Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (977)

Search Parameters:
Keywords = splitting-tensile strength

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8767 KiB  
Article
Experimental and Numerical Investigation of Shear Performance of RC Deep Beams Strengthened with Engineered Cementitious Composites
by Hamsavathi Kannan, Sathish Kumar Veerappan and Madappa V. R. Sivasubramanian
Constr. Mater. 2025, 5(3), 51; https://doi.org/10.3390/constrmater5030051 (registering DOI) - 31 Jul 2025
Abstract
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to [...] Read more.
Reinforced concrete (RC) deep beams constructed with low-strength concrete are susceptible to sudden splitting failures in the strut region due to shear–compression stresses. To mitigate this vulnerability, various strengthening techniques, including steel plates, fiber-reinforced polymer sheets, and cementitious composites, have been explored to confine the strut area. This study investigates the structural performance of RC deep beams with low-strength concrete, strengthened externally using an Engineered Cementitious Composite (ECC) layer. To ensure effective confinement and uniform shear distribution, shear reinforcement was provided at equal intervals with configurations of zero, one, and two vertical shear reinforcements. Four-point bending tests revealed that the ECC layer significantly enhanced the shear capacity, increasing load-carrying capacity by 51.6%, 54.7%, and 46.7% for beams with zero, one, and two shear reinforcements, respectively. Failure analysis through non-linear finite element modeling corroborated experimental observations, confirming shear–compression failure characterized by damage in the concrete struts. The strut-and-tie method, modified to incorporate the tensile strength of ECC and shear reinforcement actual stress values taken from the FE analysis, was used to predict the shear capacity. The predicted values were within 10% of the experimental results, underscoring the reliability of the analytical approach. Overall, this study demonstrates the effectiveness of ECC in improving shear performance and mitigating strut failure in RC deep beams made with low-strength concrete. Full article
Show Figures

Figure 1

19 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

17 pages, 4072 KiB  
Article
Experimental Investigation of Mechanical Properties and Microstructure in Cement–Soil Modified with Waste Brick Powder and Polyvinyl Alcohol Fibers
by Xiaosan Yin, Md. Mashiur Rahman, Hongke Pan, Yongchun Ma, Yuzhou Sun and Jian Wang
Materials 2025, 18(15), 3586; https://doi.org/10.3390/ma18153586 - 30 Jul 2025
Abstract
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) [...] Read more.
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) and PVA fiber content (0–1%), evaluating mechanical properties based on unconfined compressive strength (UCS) and splitting tensile strength (STS) and microstructure via scanning electron microscopy (SEM) across 3–28 days of curing. The results demonstrate that 0.75% PVA optimizes performance, enhancing UCS by 28.3% (6.87 MPa) and STS by 34.6% (0.93 MPa) at 28 days compared to unmodified cement–soil. SEM analysis revealed that PVA fibers bridged microcracks, suppressing propagation, while WBP triggered pozzolanic reactions to densify the matrix. This dual mechanism concurrently improves mechanical durability and valorizes construction waste, offering a pathway to reduce reliance on virgin materials. This study establishes empirically validated mix ratios for eco-efficient cement–soil composites, advancing scalable solutions for low-carbon geotechnical applications. By aligning material innovation with circular economy principles, this work directly supports global de-carbonization targets in the construction sector. Full article
Show Figures

Graphical abstract

26 pages, 4775 KiB  
Article
Effects of Partial Replacement of Cement with Fly Ash on the Mechanical Properties of Fiber-Reinforced Rubberized Concrete Containing Waste Tyre Rubber and Macro-Synthetic Fibers
by Mizan Ahmed, Nusrat Jahan Mim, Wahidul Biswas, Faiz Shaikh, Xihong Zhang and Vipulkumar Ishvarbhai Patel
Buildings 2025, 15(15), 2685; https://doi.org/10.3390/buildings15152685 - 30 Jul 2025
Viewed by 83
Abstract
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, [...] Read more.
This study investigates the impact of partially replacing cement with fly ash (FA) on the mechanical performance of fiber-reinforced rubberized concrete (FRRC) incorporating waste tyre rubber and recycled macro-synthetic fibers (MSF). FRRC mixtures were prepared with varying fly ash replacement levels (0%, 25%, and 50%), rubber aggregate contents (0%, 10%, and 20% by volume of fine aggregate), and macro-synthetic fiber dosages (0% to 1% by total volume). The fresh properties were evaluated through slump tests, while hardened properties including compressive strength, splitting tensile strength, and flexural strength were systematically assessed. Results demonstrated that fly ash substitution up to 25% improved the interfacial bonding between rubber particles, fibers, and the cementitious matrix, leading to enhanced tensile and flexural performance without significantly compromising compressive strength. However, at 50% replacement, strength reductions were more pronounced due to slower pozzolanic reactions and reduced cement content. The inclusion of MSF effectively mitigated strength loss induced by rubber aggregates, improving post-cracking behavior and toughness. Overall, an optimal balance was achieved at 25% fly ash replacement combined with 10% rubber and 0.5% fiber content, producing a more sustainable composite with favorable mechanical properties while reducing carbon and ecological footprints. These findings highlight the potential of integrating industrial by-products and waste materials to develop eco-friendly, high-performance FRRC for structural applications, supporting circular economy principles and reducing the carbon footprint of concrete infrastructure. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

