Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (278)

Search Parameters:
Keywords = sponge construction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7302 KB  
Article
circRNA Profiling Reveals Regulatory Networks Underlying Gonadal Differentiation in Nile Tilapia (Oreochromis niloticus)
by Mengfan Wu, Shangqi Li, Shen Huang, Wenzheng Sun, Xingxing Guo, Yanbin Zhang, Yiyun Du, You Wu, Linyan Zhou and Jian Xu
Fishes 2025, 10(10), 493; https://doi.org/10.3390/fishes10100493 - 2 Oct 2025
Abstract
The Nile tilapia (Oreochromis niloticus), a key aquaculture species, displays marked sexual growth dimorphism, with males growing faster than females. This process is governed by intricate interactions between antagonistic regulators, including transcription factors, growth factors, and steroid hormones, operating through sex-specific [...] Read more.
The Nile tilapia (Oreochromis niloticus), a key aquaculture species, displays marked sexual growth dimorphism, with males growing faster than females. This process is governed by intricate interactions between antagonistic regulators, including transcription factors, growth factors, and steroid hormones, operating through sex-specific developmental pathways. While circular RNAs (circRNAs) are known to modulate gene expression by sponging microRNAs (miRNAs), their role in teleost sex differentiation remains poorly understood. To address this gap, we profiled circRNA expression in tilapia gonads by constructing six circRNA libraries from testes and ovaries of 180 days after hatching (dah) fish, followed by high-throughput sequencing. We identified 6564 gonadal circRNAs distributed across all 22 linkage groups, including 226 differentially expressed circRNAs (DECs; 108 testis-biased, 118 ovary-biased). Functional enrichment analysis linked their host genes to critical pathways such as cAMP signaling, cell adhesion molecules, and—notably—sexual differentiation processes (e.g., estrogen signaling, oocyte meiosis, and steroid hormone biosynthesis). Furthermore, we deciphered competing endogenous RNA (ceRNA) networks, uncovering circRNA–miRNA–mRNA interactions targeting germ cell determinants, sex-specific transcription factors, and steroidogenic enzymes. This study provides the first systematic exploration of circRNA involvement in tilapia sex differentiation and gonadal differentiation, offering novel insights into the post-transcriptional regulation of sexual dimorphism. Our findings advance the understanding of circRNA biology in fish and establish a framework for future studies on aquaculture species with similar reproductive strategies. Full article
Show Figures

Figure 1

31 pages, 10779 KB  
Review
MXene-Polymer Nanocomposites for High-Efficiency Photocatalytic Antibiotic Degradation Review: Microstructure Control, Environmental Adaptability and Future Prospects
by Zhenfei Chen, Zhifei Meng, Zhongguo Zhang and Weifang Ma
Polymers 2025, 17(19), 2630; https://doi.org/10.3390/polym17192630 - 28 Sep 2025
Abstract
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as [...] Read more.
The efficient degradation of antibiotics in pharmaceutical wastewater remains a critical challenge against environmental contaminants. Conventional photocatalysts face potential limitations such as narrow visible-light absorption, rapid carrier recombination, and reliance on precious metal cocatalysts. This review investigates the coordination structure of MXene as a cocatalyst to synergistically enhance photocatalytic antibiotic degradation efficiency and the coordination structure modification mechanisms. MXene’s tunable bandgap (0.92–1.75 eV), exceptional conductivity (100–20,000 S/cm), and abundant surface terminations (-O, -OH, -F) enable the construction of Schottky or Z-scheme heterojunctions with semiconductors (Cu2O, TiO2, g-C3N4), achieving 50–70% efficiency improvement compared to pristine semiconductors. The “electron sponge” effect of MXene suppresses electron-hole recombination by 3–5 times, while its surface functional groups dynamically optimize pollutant adsorption. Notably, MXene’s localized surface plasmon resonance extends light harvesting from visible (400–800 nm) to near-infrared regions (800–2000 nm), tripling photon utilization efficiency. Theoretical simulations demonstrate that d-orbital electronic configurations and terminal groups cooperatively regulate catalytic active sites at atomic scales. The MXene composites demonstrate remarkable environmental stability, maintaining over 90% degradation efficiency of antibiotic under high salinity (2 M NaCl) and broad pH range (4–10). Future research should prioritize green synthesis protocols and mechanistic investigations of interfacial dynamics in multicomponent wastewater systems to facilitate engineering applications. This work provides fundamental insights into designing MXene-based photocatalysts for sustainable water purification. Full article
(This article belongs to the Special Issue Photoelectrocatalytic Polymer Materials)
Show Figures

