we studied the sponge’s bacterial diversity and examined bacterial interspecific interactions in search of a promising antibacterial candidate. Such novel antimicrobial agents are needed since extensive antibiotic use leads to bacterial drug resistance. Bacteria cultivation yielded 90 operational taxonomic units (OTUs). A competition assay enabled the testing of interspecific interactions between the cultured OTUs. The highest-ranked antagonistic bacterium, identified as Paenisporosarcina indica (previously never found in marine or cold habitats), was mass cultured, extracted, and separated using size exclusion and reversed-phase chromatographic methods, guided by antibacterial activity. A pure compound was isolated and identified as 3-oxy-anteiso-C15-fatty acid-lichenysin. Five additional active compounds await final cleaning; however, they are lichenysins and surfactins. These are the first antibacterial compounds identified from either the C. nicaeensis sponge or P. indica bacterium. It also revealed that the genus Bacillus is not an exclusive producer of lichenysin and surfactin. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Figure 1

11 pages, 3519 KiB  
Article
Cell Proliferation, Chondrogenic Differentiation, and Cartilaginous Tissue Formation in Recombinant Silk Fibroin with Basic Fibroblast Growth Factor Binding Peptide
by Manabu Yamada, Arata Nakajima, Kayo Sakurai, Yasushi Tamada and Koichi Nakagawa
J. Funct. Biomater. 2024, 15(8), 230; https://doi.org/10.3390/jfb15080230 - 17 Aug 2024
Cited by 1 | Viewed by 1568
Abstract
Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. [...] Read more.
Regeneration of articular cartilage remains a challenge for patients who have undergone cartilage injury, osteochondritis dissecans and osteoarthritis. Here, we describe a new recombinant silk fibroin with basic fibroblast growth factor (bFGF) binding peptide, which has a genetically introduced sequence PLLQATLGGGS, named P7. In this study, we cultured a human mesenchymal cell line derived from bone marrow, UE6E7-16, in wild-type fibroin sponge (FS) and recombinant silk fibroin sponge with P7 peptide (P7 FS). We compared cell proliferation, chondrogenic differentiation and cartilaginous tissue formation between the two types of sponge. After stimulation with bFGF at 3 ng/mL, P7 FS showed significantly higher cell growth (1.2-fold) and higher cellular DNA content (5.6-fold) than did wild-type FS. To promote chondrogenic differentiation, cells were cultured in the presence of TGF-β at 10 ng/mL for 28 days. Immunostaining of P7 FS showed SOX9-positive cells comparable to wild-type FS. Alcian-Blue staining of P7 FS also showed cartilaginous tissue formation equivalent to wild-type FS. A significant increase in cell proliferation in P7 FS implies future clinical application of this transgenic fibroin for regeneration of articular cartilage. To produce cartilaginous tissue efficiently, transgenic fibroin sponges and culture conditions must be improved. Such changes should include the selection of growth factors involved in chondrogenic differentiation and cartilage formation. Full article
Show Figures

Figure 1

18 pages, 10761 KiB  
Article
Streptomyces-Fungus Co-Culture Enhances the Production of Borrelidin and Analogs: A Genomic and Metabolomic Approach
by Tan Liu, Xi Gui, Gang Zhang, Lianzhong Luo and Jing Zhao
Mar. Drugs 2024, 22(7), 302; https://doi.org/10.3390/md22070302 - 28 Jun 2024
Viewed by 3188
Abstract
The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic [...] Read more.
The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic profiles of co-cultures involving Streptomyces sp. 2-85 and Cladosporium sp. 3-22—derived from marine sponges. Combining Global Natural Products Social (GNPS) Molecular Networking analysis with natural product database mining, 35 potential antimicrobial metabolites annotated were detected, 19 of which were exclusive to the co-culture, with a significant increase in production. Notably, the Streptomyces-Fungus interaction led to the increased production of borrelidin and the discovery of several analogs via molecular networking. In this study, borrelidin was first applied to combat Saprolegnia parasitica, which caused saprolegniosis in aquaculture. We noted its superior inhibitory effects on mycelial growth with an EC50 of 0.004 mg/mL and on spore germination with an EC50 of 0.005 mg/mL compared to the commercial fungicide, preliminarily identifying threonyl-tRNA synthetase as its target. Further analysis of the associated gene clusters revealed an incomplete synthesis pathway with missing malonyl-CoA units for condensation within this strain, hinting at the presence of potential compensatory pathways. In conclusion, our findings shed light on the metabolic changes of marine Streptomyces and fungi in co-culture, propose the potential of borrelidin in the control of aquatic diseases, and present new prospects for antifungal applications. Full article
Show Figures

Graphical abstract

Back to TopTop