33 pages, 11892 KiB  
Article
Experimental Study on Mechanical Properties of Waste Steel Fiber Polypropylene (EPP) Concrete
by Yanyan Zhao, Xiaopeng Ren, Yongtao Gao, Youzhi Li and Mingshuai Li
Buildings 2025, 15(15), 2680; https://doi.org/10.3390/buildings15152680 - 29 Jul 2025
Viewed by 106
Abstract
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) [...] Read more.
Polypropylene (EPP) concrete offers advantages such as low density and good thermal insulation properties, but its relatively low strength limits its engineering applications. Waste steel fibers (WSFs) obtained during the sorting and processing of machining residues can be incorporated into EPP concrete (EC) to enhance its strength and toughness. Using the volume fractions of EPP and WSF as variables, specimens of EPP concrete (EC) and waste steel fiber-reinforced EPP concrete (WSFREC) were prepared and subjected to cube compressive strength tests, splitting tensile strength tests, and four-point flexural strength tests. The results indicate that EPP particles significantly improve the toughness of concrete but inevitably lead to a considerable reduction in strength. The incorporation of WSF substantially enhanced the splitting tensile strength and flexural strength of EC, with increases of at least 37.7% and 34.5%, respectively, while the improvement in cube compressive strength was relatively lower at only 23.6%. Scanning electron microscopy (SEM) observations of the interfacial transition zone (ITZ) and WSF surface morphology in WSFREC revealed that the addition of EPP particles introduces more defects in the concrete matrix. However, the inclusion of WSF promotes the formation of abundant hydration products on the fiber surface, mitigating matrix defects, improving the bond between WSF and the concrete matrix, effectively inhibiting crack propagation, and enhancing both the strength and toughness of the concrete. Full article
Show Figures

Figure 1

23 pages, 8489 KiB  
Article
Validation of the Pull-Back Method for Dynamic Tensile Strength Characterization in Unidirectional Reinforced Concrete
by Xinlu Yu, Junfeng Zhang and Junhui Gu
Appl. Sci. 2025, 15(15), 8369; https://doi.org/10.3390/app15158369 - 28 Jul 2025
Viewed by 194
Abstract
The pull-back method for determining dynamic tensile strength assumes one-dimensional stress wave propagation and material homogeneity. This study validates these assumptions for unidirectional reinforced concrete (UDRC) through experiments and numerical simulations. Split Hopkinson pressure bar tests were conducted on plain concrete, plain UDRC, [...] Read more.
The pull-back method for determining dynamic tensile strength assumes one-dimensional stress wave propagation and material homogeneity. This study validates these assumptions for unidirectional reinforced concrete (UDRC) through experiments and numerical simulations. Split Hopkinson pressure bar tests were conducted on plain concrete, plain UDRC, and deformed UDRC specimens containing a central 6 mm steel bar. Ultra-high-speed digital image correlation at 500,000 fps enabled precise local strain rate measurements (3 s−1 to 55 s−1) at fracture locations. Finite element simulations revealed that while reinforcement induces localized multi-axial stresses near the steel–concrete interface, the bulk concrete maintains predominantly uniaxial stress conditions. Experimental results showed less than 1% variation in pull-back velocity between specimen types. Statistical analysis confirmed a unified strain rate-strength relationship: σspall=4.1+4.7log10(ε˙)MPa, independent of reinforcement configuration (ANCOVA: p=0.2182 for interaction term). The dynamic tensile strength is governed by concrete matrix properties rather than reinforcement type. These findings are the first to experimentally and numerically validate the pull-back method’s applicability to UDRC systems, establishing that dynamic tensile failure is matrix-dominated and enabling simplified one-dimensional analysis for reinforced concrete under impact. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