Graphical abstract

24 pages, 6155 KB  
Review
Keyword Analysis and Systematic Review of China’s Sponge City Policy and Flood Management Research
by Yichen Lu, Muge Huang, Haixin Xiao, Zekun Lu, Mingjing Xie and Kaida Chen
Atmosphere 2025, 16(9), 1090; https://doi.org/10.3390/atmos16091090 - 16 Sep 2025
Viewed by 414
Abstract
With the acceleration of climate change and urbanisation, Chinese cities are facing increasingly severe flood risks. To address this challenge, China began implementing its sponge city policy in 2013, leveraging low-impact development, green infrastructure construction, and integrated water resource management to enhance urban [...] Read more.
With the acceleration of climate change and urbanisation, Chinese cities are facing increasingly severe flood risks. To address this challenge, China began implementing its sponge city policy in 2013, leveraging low-impact development, green infrastructure construction, and integrated water resource management to enhance urban resilience to floods and improve water security. This study utilises the Web of Science database as a reference, retrieving 201 relevant literature sources. From these, 61 studies closely related to China’s sponge city policy and urban flood management were selected. CiteSpace was employed to conduct keyword co-occurrence and temporal evolution analyses, comprehensively outlining the research hotspots and developmental trajectory of this field. The results indicate that research content has gradually shifted from early engineering-based flood control models to multi-objective, interdisciplinary comprehensive management, encompassing flood risk assessment, policy implementation mechanisms, integration of green infrastructure, and economic feasibility analysis. Based on this, this paper constructs an analytical framework incorporating technical, environmental, institutional, and social dimensions to integrate existing research findings, while identifying gaps in cross-scale coordination, smart management, and public participation. The research conclusions can provide valuable references for future policy optimisation and urban sustainable development. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 2817 KB  
Article
A Synthetic Sponge System Against miRNAs of the miR-17/92 Cluster Targets Transcriptional MYC Dosage Compensation in Aneuploid Cancer
by Diana M. Bravo-Estupiñan, Carsten Geiß, Jorge L. Arias-Arias, Mariela Montaño-Samaniego, Ricardo Chinchilla-Monge, Christian Marín-Müller, Steve Quirós-Barrantes, Anne Régnier-Vigouroux, Miguel Ibáñez-Hernández and Rodrigo A Mora-Rodríguez
Cells 2025, 14(17), 1384; https://doi.org/10.3390/cells14171384 - 4 Sep 2025
Viewed by 581
Abstract
Background: Genomic instability, a hallmark of cancer, leads to copy number variations disrupting gene dosage balance and contributing to tumor progression. One of the most affected oncogenes is MYC, whose overexpression is tightly regulated to avoid cytotoxicity. In aneuploid cancer cells, gene dosage [...] Read more.
Background: Genomic instability, a hallmark of cancer, leads to copy number variations disrupting gene dosage balance and contributing to tumor progression. One of the most affected oncogenes is MYC, whose overexpression is tightly regulated to avoid cytotoxicity. In aneuploid cancer cells, gene dosage compensation mechanisms involving microRNAs (miRNAs) from the miR-17/92 cluster contribute in regulating MYC expression. Targeting this miRNA-mediated compensation system represents a promising therapeutic strategy leading to an uncontrolled and lethal MYC overexpression. Results: Synthetic miRNA sponges targeting miR-17, miR-19a, and miR-20a, key regulators of MYC dosage compensation, were designed and validated. Breast cancer cells (MCF7) with stable exogenous MYC overexpression were used to assess the impact of sponge constructs on MYC regulation. Quantitative RT-PCR revealed a significant reduction in miRNA expression and a corresponding increase in endogenous MYC levels upon sponge treatment. Functional assays in multiple colorectal cancer cell lines with varying MYC copy numbers demonstrated a time-dependent increase in cell death following sponge transfection. Cytotoxic effects increased with MYC copy number, confirming a correlation between gene dosage sensitivity and therapeutic response. Conclusions: Our findings demonstrate that miRNA sponges targeting the miR-17/92 cluster can effectively disrupt MYC dosage compensation, leading to selective cytotoxicity in MYC-amplified cancer cells. Full article
(This article belongs to the Special Issue MicroRNAs: Regulators of Cellular Fate)
Show Figures