14 pages, 4974 KiB  
Article
Investigation of the Evolution of Anisotropic Full-Field Strain Characteristics of Coal Samples Under Creep Loading Conditions
by Xuguang Li, Yu Wang, Xuefeng Yi and Xinyu Bai
Appl. Sci. 2025, 15(15), 8355; https://doi.org/10.3390/app15158355 - 27 Jul 2025
Viewed by 159
Abstract
This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal specimens [...] Read more.
This work aims to reveal the full-field strain evolution characteristics and failure mechanisms of anisotropic coal samples under creep loading. A series of compression tests combined with digital image correlation (DIC) monitoring were employed to characterize the strain evolution process of coal specimens with bedding angles of 0°, 30°, 60°, and 90°. Testing results show that the peak strength, peak strain, and the creep loading stage of coal are significantly influenced by the bedding angle. The peak strength initially decreases and then increases as the bedding angle increases. In addition, the creep failure of coal manifests as a process of instantaneous deformation, decelerating creep, steady-state creep, accelerating creep, and failure. Under graded creep loading conditions, coal specimens exhibit distinct creep characteristics at high stress levels. Moreover, the bedding angle significantly influences the strain field evolution of the coal samples. Finally, for coal specimens with bedding angles of 0° and 90°, the final macroscopic fracture pattern upon failure is characterized by longitudinal tensile splitting. In contrast, coal samples with bedding angles of 30° and 60° tend to exhibit failure along the bedding interfaces, forming tensile-shear fractures. The results of this study will provide theoretical guidance for the prevention, early warning, and safety management of coal mine disasters. Full article
(This article belongs to the Topic Failure Characteristics of Deep Rocks, Volume II)
Show Figures

Figure 1

22 pages, 3746 KiB  
Article
Shear Performance of UHPC-NC Composite Structure Interface Treated with Retarder: Quantification by Fractal Dimension and Optimization of Process Parameters
by Runcai Weng, Zhaoxiang He, Jiajie Liu, Bin Lei, Linhai Huang, Jiajing Xu, Lingfei Liu and Jie Xiao
Buildings 2025, 15(15), 2591; https://doi.org/10.3390/buildings15152591 - 22 Jul 2025
Viewed by 278
Abstract
Prefabricated Ultra-High-Performance Concrete (UHPC) and cast-in-place Normal Concrete (NC) composite members are increasingly used in bridge engineering because they combine high performance with cost-effectiveness. The bond at the UHPC-NC interface is critical as it directly impacts the composite structure’s safety. This study employed [...] Read more.
Prefabricated Ultra-High-Performance Concrete (UHPC) and cast-in-place Normal Concrete (NC) composite members are increasingly used in bridge engineering because they combine high performance with cost-effectiveness. The bond at the UHPC-NC interface is critical as it directly impacts the composite structure’s safety. This study employed 3D laser scanning acquired the UHPC substrate geometry, utilized fractal dimension analysis to quantify the interface roughness, and adopted the slant shear test to evaluate the effects of retarder application mass and hydration delay duration on roughness and bond strength. The research results indicate that the failure modes of UHPC-NC specimens can be categorized into interface shear failure and NC splitting tensile failure. With the extension of hydration delay duration, both the interface roughness and bond strength show a decreasing trend. The influence of retarder dosage on interface roughness and bond strength exhibits a threshold effect. This study also confirms the effectiveness of fractal dimension as a quantitative tool for characterizing the macroscopic roughness features of the bonding interface. The findings of this paper provide a solid theoretical basis and quantitative support for optimizing key process parameters such as retarder dosage and precisely controlling hydration delay duration, offering significant engineering guidance for enhancing the interface bonding performance of UHPC-NC composite structures. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