Figure 1

26 pages, 13181 KB  
Article
Identification of Rice LncRNAs and Their Roles in the Rice Blast Resistance Network Using Transcriptome and Translatome
by Xiaoliang Shan, Shengge Xia, Long Peng, Cheng Tang, Shentong Tao, Ayesha Baig and Hongwei Zhao
Plants 2025, 14(17), 2752; https://doi.org/10.3390/plants14172752 - 3 Sep 2025
Viewed by 574
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in plant immune responses, yet their roles in rice resistance against Magnaporthe oryzae (M. oryzae) remain inadequately explored. In this study, we integrated translatome data with conventional genome annotations to construct an [...] Read more.
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in plant immune responses, yet their roles in rice resistance against Magnaporthe oryzae (M. oryzae) remain inadequately explored. In this study, we integrated translatome data with conventional genome annotations to construct an optimized protein-coding dataset. Subsequently, we developed a robust pipeline (“RiceLncRNA”) for the accurate identification of rice lncRNAs. Using strand-specific RNA-sequencing (ssRNA-seq) data from the resistant (IR25), susceptible (LTH), and Nipponbare (NPB) varieties under M. oryzae infection, we identified 9003 high-confidence lncRNAs, significantly improving identification accuracy over traditional methods. Among the differentially expressed lncRNAs (DELs), those unique to IR25 were enriched in the biosynthetic pathways of phenylalanine, tyrosine, and tryptophan, which suggests that they are associated with the production of salicylic acid (SA) and auxin (IAA) precursors, which may be involved in defense responses. Conversely, DELs specific to LTH primarily clustered within carbon metabolism pathways, indicating a metabolic reprogramming mechanism. Notably, 21 DELs responded concurrently in both IR25 and LTH at 12 h and 24 h post-inoculation, indicating a synergistic regulation of jasmonic acid (JA) and ethylene (ET) signaling while partially suppressing IAA pathways. Weighted gene co-expression network analysis (WGCNA) and competing endogenous RNA (ceRNA) network analysis revealed that key lncRNAs (e.g., LncRNA.9497.1) may function as miRNA “sponges”, potentially influencing the expression of receptor-like kinases (RLKs), resistance (R) proteins, and hormone signaling pathways. The reliability of these findings was confirmed through qRT-PCR and cloning experiments. In summary, our study provides an optimized rice lncRNA annotation framework and reveals the mechanism by which lncRNAs enhance rice blast resistance through the regulation of hormone signaling pathways. These findings offer an important molecular basis for rice disease-resistant breeding. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

19 pages, 641 KB  
Article
Lightweight Hash Function Design for the Internet of Things: Structure and SAT-Based Cryptanalysis
by Kairat Sakan, Kunbolat Algazy, Nursulu Kapalova and Andrey Varennikov
Algorithms 2025, 18(9), 550; https://doi.org/10.3390/a18090550 - 1 Sep 2025
Viewed by 535
Abstract
This paper introduces a lightweight cryptographic hash algorithm, LWH-128, developed using a sponge-based construction and specifically adapted for operation under constrained computational and energy conditions typical of embedded systems and Internet of Things devices. The algorithm employs a two-layer processing structure based on [...] Read more.
This paper introduces a lightweight cryptographic hash algorithm, LWH-128, developed using a sponge-based construction and specifically adapted for operation under constrained computational and energy conditions typical of embedded systems and Internet of Things devices. The algorithm employs a two-layer processing structure based on simple logical operations (XOR, cyclic shifts, and S-boxes) and incorporates a preliminary diffusion transformation function G, along with the Davis–Meyer compression scheme, to enhance irreversibility and improve cryptographic robustness. A comparative analysis of hardware implementation demonstrates that LWH-128 exhibits balanced characteristics in terms of circuit complexity, memory usage, and processing speed, making it competitive with existing lightweight hash algorithms. As part of the cryptanalytic evaluation, a Boolean SATisfiability (SAT) Problem-based model of the compression function is constructed in the form of a conjunctive normal form of Boolean variables. Experimental results using the Parkissat SAT solver show an exponential increase in computational time as the number of unknown input bits increased. These findings support the conclusion that the LWH-128 algorithm exhibits strong resistance to preimage attacks based on SAT-solving techniques. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