24 pages, 3928 KiB  
Article
Performance Degradation and Fatigue Life Prediction of Hot Recycled Asphalt Mixture Under the Coupling Effect of Ultraviolet Radiation and Freeze–Thaw Cycle
by Tangxin Xie, Zhongming He, Yuetan Ma, Huanan Yu, Zhichen Wang, Chao Huang, Feiyu Yang and Pengxu Wang
Coatings 2025, 15(7), 849; https://doi.org/10.3390/coatings15070849 - 19 Jul 2025
Viewed by 401
Abstract
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles [...] Read more.
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles and ultraviolet aging on the performance of recycled asphalt mixtures. Systematic indoor road performance tests were carried out, and a fatigue prediction model was established to explore the comprehensive effects of recycled asphalt pavement (RAP) content, environmental action (ultraviolet radiation + freeze–thaw cycle), and other factors on the performance of recycled asphalt mixtures. The results show that the high-temperature stability of recycled asphalt mixtures decreases with the increase in environmental action days, while higher RAP content contributes to better high-temperature stability. The higher the proportion of old materials, the more significant the environmental impact on the mixture; both the flexural tensile strain and flexural tensile strength decrease with the increase in environmental action time. When the RAP content increased from 30% to 50%, the bending strain continued to decline. With the extension of environmental action days, the decrease in the immersion Marshall residual stability and the freeze–thaw splitting strength became more pronounced. Although the increase in RAP content can improve the forming stability, the residual stability decreases, and the freeze–thaw splitting strength is lower than that before the freeze–thaw. Based on the fatigue test results, a fatigue life prediction model with RAP content and freeze–thaw cycles as independent variables was constructed using the multiple nonlinear regression method. Verification shows that the established prediction model is basically consistent with the change trend of the test data. The research results provide a theoretical basis and optimization strategy for the performance improvement and engineering application of recycled asphalt materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

27 pages, 15704 KiB  
Article
Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure
by Shengxuan Ding, Jiren Li and Mingqiang Wang
Materials 2025, 18(14), 3379; https://doi.org/10.3390/ma18143379 - 18 Jul 2025
Viewed by 372
Abstract
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A [...] Read more.
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A total of 30 cube specimens (50 mm × 50 mm × 50 mm)—comprising three types (Corner, Stripe, and R-a-p)—were fabricated and tested under compressive and splitting tensile loading along three orthogonal directions using a 2000 kN electro-hydraulic testing machine. The results indicate that 3D-printed concrete exhibits significantly lower strength than cast-in-place concrete, which is attributed to weak interfacial bonds and interlayer pores. Notably, the R-a-p specimen’s Z-direction compressive strength is 38.7% lower than its Y-direction counterpart. To complement the mechanical tests, DIC, CT scanning, and SEM analyses were conducted to explore crack development, internal defect morphology, and microstructure. A finite element model based on the experimental data successfully reproduced the observed failure processes. This study not only enhances our understanding of anisotropic behavior in 3D-printed concrete but also offers practical insights for print-path optimization and sustainable structural design. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

33 pages, 167102 KiB  
Article
Influence of Mineralogical and Petrographic Properties on the Mechanical Behavior of Granitic and Mafic Rocks
by Muhammad Faisal Waqar, Songfeng Guo, Shengwen Qi, Malik Aoun Murtaza Karim, Khan Zada, Izhar Ahmed and Yanjun Shang
Minerals 2025, 15(7), 747; https://doi.org/10.3390/min15070747 - 17 Jul 2025
Viewed by 343
Abstract
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron [...] Read more.
This study investigates the impact of mineralogical and petrographic characteristics on the mechanical behavior of granitic and mafic rocks from the Shuangjiangkou (Sichuan Province) and Damiao complexes (Hebei Province) in China. The research methodology combined petrographic investigation, comprising optical microscopy and Scanning Electron Microscopy–Energy-Dispersive X-ray Spectroscopy (SEM-EDS) methods, with methodical geotechnical characterization to establish quantitative relationships between mineralogical composition and engineering properties. The petrographic studies revealed three lithologic groups: fine-to-medium-grained Shuangjiangkou granite (45%–60% feldspar, 27%–35% quartz, 10%–15% mica), plagioclase-rich anorthosite (more than 90% of plagioclase), and intermediate mangerite (40%–50% of plagioclase, 25%–35% of perthite). The uniaxial compressive strength tests showed great variations: granite (127.53 ± 15.07 MPa), anorthosite (167.81 ± 23.45 MPa), and mangerite (205.12 ± 23.87 MPa). Physical properties demonstrated inverse correlations between mechanical strength and both water absorption (granite: 0.25%–0.42%; anorthosite: 0.07%–0.44%; mangerite: 0.10%–0.25%) and apparent porosity (granite: 0.75%–0.92%; anorthosite: 0.20%–1.20%; mangerite: 0.29%–0.69%), with positive correlations to specific gravity (granite: 1.88–3.03; anorthosite: 2.67–2.90; mangerite: 2.43–2.99). Critical petrographic features controlling mechanical behavior include the following: (1) mica content in granite creating anisotropic properties, (2) extensive feldspar alteration through sericitization increasing microporosity and reducing intergranular cohesion, (3) plagioclase micro-fracturing and alteration to clinozoisite–sericite assemblages in anorthosite creating weakness networks, and (4) mangerite’s superior composition of >95% hard minerals with minimal sheet mineral content and limited alteration. Failure mode analysis indicated distinct patterns: granite experiencing shear-dominated failure (30–45° diagonal planes), anorthosite demonstrated tensile fracturing with vertical splitting, and mangerite showed catastrophic brittle failure with extensive fracture networks. These findings provide quantitative frameworks that relate petrographic features to engineering behavior, offering valuable insights for rock mass assessment and engineering design in similar crystalline rock terrains. Full article
(This article belongs to the Special Issue Characterization of Geological Material at Nano- and Micro-scales)
Show Figures