18 pages, 4207 KB  
Article
Development of Aggregate Skeleton–Cementitious Paste-Coating Pervious Concrete
by Weixiong Zeng, Jiajian Chen and Tianxiang Chen
Coatings 2025, 15(9), 1013; https://doi.org/10.3390/coatings15091013 - 1 Sep 2025
Viewed by 757
Abstract
To avoid cumbersome casting procedures in the production of pervious concrete, a new type of casting method through coating cementitious paste onto the preplaced aggregate skeleton is developed. To optimize the key performances and reveal their governing mechanism, aggregate skeleton–cementitious paste-coating pervious concrete [...] Read more.
To avoid cumbersome casting procedures in the production of pervious concrete, a new type of casting method through coating cementitious paste onto the preplaced aggregate skeleton is developed. To optimize the key performances and reveal their governing mechanism, aggregate skeleton–cementitious paste-coating pervious concrete (ACPC) mixes with different porosity, water/cement (w/c) ratio and sand ratio were produced and had their permeability and strength tested. This study demonstrated that it is successful to produce pervious concrete by the novel casting method. Vibration of aggregate skeleton and high w/c ratio should not be adopted to avoid the formation of a layer of hardened paste at the bottom of the mix to block the vertical passage of water. In contrast to conventional concrete, a higher w/c ratio (from 0.23 to 0.34) generally resulted in a higher strength (from 3.77 to 8.71 MPa) of ACPC. A small amount of sand increased both the permeability and strength through the balling bearing effect and filling effect, respectively. Both the optimum sand ratio to achieve the highest vertical permeability and strength were found to be 0.05, which offered this porous structure concurrently satisfactory permeability (permeability coefficient higher than grade K2) and acceptable strength (compressive strength higher than 5 MPa). Key influencing factors of permeability and strength of ACPC were analyzed. This study can advance the technology of casting concrete and the production of pervious concrete as road pavement in the construction of “sponge city”. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Graphical abstract

10 pages, 3412 KB  
Article
Broadband Flexible Metasurface for SAR Imaging Cloaking
by Bo Yang, Hui Jin, Chaobiao Chen, Peixuan Zhu, Siqi Zhang, Rongrong Zhu, Bin Zheng and Huan Lu
Materials 2025, 18(17), 3969; https://doi.org/10.3390/ma18173969 - 25 Aug 2025
Viewed by 575
Abstract
Most electromagnetic invisibility devices are designed while relying on rigid structures, which have limitations in adapting to complex curved surfaces and dynamic deployment. In contrast, flexible invisibility structures have great application value due to their bendable and easy-to-fit characteristics. In this paper, we [...] Read more.
Most electromagnetic invisibility devices are designed while relying on rigid structures, which have limitations in adapting to complex curved surfaces and dynamic deployment. In contrast, flexible invisibility structures have great application value due to their bendable and easy-to-fit characteristics. In this paper, we propose a flexible metasurface suitable for broadband SAR (Synthetic Aperture Radar) imaging invisibility, which realizes multi-domain joint regulation of electromagnetic waves by designing two subwavelength unit structures with differentiated reflection characteristics and combining array inverse optimization methods. The metasurface employs a sponge-like dielectric substrate and integrates resistive ink to construct a resonant structure, which can suppress electromagnetic scattering through joint phase and amplitude modulation, achieving low detectability of targets in UAV (Unmanned Aerial Vehicle) detection scenarios. Indoor microwave anechoic chamber tests and outdoor UAV-borne SAR experiments verify its stable invisibility performance in a wide frequency band, providing theoretical and experimental support for the application of flexible metasurfaces in dynamic electromagnetic detection countermeasures. Full article
Show Figures