Figure 1

27 pages, 5072 KiB  
Article
Study on the Mechanical Properties of Optimal Water-Containing Basalt Fiber-Reinforced Concrete Under Triaxial Stress Conditions
by Kaide Liu, Songxin Zhao, Yaru Guo, Wenping Yue, Chaowei Sun, Yu Xia, Qiyu Wang and Xinping Wang
Materials 2025, 18(14), 3358; https://doi.org/10.3390/ma18143358 - 17 Jul 2025
Viewed by 190
Abstract
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents [...] Read more.
In response to the high-performance requirements of concrete materials under complex triaxial stress states and water-containing environments in marine engineering, this study focuses on water-containing basalt fiber-reinforced concrete (BFRC). Uniaxial compression and splitting tensile tests were conducted on specimens with different fiber contents (0.0%, 0.05%, 0.10%, 0.15%, and 0.20%) to determine the optimal fiber content of 0.1%. The compressive strength of the concrete with this fiber content increased by 13.5% compared to the control group without fiber, reaching 36.90 MPa, while the tensile strength increased by 15.9%, reaching 2.33 MPa. Subsequently, NMR and SEM techniques were employed to analyze the internal pore structure and micro-morphology of BFRC. It was found that an appropriate amount of basalt fiber (content of 0.1%) can optimize the pore structure and form a reticular three-dimensional structure. The pore grading was also improved, with the total porosity decreasing from 7.48% to 7.43%, the proportion of harmless pores increasing from 4.03% to 4.87%, and the proportion of harmful pores decreasing from 1.67% to 1.42%, thereby significantly enhancing the strength of the concrete. Further triaxial compression tests were conducted to investigate the mechanical properties of BFRC under different confining pressures (0, 3, and 6 MPa) and water contents (0%, 1%, 2%, and 4.16%). The results showed that the stress–strain curves primarily underwent four stages: initial crack compaction, elastic deformation, yielding, and failure. In terms of mechanical properties, when the confining pressure increased from 0 MPa to 6 MPa, taking dry sandstone as an example, the peak stress increased by 54.0%, the elastic modulus increased by 15.7%, the peak strain increased by 37.0%, and the peak volumetric strain increased by 80.0%. In contrast, when the water content increased from 0% to 4.16%, taking a confining pressure of 0 MPa as an example, the peak stress decreased by 27.4%, the elastic modulus decreased by 43.2%, the peak strain decreased by 59.3%, and the peak volumetric strain decreased by 106.7%. Regarding failure characteristics, the failure mode shifted from longitudinal splitting under no confining pressure to diagonal shear under confining pressure. Moreover, as the confining pressure increased, the degree of failure became more severe, with more extensive cracks. However, when the water content increased, the failure degree was relatively mild, but it gradually worsened with further increases in water content. Based on the CDP model, a numerical model for simulating the triaxial compression behavior of BFRC was developed. The simulation results exhibited strong consistency with the experimental data, thereby validating the accuracy and applicability of the model. Full article
Show Figures