Figure 1

25 pages, 8057 KB  
Article
Experimental and Numerical Investigations on the Influences of Target Porosity and w/c Ratio on Strength and Permeability of Pervious Concrete
by Fei Liu, Zhe Li, Bowen Liu, Zhuohui Yu, Zetong Li, Mengyuan Zhu, Yanjie Wang and Xizhou Ding
Materials 2025, 18(17), 3951; https://doi.org/10.3390/ma18173951 - 22 Aug 2025
Viewed by 1065
Abstract
Pervious concrete is a promising sustainable pavement material for sponge city construction. The incorporation of Steel Slag Aggregate (SSA) as a substitute for natural aggregates has the double role of clean production with significant economic and environmental benefits. While the strength and permeability, [...] Read more.
Pervious concrete is a promising sustainable pavement material for sponge city construction. The incorporation of Steel Slag Aggregate (SSA) as a substitute for natural aggregates has the double role of clean production with significant economic and environmental benefits. While the strength and permeability, known as two critical design parameters of pervious concrete, are closely linked to its porosity, there is limited research on the influence of the porosity on the mechanical properties of pervious concrete. In this paper, both experimental and numerical investigations were performed, focusing on the influence of target porosity on the strength and permeability of pervious concrete with and without SSA. Three different target porosities (15%, 20%, and 25%), five distinct water-to-cement (w/c) ratios (0.25, 0.28, 0.30, 0.33, and 0.35), and five SSA replacement ratios (0, 25%, 50%, 75%, and 100%) were considered in this study. A two-dimensional (2D) finite-element (FE) model was developed, with which the failure mode and the strength variation of pervious concrete under different target porosities were analyzed and verified with the experimental results. The results showed that the porosity had a significant influence on both the strength and permeability of pervious concrete, while the influence of the w/c ratio is marginal. There existed an optimal w/c ratio of 0.3, for which pervious concrete with porosities of 15%, 20%, and 25% achieved 28-day compressive strengths of 27.8, 20.6, and 15.6 MPa and permeability coefficients of 0.32, 0.58, and 1.02 cm/s, respectively. Specifically, at the lowest porosity of 15%, the replacement of 100% SSA resulted in the largest improvement in the compressive strength up to 37.86%. Based on the regression analysis, a series of empirical equations correlating the porosity, strength and permeability of pervious concrete was formulated and validated against the experimental data. The findings presented herein are expected to provide references to the practical evaluation of the optimal mix proportion of previous concrete, considering specific and demanding engineering requirements. Full article
Show Figures

Figure 1

97 pages, 35693 KB  
Review
Australia’s Two Great Barrier Reefs: What Can ~360 Million Years of Change Teach Us?
by Gregory E. Webb
J. Mar. Sci. Eng. 2025, 13(8), 1582; https://doi.org/10.3390/jmse13081582 - 18 Aug 2025
Viewed by 1820
Abstract
Coral reefs are among the most important marine habitats but face significant threats from anthropogenic sources, including climate change. This paper reviews and compares the modern Great Barrier Reef Province and the 360-million-year-old Devonian Great Barrier Reef of western Australia. Despite occurring at [...] Read more.
Coral reefs are among the most important marine habitats but face significant threats from anthropogenic sources, including climate change. This paper reviews and compares the modern Great Barrier Reef Province and the 360-million-year-old Devonian Great Barrier Reef of western Australia. Despite occurring at times with different climates, biota (both marine and terrestrial), weathering processes and marine chemistry, similar reefs were constructed under certain circumstances. Major differences in global temperature, marine carbonate saturation, sea level behavior and reef community constituents were evaluated. The comparison highlights the integration of, and interdependencies within, reef communities and the need for both carbonate producers and significant binders, whether skeletal or microbial, to construct a reef in a high-energy setting. Devonian communities with abundant corals and skeletal sponges were incapable of making modern reef types without competent binders to unify framework into rigid substrate. The current strong focus on corals and bleaching in modern reef conservation may be obscuring the equally significant issue of ocean acidification, which impacts on equally crucial framework unification, i.e., hard binding by coralline algae and microbialites and early cementation. The comparison also supports the idea that ‘empty bucket’ carbonate platform morphologies require increased accommodation from high-amplitude icehouse sea level oscillations. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