Figure 1

22 pages, 3224 KiB  
Article
Performance Optimization of SBR-Modified Pervious Composite Incorporating Recycled Concrete Aggregates
by Abdulkader El-Mir, Perla Tannouri, Joseph J. Assaad, Dana Nasr, Maria Ghannoum, Firas Barraj and Hilal El-Hassan
J. Compos. Sci. 2025, 9(7), 372; https://doi.org/10.3390/jcs9070372 - 16 Jul 2025
Viewed by 263
Abstract
This study aimed to optimize the performance of pervious concrete (PC) while promoting sustainability using recycled concrete aggregates (RCAs), styrene butadiene rubber (SBR) waste, and silica fume (SF). The mixtures were developed using the Taguchi approach with four mix design factors, each at [...] Read more.
This study aimed to optimize the performance of pervious concrete (PC) while promoting sustainability using recycled concrete aggregates (RCAs), styrene butadiene rubber (SBR) waste, and silica fume (SF). The mixtures were developed using the Taguchi approach with four mix design factors, each at three levels: the water-to-binder ratio (w/b), RCA replacement percentage by weight of natural aggregates, the cement substitution rate with SF, and the SBR addition rate by binder mass. Thus, a total of nine mixes were prepared and tested for density, porosity, permeability, compressive strength, splitting tensile strength, abrasion resistance, and resistance to freezing and thawing. The results revealed that incorporating RCA and SBR decreased density and compressive strength but increased porosity and permeability. The performance of PC enhanced with SF addition and reduced w/b. TOPSIS was then employed to find the optimum mixture design proportions by considering multiple performance criteria. The results indicated that a high-performing sustainable PC mixture, with enhanced strength and durability characteristics, was formulated with a w/b ratio of 0.30, 25% RCA, 5% SF replacement, and 4% SBR addition. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

19 pages, 11950 KiB  
Article
Enhancing Tensile Performance of Cemented Tailings Backfill Through 3D-Printed Polymer Lattices: Mechanical Properties and Microstructural Investigation
by Junzhou Huang, Lan Deng, Haotian Gao, Cai Wu, Juan Li and Daopei Zhu
Materials 2025, 18(14), 3314; https://doi.org/10.3390/ma18143314 - 14 Jul 2025
Viewed by 278
Abstract
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including [...] Read more.
This study presents an innovative solution to improve the mechanical performance of traditional cemented tailings backfill (CTB) by incorporating 3D-printed polymer lattice (3DPPL) reinforcements. We systematically investigated three distinct 3DPPL configurations (four-column FC, six-column SC, and cross-shaped CO) through comprehensive experimental methods including Brazilian splitting tests, digital image correlation (DIC), and scanning electron microscopy (SEM). The results show that the 3DPPL reinforcement significantly enhances the CTB’s tensile properties, with the CO structure demonstrating the most substantial improvement—increasing the tensile strength by 85.6% (to 0.386 MPa) at a cement-to-tailings ratio of 1:8. The 3DPPL-modified CTB exhibited superior ductility and progressive failure characteristics, as evidenced by multi-stage load-deflection behavior and a significantly higher strain capacity (41.698–51.765%) compared to unreinforced specimens (2.504–4.841%). The reinforcement mechanism involved synergistic effects of macroscopic truss behavior and microscopic interfacial bonding, which effectively redistributed the stress and dissipated energy. This multi-scale approach successfully transforms CTB’s failure mode from brittle to progressive while optimizing both strength and toughness, providing a promising advancement for mine backfill material design. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

21 pages, 4856 KiB  
Article
Mechanical Properties of Recycled Concrete with Carbide Slag Slurry Pre-Immersed and Carbonated Recycled Aggregate
by Xiangfei Wang, Guoliang Guo, Jinglei Liu, Chun Lv and Mingyan Bi
Materials 2025, 18(14), 3281; https://doi.org/10.3390/ma18143281 - 11 Jul 2025
Viewed by 255
Abstract
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded [...] Read more.
This research focuses on improving the characteristics of recycled concrete and utilizing solid waste resources through the combination of industrial waste pre-impregnation and the carbonation process. A novel pre-impregnation–carbonation aggregate method is proposed to increase the content of carbonatable components in the surface-bonded mortar of recycled coarse aggregate by pre-impregnating it with carbide slag slurry (CSS). This approach enhances the subsequent carbonation effect and thus the properties of recycled aggregates. The experimental results showed that the method significantly improved the water absorption, crushing value, and apparent density of the recycled aggregate. Additionally, it enhanced the compressive strength, split tensile strength, and flexural strength of the recycled concrete produced using the aggregate improved by this method. Microanalysis revealed that CO2 reacts with calcium hydroxide and hydrated calcium silicate (C-S-H) to produce calcite-type calcium carbonate and amorphous silica gel. These reaction products fill microcracks and pores on the aggregate and densify the aggregate–paste interfacial transition zone (ITZ), thereby improving the properties of recycled concrete. This study presents a practical approach for the high-value utilization of construction waste and the production of low-carbon building materials by enhancing the quality of recycled concrete. Additionally, carbon sequestration demonstrates broad promise for engineering applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

Back to TopTop