33 pages, 5443 KB  
Article
Effects of Carbonation Conditions and Sand-to-Powder Ratio on Compressive Strength and Pore Fractal Characteristics of Recycled Cement Paste–Sand Mortar
by Yuchen Ye, Zhenyuan Gu, Chenhui Zhu and Jie Yang
Buildings 2025, 15(16), 2906; https://doi.org/10.3390/buildings15162906 - 17 Aug 2025
Viewed by 576
Abstract
This study investigates the influence of carbonation duration and sand-to-powder ratio on the compressive strength and pore structure of recycled cement paste–sand (RCP-S) mortar. Specimens incorporating four different sand contents were subjected to carbonation for 1 and 24 h. Fractal dimensions, ranging from [...] Read more.
This study investigates the influence of carbonation duration and sand-to-powder ratio on the compressive strength and pore structure of recycled cement paste–sand (RCP-S) mortar. Specimens incorporating four different sand contents were subjected to carbonation for 1 and 24 h. Fractal dimensions, ranging from 2.60159 to 3.86742, indicated increased pore complexity with extended carbonation exposure. Mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) were employed to characterize pore features, including volume, surface area, and diameter. A Menger sponge-based fractal model was applied to compute the fractal dimensions and investigate their relationships with microstructural parameters and mechanical performance. Results showed that prolonged carbonation markedly reduced macropores and large capillary pores, enhanced fine pore content, and improved overall pore connectivity. Fractal analysis revealed that Segments I and IV exhibited the most significant fractal characteristics. The fractal dimension demonstrated exponential correlations with pore diameter; quadratic relationships—with superior statistical performance—with porosity, surface area, and pore volume; and a power–law relationship with compressive strength. These findings highlight the potential of fractal parameters as effective indicators of pore structure complexity and mechanical performance. This study offers a quantitative basis for optimizing pore structure in recycled cementitious materials, promoting their sustainable application in construction. Full article
Show Figures

Figure 1

21 pages, 347 KB  
Article
The Classical Geometry of Chaotic Green Functions and Wigner Functions
by Alfredo M. Ozorio de Almeida
Physics 2025, 7(3), 35; https://doi.org/10.3390/physics7030035 - 5 Aug 2025
Viewed by 393
Abstract
Semiclassical (SC) approximations for various representations of a quantum state are constructed on a single (Lagrangian) surface in the phase space but such surface is not available for chaotic systems. An analogous evolution surface underlies SC representations of the evolution operator, albeit in [...] Read more.
Semiclassical (SC) approximations for various representations of a quantum state are constructed on a single (Lagrangian) surface in the phase space but such surface is not available for chaotic systems. An analogous evolution surface underlies SC representations of the evolution operator, albeit in a doubled phase space. Here, it is shown that corresponding to the Fourier transform on a unitary operator, represented as a Green function or spectral Wigner function, a Legendre transform generates a resolvent surface as the classical basis for SC representations of the resolvent operator in the double-phase space, independently of the integrable or chaotic nature of the system. This surface coincides with derivatives of action functions (or generating functions) depending on the choice of appropriate coordinates, and its growth departs from the energy shell following trajectories in the double-phase space. In an initial study of the resolvent surface based on its caustics, its complex nature is revealed to be analogous to a multidimensional sponge. Resummation of the trace of the resolvent in terms of linear combinations of periodic orbits, known as pseudo orbits or composite orbits, provides a cutoff to the SC sum at the Heisenberg time. Here, it is shown that the corresponding actions for higher times can be approximately included within true secondary periodic orbits, in which heteroclinic orbits join multiple windings of relatively short periodic orbits into larger circuits. Full article
Show Figures

Figure 1

15 pages, 2927 KB  
Article
Schiff Base-Functionalized Melamine Sponge with Hierarchical Porous Architecture for High-Efficiency Removal of Organic Dyes in Wastewater
by Xiaoyu Du, Hailiang Nie, Yanqing Qu, Jingyu Xu, Hongge Jia, Yong Zhang, Wenhui Ma and Boyu Du
Nanomaterials 2025, 15(15), 1157; https://doi.org/10.3390/nano15151157 - 26 Jul 2025
Viewed by 547
Abstract
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red [...] Read more.
Melamine sponges have demonstrated significant application potential in the field of adsorption materials due to their unique three-dimensional porous network structure, excellent chemical/mechanical stability, and abundant amino active sites on the surface. However, the development of modified melamine sponges with efficient Congo red dye removal capabilities remains a substantial challenge. In this study, a stable linear polymer network structure was constructed on the surface of melamine sponges via an in situ polymerization strategy based on the Schiff base reaction mechanism. Characterization analyses reveal that the modified sponge not only retained the original porous skeleton structure but also significantly enhanced the density of surface active sites. Experimental data demonstrate that the modified sponge exhibited excellent adsorption performance for Congo red dye, with the adsorption process conforming to the pseudo-second-order kinetic model and achieving a practical maximum adsorption capacity of 380.4 mg/g. Notably, the material also displayed favorable cyclic stability. This study provides an efficient adsorbent for Congo red dye-contaminated wastewater treatment through the development of a novel surface-functionalized sponge material while also offering new solutions for advancing the practical applications of melamine-based porous materials and environmental remediation technologies. Full article
Show Figures

Figure 1

25 pages, 7566 KB  
Article
Optimization and Benefit Assessment of LID Layout Based on the MCDA Approach at a Campus Scale
by Zexin Lei, Lijun Li, Yanrou Wei, Wenzheng Zhang, Junjie Luo and Xuqiang Zhao
Land 2025, 14(7), 1434; https://doi.org/10.3390/land14071434 - 8 Jul 2025
Viewed by 670
Abstract
Low-impact development (LID) offers environmental, economic, and social benefits, yet research on optimizing facility combinations remains limited. This study evaluates four representative LID types—green roofs, sunken green spaces, permeable pavement, and rain gardens—using an integrated framework combining the Storm Water Management Model (SWMM), [...] Read more.
Low-impact development (LID) offers environmental, economic, and social benefits, yet research on optimizing facility combinations remains limited. This study evaluates four representative LID types—green roofs, sunken green spaces, permeable pavement, and rain gardens—using an integrated framework combining the Storm Water Management Model (SWMM), NSGA-II genetic algorithm, and Analytic Hierarchy Process (AHP) at Taiyuan University of Technology in Shanxi Province, China. Based on site constraints, each LID type was pre-assigned to suitable subareas, and optimization focused on determining proportional allocations within these areas. SWMM simulations revealed that permeable paving achieved the highest runoff reduction (up to 19.4% at 65% coverage) and strong cost-effectiveness (0.013 USD per % reduction). NSGA-II was used to generate a set of optimal solutions by minimizing construction costs and maximizing runoff and pollutant reductions. AHP then ranked these solutions according to their environmental, economic, and social benefits. In this case, the ideal mix—subject to site-specific constraints and model assumptions—includes 28.58% green roofs, 19.37% sunken green spaces, 48.68% permeable paving, and 3.37% rain gardens. The study proposes a sponge campus renewal strategy, offering theoretical and practical insights for sustainable urban development and precise environmental management. Full article
(This article belongs to the Section Land Planning and Landscape Architecture)
Show Figures

Figure 1

33 pages, 14137 KB  
Article
Unraveling the Role of Spicules in Shaping Sponge Body Structure: Evidence from the Early Cambrian Shuijingtuo Formation
by Xinyi Ren, Yazhou Hu, Luke C. Strotz, Mei Luo, Caibin Zhang and Zhifei Zhang
Biology 2025, 14(7), 826; https://doi.org/10.3390/biology14070826 - 7 Jul 2025
Viewed by 857
Abstract
In most cases, sponge fossils are preserved as isolated spicules, with complete sponge body fossils largely confined to Konservat-Lagerstätten. Although the classification and diversity of sponges and their isolated spicules have been extensively studied, no systematic attempts have been made to define the [...] Read more.
In most cases, sponge fossils are preserved as isolated spicules, with complete sponge body fossils largely confined to Konservat-Lagerstätten. Although the classification and diversity of sponges and their isolated spicules have been extensively studied, no systematic attempts have been made to define the relationship between fossil spicules and the sponge body plan. By utilizing relatively well-preserved sponge fossils from the black shales of the Shuijingtuo Formation (South China) in conjunction with isolated spicules from the same locality, we assess spicule morphology to identify the potential functional roles of spicules and chart their arrangement within the sponge body. The elemental distribution and three-dimensional morphology of the examined sponge body fossil (likely a hexactinelid) are assessed using both micro-XRF and micro-CT. Tetractine, stauractine and pentactine spicules are the most abundant spicule types, both in the body fossil and in acid residues, with an additional spicule type (monaxons) also present. The larger pentactine spicules (five-ray spicules) frame the structure, whereas the smaller tetractines and stauractines (four-ray spicules), along with smaller pentactines, are arranged along the branches of the larger spicules. Based on the arrangement of the different spicules, it is proposed that each of the spicule types represents a discrete functional form: monaxons support the overall sponge body plan, pentactines construct the framework of the parietal gaps, and the smaller pentactines or tetractines stabilize the framework of the parietal gaps. These results provide a new understanding of sponge morphology, spicule function and the relationship between isolated fossil spicules and associated sponge body fossils. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

Back to TopTop